# **Supporting Information**

## Carrier Step-by-step Transport initiated by precise defect distribution engineering for Efficient Photocatalytic Hydrogen Generation

Jiewei Chen<sup>1</sup>, Gaoxiang Wu<sup>1</sup>, Tianyue Wang<sup>1</sup>, Xiaodan Li<sup>1</sup>, Meicheng Li<sup>1,2</sup>\*,

Yuanhua Sang<sup>3</sup>, Hong Liu<sup>3</sup>

<sup>1</sup>State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, 102206, China

<sup>2</sup>Chongqing Materials Research Institute, Chongqing 400707, China

3 State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China

\* Corresponding author information: E-mail: mcli@ncepu.edu.cn; Fax: +86 10 6177 2951; Tel: +86 10 6177 2951.

#### 1. Reaction mechanism of synthesizing designed TiO<sub>2</sub>

To tailor the defect distribution in the defective  $TiO_2$  for our design, it's necessary to clarify the reaction mechanism and control the forming process of the defective  $TiO_2$ . Here, we have precisely investigated the effects of surfactant HF on the properties of the prepared defective  $TiO_2$ , so as to understand the reaction mechanism in the hydrolysis process. To identify different prepared samples, hereafter we marked the sample as 'R<sub>F-X</sub>' (F means the surfactant is HF, and X is the raw material mole ratio of F:Ti).

Figure S1a shows the XRD patterns of our prepared samples  $R_{F-0}$ ,  $R_{F-2}$ ,  $R_{F-4}$  and  $R_{F-6}$ . For  $R_{F-0}$ , a broad peak at  $2\theta = 25.3^{\circ}$  corresponding to the (1 0 1) plane diffraction of anatase TiO<sub>2</sub> (JCPDS No. 21-1272) is observed. The broadening of the diffraction peak is caused by weak crystallization of the sample. With the increasing relative mole ratio of F:Ti from 0 to 6, the peak intensities of anatase increase, indicating an enhancement of crystallization because fluoride can enhance the crystallinity of anatase. It was reported that the presence of fluoride ions at low pH can accelerate the crystallization and growth of TiO<sub>2</sub> because of the rapid in situ dissolution–recrystallization, which reduces the concentration of defects in the TiO<sub>2</sub> lattice (Eqs. (1) and (2))<sup>1</sup> and enhances the formation of the well-crystallized TiO<sub>2</sub> crystals.

$$4H^{+} + TiO_{2} + 6F^{-} \rightarrow TiF_{6}^{2^{-}} + 2H_{2}O \text{ (Dissolution)}$$
(1)  
$$TiF_{6}^{2^{-}} + 2H_{2}O \rightarrow 4H^{+} + TiO_{2} + 6F^{-} \text{ (Recrystallization)}$$
(2)

However, with the relative mole ratio of F:Ti increasing from 4 to 6, an obvious peak appears at  $2\theta = 23.4^{\circ}$ , corresponding to the (1 0 0) plane diffraction of TiOF<sub>2</sub> (JCPDS No. 01-0490). This result reveals TiOF<sub>2</sub> can be formed under the high concentrated HF solution which may strongly affect the hydrolysis process. What's more, the SEM images of the samples (Figure S2) show that R<sub>F-0</sub> is the sphere-like shape varying from 300 nm to 3 µm, while R<sub>F-2</sub>, R<sub>F-4</sub> and R<sub>F-6</sub> are nanosheet-like about 25 nm, well corresponding to the XRD spectra (Figure S1a).

