Supporting Information

A Phenylselenium-Substituted BODIPY Fluorescent Turn-off Probe for Fluorescence Imaging of Hydrogen Sulfide in Living Cells

Deyan Gong ^a, Xiangtao Zhu ^b, Yuejun Tian ^c, Shi-Chong Han ^b, Min Deng ^a, Anam Iqbal ^a, Weisheng Liu ^a, Wenwu Qin ^{a*}, Huichen Guo^{b*}

^a Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China

^bState Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu Province 730046, P. R. China

^cInstitute of Urology, the Second Hospital of Lanzhou University, Lanzhou, Gansu Pr ovince, P. R. China

^{*} Corresponding author: Fax: +86-931-8912582 E-mail address: <u>qinww@lzu.edu.cn</u> (W. Qin); <u>ghch-2004@hotmail.com</u> (H. Guo)

TABLE OF CONTENTS

1. Spectroscopic/photophysical data of 1 in addition of Na₂S. (Table S1)

2. Comparison of the proposed method with other methods for H₂S detection. (Table S2)

Photophysical Properties of 1 in the absence and in addition of Na₂S in Triton
X-100/DMSO/HEPES buffer (Table S3)

4. Absorption and fluorescent spectra of 1 in the absence and presence of Na₂S (Figure S1)

5. Time-dependent fluorescence spectra of **1** with Na₂S Triton X-100/DMSO/HEPES buffer (Figure S2)

6. Time-dependent fluorescence spectra of 1 with Na₂S in DMSO/HEPES buffer (Figure S3)

7. MS Spectrum of **1** in EtOH with Na₂S (Figure S4)

8. Selectivity and competition graph of 1 in the presence of biothiols with Na₂S (Figure S5)

 9. Fluorescence intensity of 1 in the absence and presence of Na₂S as a function of pH (Figure S6)

10. The fluorescence spectral changes of the **BOD-SH** mixture solution upon addition of different concentration of benzeneselenol (Figure S7)

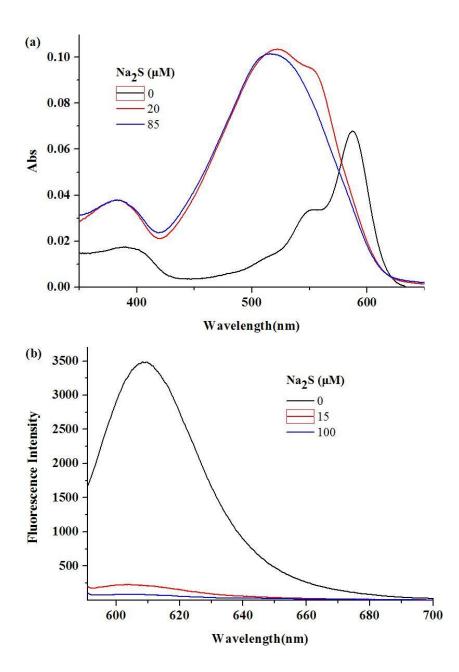
11. Global analysis of decay times result of 1 (Figure S8)

12. Global analysis of decay times result of 1 with Na₂S (Figure S9)

13.Effects of 1 at varied concentrations on the viability of BHK cells (Figure S10)

14. NMR and MS Spectrum spectrum

Table S1. Spectroscopic/photophysical data of 1 (10 μ M) in addition of Na₂S.(Spectrum of 1+ Na₂S was recorded 20 min after Na₂S addition in TritonX-100/DMSO/HEPES buffer (0.01: 1: 9, v/v/v, 10 mM, pH 7.4) at 37 °C.)


