SUPPORTING INFORMATION

Morphological and thermo-chemical changes upon autohydrolysis and microemulsion treatments of coir and Empty Fruit Bunch (EFB) residual biomass to isolate lignin-rich micro and nano fibrillar cellulose (MNFC)

Anurodh Tripathi^{1,2*}, Ana Ferrer^{2,&}, Saad A. Khan¹ and Orlando J. Rojas^{1,2,3*}

- ¹ Department of Chemical & Biomolecular Engineering, NC State University, 911 Partners
 Way, Raleigh, NC 27659, USA.
- ² Department of Forest Biomaterials, NC State University, 2820 Faucette Drive, Raleigh, NC 27607, USA.
- ³ Department of Byproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, P.O. Box 16300, FIN-00076 Aalto, Espoo, Finland.
- & Current address: Asset Integrity, Nalco Champion (Ecolab), 7705 Highway 90-A, Sugar Land, TX 77478, USA.

Pages:	5
Figures:	3
Tables:	1

Figure S1. The synthesis procedure for the micro-nano fibrillar cellulose from coir fiber (MNFC-coir) and the sample nomenclature is shown. The as received coir fiber (P-coir) was subjected to autohydrolysis and fiber refining (H-coir) followed by microemulsion pretreatment (M-coir) and microfluidization to produce MNFC-coir. The same procedure was carried on EFB fibers.

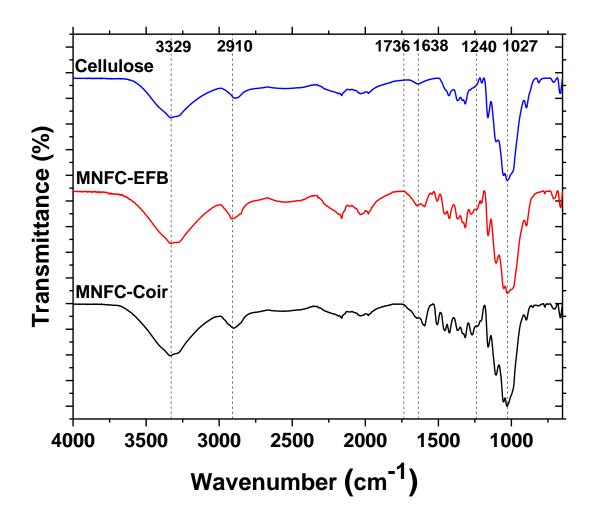


Figure S2: FTIR spectra of pure cellulose with MNFC-Coir and MNFC-EFB

Table S1: Transmission peaks observed for coir and EFB samples along with the identified functional groups, chemical compounds and fiber component consisting of the identified functional groups. (C = Cellulose, H = Hemicelluloses, L = Lignin).

Wavenumber	Functional groups	Organic Compound(s)	Fiber
(cm ⁻¹)		containing functional groups	component
3329	O-H stretch	Acid and alcohol	C, H, L
2910	sp3 C-H stretch	Alkyl, aliphatic, aromatic	C, H, L
1736-1715	C=O stretch	Ketone, ester and carboxylic	Н
1640	O-H bend	Adsorbed water	С
1600-1460	C=C stretch of aromatic	Aromatic rings	L
1470-1430	O-CH ₃	Methoxy (O-CH ₃) on aromatic	L
		ring	
1440-1400	O-H bending	Acid	C, H, L
1400-1300	Sp3 C-H bend	Saturated alkanes	C, H, L
1240	Acyl C-O (C-O-C stretching)	Aryl-alkyl ether linkage	C, L
1161, 1100	C-O-C stretching vibration	Pyranose ring skeletal	C, H
1027	Alkoxy C-O stretch and C-O	C-OH (ethanol)	C, H, L
	deformation		
898	C-O-C stretching vibration	Glycosidic linkage between	С, Н
		glucose units	
700-900	Aromatic sp2 bend	Aromatic hydrogen	L

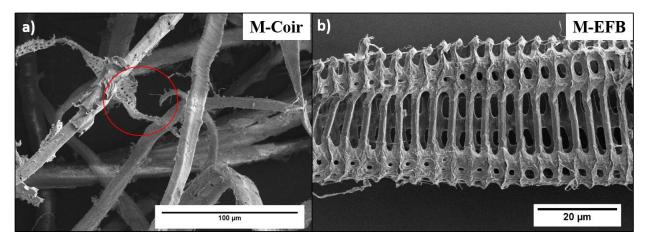


Figure S3: The Coir and EFB fibers showing the vessel element.

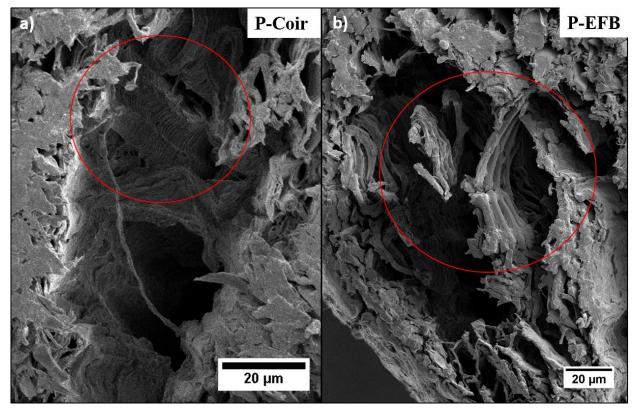


Figure S4: Cross-section of the untreated or pristine coir and EFB fibers showing the vessel element in solid circles