The high resolution XPS F1s spectra of  $R_{F-2}$ ,  $R_{F-2}$ ,  $R_{F-4}$  and  $R_{F-6}$  (Figure S1b) show that there exist both physically adsorbed F (the peak at 684.4 eV) and lattice substituted F (the peak at 689.0 eV) in the  $R_{F-2}$ ,  $R_{F-4}$  and  $R_{F-6}$ . The intensity of the lattice substituted F increases as the mole ratio of F:Ti increases from 0 to 4, but decreases from 4 to 6, indicating that the appearance of TiOF<sub>2</sub> hinders the lattice substitution by F in the reaction process. Figure S1c shows the EPR patterns of our prepared samples with different relative ratios of F:Ti. For  $R_{F-0}$ , there only exists  $Ti_{surf}^{3+}$ . When the relative ratio of F to Ti increases to 2, there exist both  $Ti_{surf}^{3+}$  and  $Ti_{sub-surf}^{3+}$ . When the relative ratio of F to Ti increases from 2 to 4, the relative concentration of  $Ti_{surf}^{3+}$  keeps stable while the concentration of  $Ti_{sub-surf}^{3+}$  increases. However, when the relative ratio of F to Ti increases from 4 to 6, the concentration of  $Ti_{sub-surf}^{3+}$  decreases. Thus, the variation trend of the  $Ti_{sub-surf}^{3+}$  is consistent with that of lattice substituted F as the relative ratio of F to Ti increases from 0 to 6. Since the  $Ti_{sub-surf}^{3+}$  are closely related to the lattice substituted F, it's proposed that  $Ti_{sub-surf}^{3+}$  comes from the substitutional doping of F into the TiO<sub>2</sub> lattice, because each fluorine atom that substitutes for an oxygen atom can contribute an electron to the conduction band, which leads to the unpaired electron,<sup>2</sup> producing EPR signatures for  $Ti_{sub-surf}^{3+}$ .

To clarify the role of HF in the forming of  $Ti^{3+}$ , we have investigated the effects of low HF concentration on the synthesis of TiO<sub>2</sub>, as shown in Figure S1d and Figure S1e. Compared with P25, when there is no HF addition, there exists  $Ti^{3+}_{surf}$  and no F element in  $R_{F-0}$ , indicating that the forming of  $Ti^{3+}_{surf}$  can be attributed to the solvothermal condition. When the relative ratio of Ti to F increases from 0 to 0.75, there only exists  $Ti^{3+}_{surf}$  progressively increasing and no  $Ti^{3+}_{sub-surf}$  signal while there only exists physically adsorbed F increasing and no lattice substituted F, indicating that at low HF concentration, F will not replace the O forming  $Ti^{3+}_{sub-surf}$  in the lattice.

To identify the effects of F<sup>-</sup>, we used other hydracid (HCl and HBr respectively) as the surfactant to replace HF, which were marked as  $R_{Cl-4}$  (the relative mole ratio of Cl:Ti is 4) and  $R_{Br-4}$  (the relative mole ratio of Br:Ti is 4). The EPR spectra of  $R_{F-4}$ ,  $R_{Cl-4}$  and  $R_{Br-4}$  (Figure S1f) show that there is only  $Ti_{surf}^{3+}$  and no  $Ti_{sub-surf}^{3+}$  observed in  $R_{Cl-4}$ ,  $R_{Br-4}$  while there are both  $Ti_{surf}^{3+}$  and  $Ti_{sub-surf}^{3+}$  in  $R_{F-4}$ . This result shows that it's F<sup>-</sup> rather than Cl<sup>-</sup> or Br<sup>-</sup> that can cause the lattice doping in TiO<sub>2</sub>, forming the  $Ti_{sub-surf}^{3+}$  at the relative high surfactant concentration. It's proposed that compared with the Ti-Br bond and the Ti-Cl bond, the size of F is similar to O and Ti-F bond is much stronger than the Ti-O bond, which makes F easier to replace the O in the lattice forming the  $Ti_{sub-surf}^{3+}$ .