Compounds	Reation time/min	λ _{abs} (max)/ nm	$\lambda_{ems}(max)/nm$	ф
1	—	587	610	0.299
$1 + Na_2S$	20	516	602	0.008

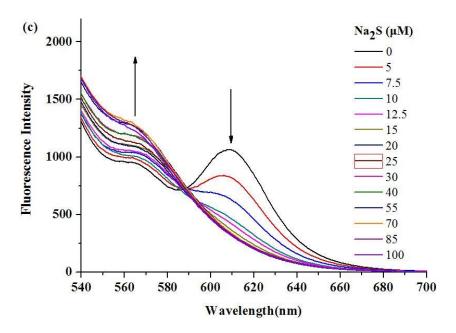
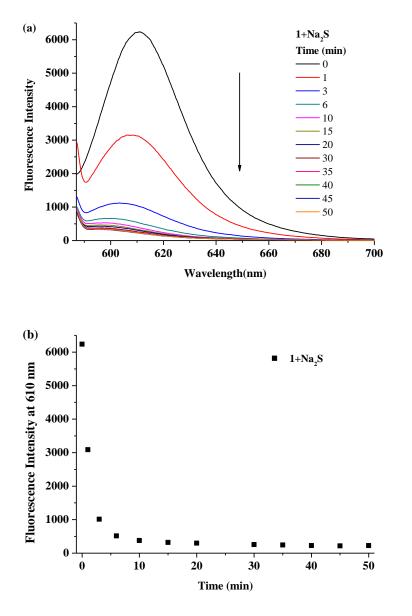
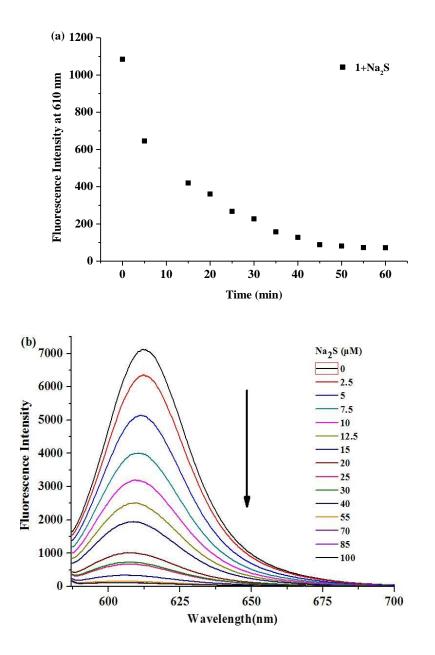

Linear range	Detection	React	Reference
	Limit	time	
0-100 μM	2.46 µM	40min	Anal.Chem., 2016, 88,
			5476–5481
0-15 μM	0.05µM	10min	Chem. Commun.,2012,
			48,10529–10531.
0-8 µM	0.007µM	140 s	J. Am. Chem. Soc., 2015, 137,
			8490-8498
0-10 µM	0.01µM	15min	Chem. Commun., 2013, 49,
			403–405.
0-300 µM	0.0682µM	2min	Chem. Commun., 2015, 51,
			16225-16228
0-125 μM	0.38 µM	30min	Chem. Commun., 2015, 51,
			10463-10466.
0-16 µM	0.086 µM	90min	J. Am. Chem.
			Soc., 2015, 137,10216–10223
1.0-30 µM	0.052µM	60min	Anal. Chem., 2016, 88,
			1434–1439.
0-30 µM	0.85 µM	20min	Anal. Chem., 2015, 87,
			2678–2684
0-15 μM	0.0025 µM	20min	this work

Table S3. Photophysical Properties of **1** (10 μ M) in the absence and in addition of Na₂S in Triton X-100/DMSO/HEPES buffer (0.01: 1: 9, v/v/v, 10 mM, pH 7.4) at 37


Addition	Monitoe	τ_1/ns	τ_2/ns	τ_3/ns	α ₁ (%)	$\alpha_2(\%)$	$\alpha_{3}(\%)$
of Na ₂ S	d						
$/\mu M$	waveleng						
	th/ nm						
	590				1%	99%	-
0	610	2.73 ± 0.01	1.04 ± 0.01	-	4%	96%	-
	630				5%	95%	-
	650				5%	95%	-
	590				22%	45%	33%
10	610	3.26±0.01	1.31±0.01	0.49 ± 0.03	26%	54%	20%
	630				31%	51%	18%
	650				35%	44%	21%
	590				27%	40%	33%
25	610	3.34 ± 0.01	1.47 ± 0.01	0.48 ± 0.02	28%	47%	25%
	630				30%	47%	23%
	650				31%	45%	24%
	590				42%	42%	16%
100	610	2.99 ± 0.01	1.28 ± 0.01	0.44 ± 0.06	40%	43%	17%
	630				42%	43%	15%
	650				42%	47%	11%

^oC. Global analyses of decay times τ_1 , τ_2 and τ_3 , and the relative amplitude α_i (%), each spectrum was recorded 20 min after Na₂S addition at the same excitation wavelength (560 nm), but at different emission wavelength (590, 610, 630 and 650 nm).