The reaction process can be described as the following chemical reaction equations. During the reaction process,

$$Ti(OC_4H_9)_4 + 4HF \rightleftharpoons 4TiF_4 + 4C_4H_9OH$$
(3)

$$TiF_4 + 2H_2O \rightleftharpoons TiO_2 + 4HF \tag{4}$$

$$3Ti^{4+} + O^{2-} + F^{-} \rightleftharpoons Ti^{4+} - F^{-} + Ti^{3+} - V_0 - Ti^{3+} + 0.5O_2$$
 (5)

From the equation (5), we can see that F will react with TiO<sub>2</sub> and Ti<sup>3+</sup> is forming with the oxygen vacancy (V<sub>o</sub>) existing.

According to the La Mer model,<sup>3</sup> the formation process of our TiO<sub>2</sub> nanocrystals can be divided into three stages: decomposition, nucleation and growth, which can be clearly shown in Figure S3. In our reaction process, all the three hydrolysis stages are affected by the HF. At the decomposition regime, TBOT decomposes and small clusters composed of a few atoms starting from monomers form in the solution, which can be affected by both the H<sup>+</sup> and F<sup>-</sup>. The F<sup>-</sup> can replace the OH<sup>-</sup> to be absorbed on the surface of TiO<sub>2</sub> ( $\equiv$  Ti – OH + F<sup>-</sup>  $\rightarrow \equiv$  Ti – F + OH<sup>-</sup>), and H<sup>+</sup> can slow down the decomposing rate. As the concentration of the reactive monomers increases to reach the supersaturation level, the reaction system enters the nucleation stage. During this period, due to the relatively high concentration of monomers, F<sup>-</sup> won't replace the O of TiO<sub>2</sub>. When supersaturation is relieved by the formation of nuclei, the system enters the first growth stage, in which no additional nuclei will form but only existing clusters grow larger. As the reaction proceeds and the relative ratio of F<sup>-</sup> to TBOT becomes higher and higher, F<sup>-</sup> will react with TiO<sub>2</sub> more and more rapidly, triggering the replacement of O and forming the defected shell structure. After the rapid reaction process, the system enters the second growth stage, and the growth of  $TiO_2$  will be slower and slower until the reaction comes to the balance period, and the  $Ti_{surf}^{3+}$  forms on the shell surface of  $TiO_2$ .

In conclusion, HF plays an important role in all the three hydrolysis stages and shows different effects as the relative ratio of HF to the monomers changes dynamically, and  $Ti_{sub-surface}^{3+}$  and  $Ti_{surf}^{3+}$  are forming associated with the relative high ratio of HF to the monomers. Hence, it's a fluorine-assisted dynamic hydrolysis mechanism in the forming process of defective TiO<sub>2</sub>. The proposed reaction mechanism can clearly explain the formation process of prepared defective TiO<sub>2</sub> reasonably and the refined structure of prepared defective TiO<sub>2</sub> gives the detailed information about the relationship between Ti<sup>3+</sup> and the core/shell structure, which can help us control the synthesis of defective TiO<sub>2</sub> with the specific concentration of Ti<sup>3+</sup><sub>sub-surf</sub> and Ti<sup>3+</sup><sub>surf</sub> precisely.