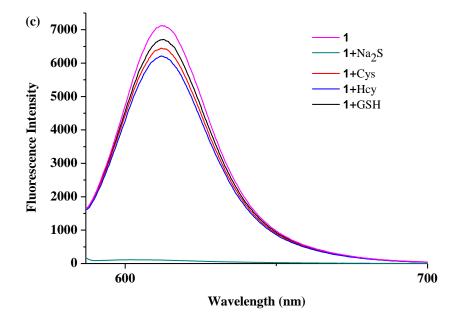


Figure S1. (a) Absorption and (b) fluorescent spectra of **1** (10 μ M) in the absence and presence of different concentration of Na₂S. Each data point was acquired 20 min after addition in Triton X-100/DMSO/HEPES buffer (0.01: 1: 9, v/v/v, 10 mM, pH 7.4) at 37 °C. $\lambda_{ex} = 582$ nm. (c) fluorescence spectral changes of **1** (10 μ M) upon addition of Na₂S. Each spectrum was recorded 20 min after Na₂S addition. $\lambda_{ex} = 500$ nm.

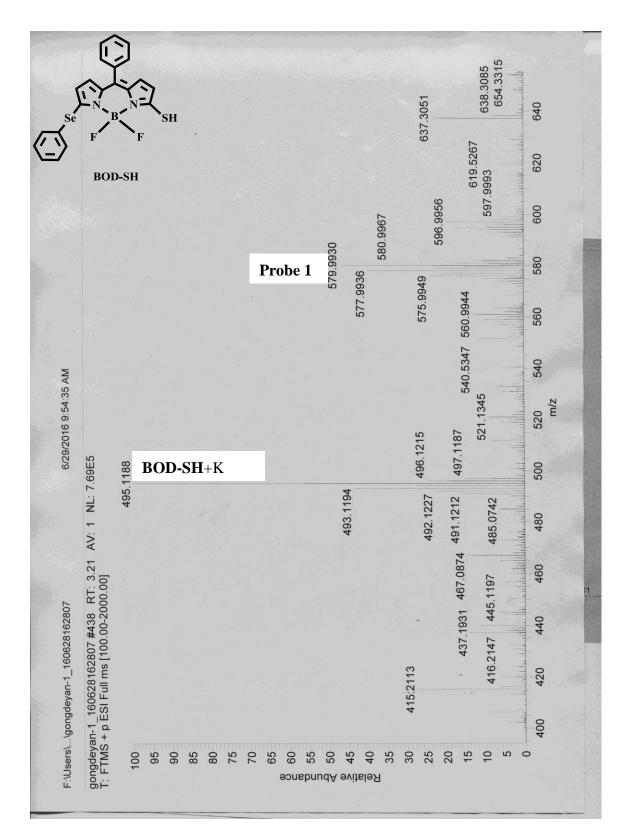
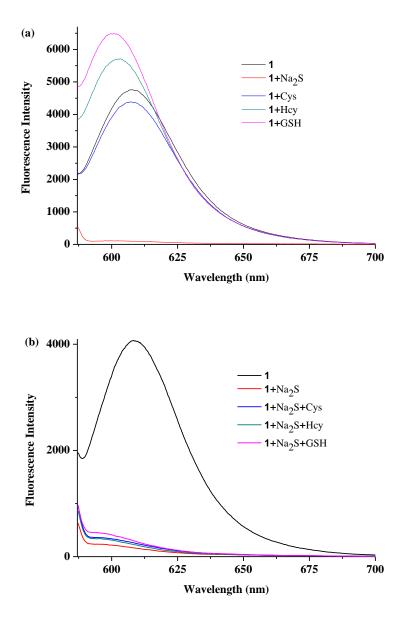
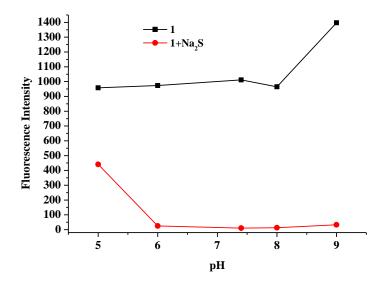
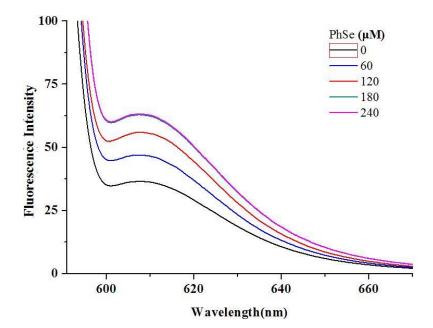