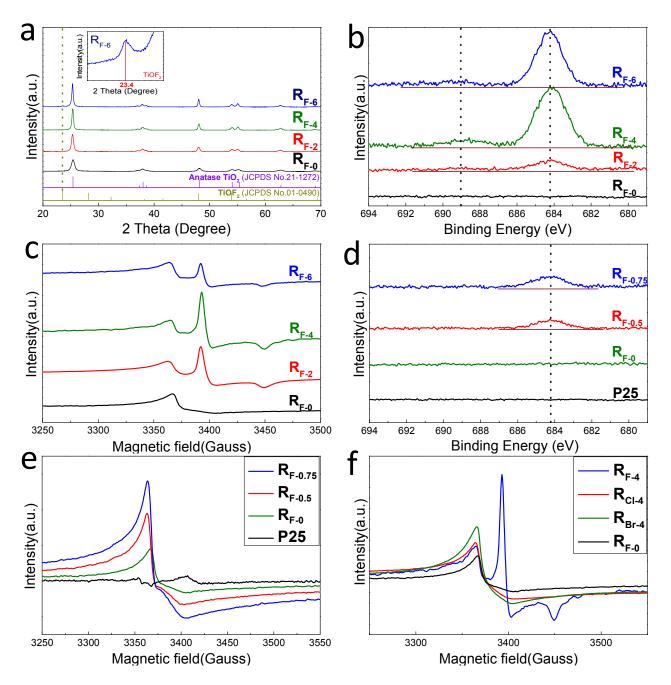



Figure S1. The role of HF in the synthesis of defective TiO<sub>2</sub>. (a,b,c) XRD, XPS F1s and EPR spectra of prepared samples  $R_{F-0}$ ,  $R_{F-2}$ ,  $R_{F-4}$  and  $R_{F-6}$ . The inset in (a): the most intense XRD peak of TiOF<sub>2</sub> in  $R_{F-6}$ . (d,e) XPS F1s and EPR spectra of prepared samples  $R_{F-0}$ ,  $R_{F-0,5}$ ,  $R_{F-0,75}$  and P25 (f) EPR spectra of prepared samples  $R_{F-0}$ ,  $R_{F-4}$ ,  $R_{C-4}$  and  $R_{B-4}$ .

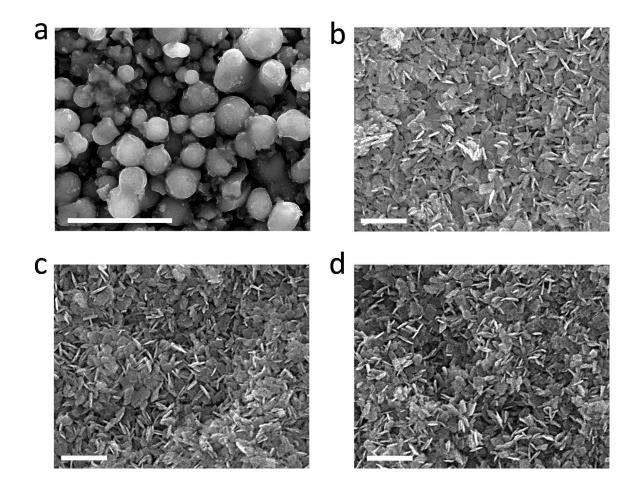



Figure S2. The morphology of defective samples  $R_{F-0}$ ,  $R_{F-2}$ ,  $R_{F-4}$  and  $R_{F-6}$ . (a) SEM image of  $R_{F-0}$ . Scale bar: 20  $\mu$ m. (b~d) SEM images of  $R_{F-2}$ ,  $R_{F-4}$  and  $R_{F-6}$ . Scale bar: 100 nm.

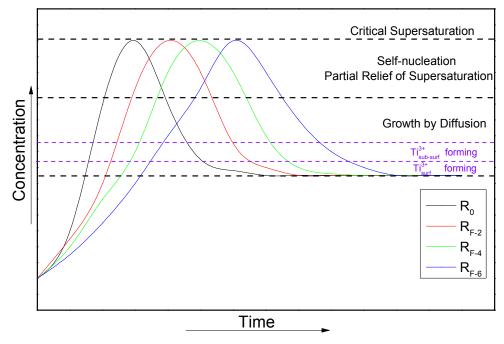



Figure S3. The suggested dynamic hydrolysis mechanism to explain the forming process of defective TiO<sub>2</sub>.