Figure S2. (a) Time-dependent fluorescence spectra of **1** (10 μ M) with 10 equiv. of Na₂S in Triton X-100/DMSO/HEPES buffer (0.01: 1: 9, v/v/v, 10 mM, pH 7.4) at 37 °C. (b) is time course of the response at 610 nm of (a), $\lambda_{ex} = 582$ nm.

Figure S3. (a) Time course of the response at 610 nm of time-dependent fluorescence spectra of **1** (10 μ M) with 10 equiv. of Na₂S. (b) Fluorescence spectral changes of **1** (10 μ M) upon addition of Na₂S. (c) Emission response of **1** (10 μ M) upon addition of 10 equiv. of biothiols and Na₂S. Each spectrum was recorded 50 min after Na₂S addition in DMSO/HEPES buffer (1: 1, v/v, 10 mM, pH 7.4) at 37 °C, $\lambda_{ex} = 582$ nm.)

Figure S4. MS Spectrum of **1** in EtOH with Na₂S (1 equiv.) at 2 h reaction time at 25 °C. The predicted product is **BOD-SH** (the molecular weight of [**BOD-SH**] ($C_{21}H_{15}BF_2N_2SSe$) is 456.0). The peaks at m/z 495.1 (calcd = 495.0) corresponding to [**BOD-SH**+K].

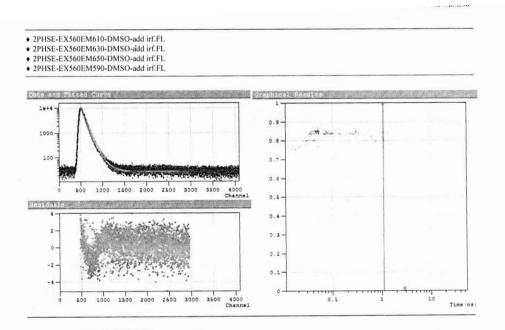

Figure S5. (a) Emission response of 1 (10 μ M) upon addition of 10 equiv. of biothiols and Na₂S. (b) the competition graph of 1 (10 μ M) in the presence of 10 equiv.of biothiols with Na₂S. Each data point was acquired 50 min after addition at 37 °C. λ_{ex} = 582 nm.

Figure S6. Fluorescence intensity of **1** at 610 nm in the absence and presence of 10 equiv. of Na₂S as a function of pH. **1** = 10 μ M, λ_{ex} = 582 nm. Each data point was acquired 50 min after addition of Na₂S in Triton X-100/DMSO/HEPES buffer (0.01: 1: 9, v/v/v, 10 mM, pH 7.4) at 37 °C.



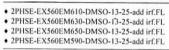
Figure S7. The fluorescence spectral changes of the **BOD-SH** mixture solution upon addition of different concentration of benzeneselenol. Each data point was acquired 20 min after addition of benzeneselenol in Triton X-100/DMSO/HEPES buffer (0.01: 1: 9, v/v/v, 10 mM, pH 7.4) at 37 °C, $\lambda_{ex} = 582$ nm.

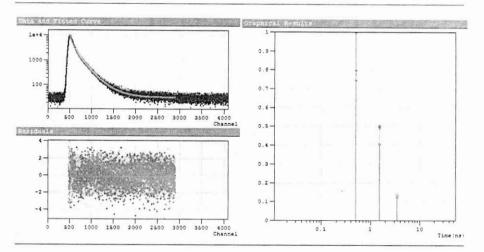
.....

.

Slobal Analysis (Reconvolution)

Fitting rar Global X X ⁴	: 1	475; 2950] .314 .100	channels			
	Bi	ΔB _i	f _i (%)	Δf _i (%)	τ _i (ns)	$\Delta \tau_i (ns)$
1	0.0282	4.2e-5	96.28	0.2803	1.037 linked	0.0013
2	0.0004	2.7e-5	3.7242	0.2645	2.733 linked	0.0072
Shift Decay Backgrou IRF Back	ind :	0.0026 ns (= 27.27 (= 12.40	±0ns) ±0)			


File: 2PHSE-EX560EM630-DMSO-add irf.FL

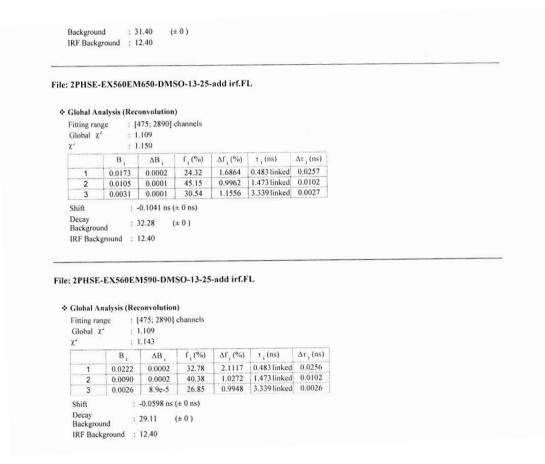

Global Analysis (Reconvolution)

Fitting rar Global X X ²	· :	[475; 2950] 1.314 1.454	channels			
	B	ΔB _i	f _i (%)	Δf _i (%)	τ _i (ns)	$\Delta \tau_i (ns)$
1	0.0281	5.5e-5	94.85	0.3920	1.037 linked	0.0015
2	0.0006	3.9e-5	5.1468	0.4331	2.733 linked	0.0082
Shift Decay Backgrou IRF Back	ind :	0.0074 ns (= 23.17 (= 12.40	±0ns) ±0)			

		onvolution				
Fitting ran Global X		475; 2950] .314	channels			
χ^2		.243				
~	Bi	ΔΒ	f ; (%)	Δf_i (%)	τ _i (ns)	$\Delta \tau_{i}$ (ns)
1	0.0282	5.3e-5	94.56	0.3410	1.037 linked	0.0014
2	0.0282	3.8e-5	5.4400	0.3890	2.733 linked	0.0076
Shift		0.0082 ns (=				
Decay Backgrou IRF Back	na	26.88 (= 12.40	±0)			
Backgrou IRF Back	na ground : -EX560EM nalysis (Rec nge : [12.40 1590-DM	SO-add i	rf.FL		
Backgrou IRF Back ile: 2PHSE Global A Fitting ra	na ground : -EX560EM nalysis (Rec nge : [t' :]	12.40 1590-DM convolution (475; 2950]	SO-add i	rf.FL		
Backgrou IRF Back ile: 2PHSE Global A Fitting ra Global	na ground : -EX560EM nalysis (Rec nge : [t' :]	12.40 M590-DM convolution (475; 2950] 1.314	SO-add i	rf.FL Δf _i (%)	τ _i (ns)	Δτ _i (ns)
Backgrou IRF Back ile: 2PHSE Global A Fitting ra Global	-EX560EN nalysis (Rec nge : [c ⁴ : 1 : 1	12.40 M590-DM convolution (475; 2950) 1.314 1.458	SO-add i		τ ₁ (ns) 1.037 linked	

Figure S8. Global analysis of decay times result of **1** (10 μ M) in Triton X-100/DMSO/HEPES buffer (0.01: 1: 9, v/v/v, 10 mM, pH 7.4) at 37 °C, each spectrum was recorded at the same excitation wavelength (560 nm), but at different emission wavelength (590, 610, 630 and 650 nm).