## 2. Detailed characterization of designed TiO<sub>2</sub> and reference samples

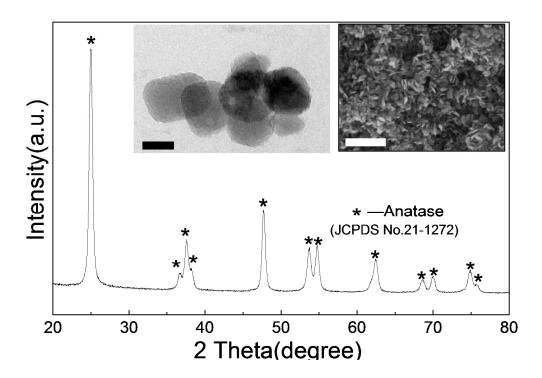



Figure S4. X-ray diffraction spectrum of defective  $TiO_2(R_{F-4})$ . Inset: (left) Transmission electron microscopy image of defective  $TiO_2(R_{F-4})$ . The scale bar is 20 nm. (right) Scanning electron microscopy image of prepared defective  $TiO_2$  (scale bar 200 nm).

As shown in Figure S4, the XRD spectrum of defective  $TiO_2(R_{F-4})$  indicates that the prepared  $TiO_2$  is highly crystallized with the anatase phase (JCPDS No.21-1272).

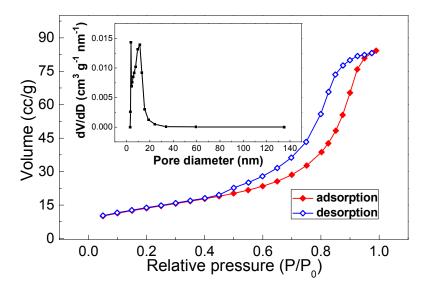



Figure S5. Nitrogen adsorption-desorption isotherms of defective  $TiO_2$  ( $R_{F-4}$ ). Inset: BJH pore-size distributions of prepared defective  $TiO_2$ .

As shown in Figure S5, the pore diameter of defective  $TiO_2$  ( $R_{F-4}$ ) mostly falls on 10~15 nm. The BET surface area of defective  $TiO_2$  ( $R_{F-4}$ ) is 49.0 m<sup>2</sup>/g similar to that of the commercial Degussa P25  $TiO_2$  (a mixture of anatase and rutile  $TiO_2$ ) which is 53.2 m<sup>2</sup>/g.



Figure S6. XPS detection of F in defective TiO<sub>2</sub> ( $R_{F-4}$ ). (a) The XPS survey spectra of defective TiO<sub>2</sub> ( $R_{F-4}$ ) and P25. (b) The high resolution XPS F 1s spectra of defective TiO<sub>2</sub> ( $R_{F-4}$ ) and P25.

As shown in Figure S6a, the XPS survey spectrum shows that there exists F element in defective  $TiO_2$  (R<sub>F-4</sub>)and the high resolution XPS spectra of F 1s (Figure S6b) shows there are two peaks. The peak at 684.4 eV is assigned to the F anions that are physically adsorbed on the surface of defective TiO<sub>2</sub> ( $\equiv$ Ti-F) while the peak at 689.0 eV denotes the presence of F anions in the crystal lattice.<sup>4-6</sup>

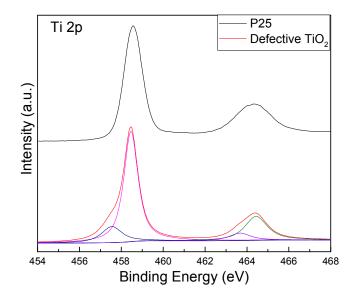



Figure S7. XPS Ti 2p of P25 and defective TiO<sub>2</sub>.

For crystalline P25, there are only two only peaks at about 458 nm and 464 nm representing  $Ti^{4+}$ , while there are another two peaks at 457.5 nm and 463.7 nm for prepared  $TiO_2$ , which indicates that there is  $Ti^{3+}$  in the synthesized  $TiO_2^{7-8}$ . This result corresponds to our EELS and EPR characterization.