-


* Global Analysis (Reconvolution)

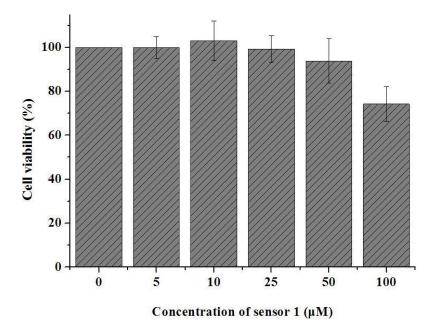
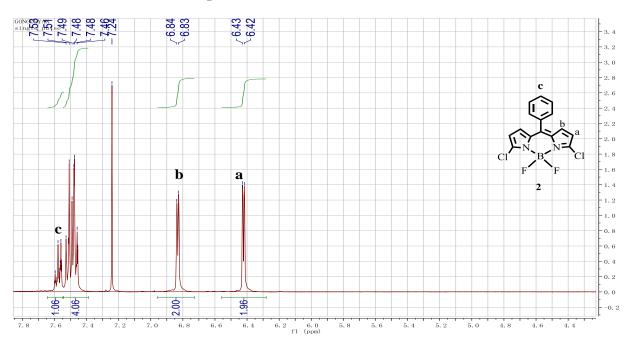
Fitting ra Global) χ ⁴	¢ : I	475; 2890] .109 .057	channels			
	Bi	ΔB _i	f _i (%)	Δf _i (%)	τ _i (ns)	$\Delta \tau_i$ (ns)
1	0.0177	0.0002	24.90	1.6047	0.483 linked	0.0246
2	0.0109	0.0001	47.00	0.9672	1.473 linked	0.0098
3	0.0029	10.0e-5	28.10	1.0211	3.339 linked	0.0025
Shift Decay Backgrou IRF Back	ind : 2	-0.1332 ns (29.74 (12.40	± 0 ns) ± 0)			

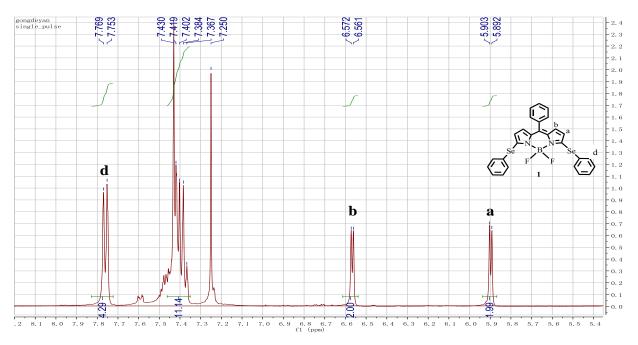
File: 2PHSE-EX560EM630-DMSO-13-25-add irf.FL

Global Analysis (Reconvolution)

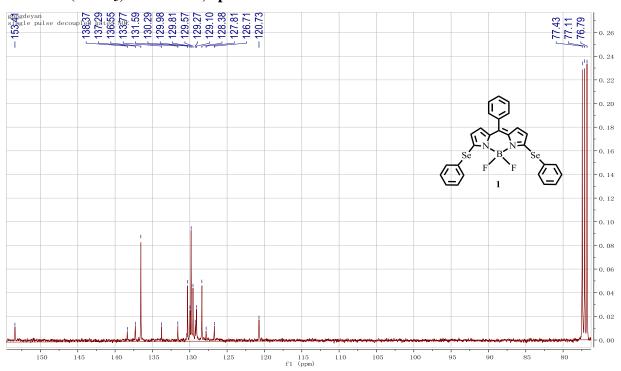
			in the second seco	475; 2890] (.109 .087	· : I	Fitting rar Global χ χ ²
$\Delta \tau_i (ns)$	τ _i (ns)	Δf _i (%)	f _i (%)	ΔBi	Bi	
nked 0.0250	0.483 linked	1.5532	23.07	0.0002	0.0165	1
nked 0.0099	1.473 linked	0.9732	47.45	0.0001	0.0111	2
nked 0.0026	3.339 linked	1.0904	29.48	0.0001	0.0031	3
lir	3.339	1.0904		0.0001 0.1182 ns (:	and a second second second	3 Shift Decay

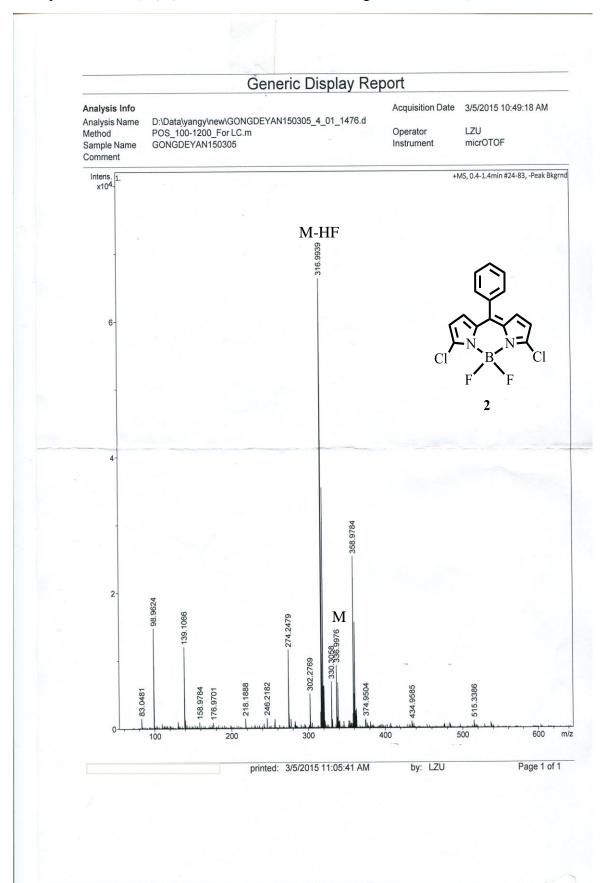
Figure S9. Global analysis of decay times result of **1** (10 μ M) in addition of 25 μ M Na₂S in Triton X-100/DMSO/HEPES buffer (0.01: 1: 9, v/v/v, 10 mM, pH 7.4) at 37 °C, each spectrum was recorded 20 min after Na₂S addition at the same excitation wavelength (560 nm), but at different emission wavelength (590, 610, 630 and 650 nm).

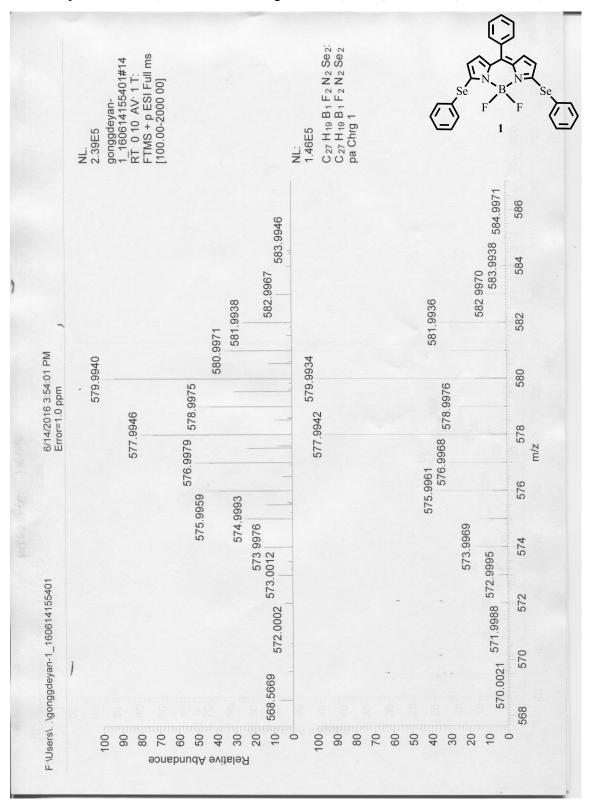

Figure S10. Effects of 1 at varied concentrations on the viability of BHK cells. The

cell viability data were checked three times.


¹H NMR (CDCl₃, 400 MHz) spectrum of 2



¹H NMR (CDCl₃, 400 MHz) spectrum of 1



¹³C NMR (CDCl₃, 400/4 MHz) spectrum of 1

MS Spectrum of 2 (C₁₅H₉BCl₂F₂N₂, the molecular weight of 2 is 336.9).

HRMS Spectrum of 1 (the molecular weight of [1] $(C_{17}H_{13}BClF_2N_4O)$ is 579.9940).