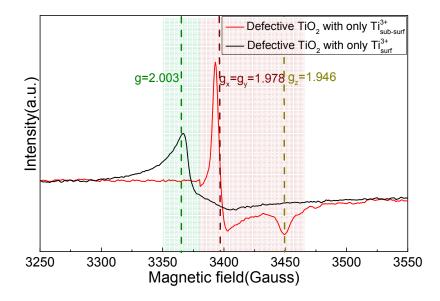



Figure S8. EPR spectra of prepared  $TiO_2$  with only  $Ti^{3+}_{sub-surf}$  and  $TiO_2$  with only  $Ti^{3+}_{surf}$ 

The presence of  $\text{Ti}^{3+}$  in the prepared samples was investigated by electron paramagnetic resonance (EPR), as shown in Figure S7. The EPR spectra show that only  $\text{Ti}_{surf}^{3+}$  is existing in HF treated commercial anatase TiO<sub>2</sub> because there is only one signal observed at g=2.003. In addition, only  $\text{Ti}_{sub-surf}^{3+}$  is existing in air-annealed defective TiO<sub>2</sub> due to the observed anisotropic powder pattern g-values of  $g_x=g_y=1.978$  and  $g_z=1.946$ .

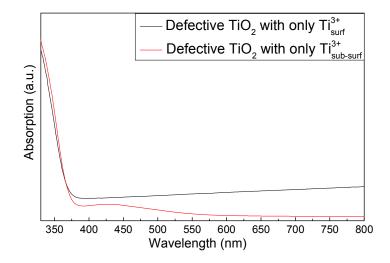



Figure S9. Diffusive reflectance UV-Vis spectra of prepared defective TiO<sub>2</sub> and P25.

The figure S9 shows that  $TiO_2$  with only  $Ti^{3+}_{surf}$  and  $TiO_2$  with only  $Ti^{3+}_{sub-surf}$  defects can absorb the visible light but their bandgaps are nearly the same about 3.2 eV. Compared with the ~2.6 eV of  $R_{F-4}$  with bout  $Ti^{3+}_{surf}$  and  $Ti^{3+}_{sub-surf}$ , it can be indicated that only the co-existence of both  $Ti^{3+}_{surf}$  and  $Ti^{3+}_{sub-surf}$  can lead to the narrower bandgap.

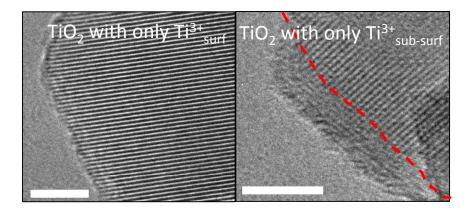



Figure S10. The HRTEM images of TiO<sub>2</sub> with only Ti<sup>3+</sup> surf and only Ti<sup>3+</sup> sub-surf. Scale bar: 5 nm.

We have added the HRTEM images of TiO<sub>2</sub> with only  $Ti^{3+}_{surf}$  and only  $Ti^{3+}_{sub-surf}$  defects in the revised version, which presented as Figure S10. It shows that there is no obvious disordered layer in TiO<sub>2</sub> with only  $Ti^{3+}_{suff}$  while there is ~3 nm disordered layer in TiO<sub>2</sub> with only  $Ti^{3+}_{sub-surf}$ . This may be attributed to the synthesis method of TiO<sub>2</sub> with only  $Ti^{3+}_{sub-surf}$ . The TiO<sub>2</sub> with only  $Ti^{3+}_{sub-surf}$  is synthesized by annealing the R<sub>F-4</sub> under air, so the surface  $Ti^{3+}$  can be oxidized while the  $Ti^{3+}_{sub-surf}$  still remains under certain reaction condition.

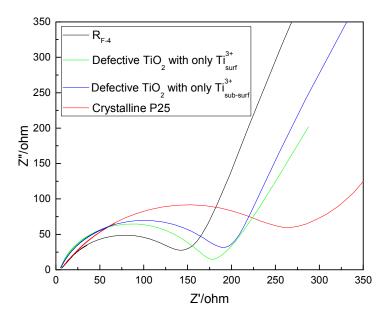



Figure S11. EIS for R<sub>F-4</sub>, crystalline P25, TiO<sub>2</sub> with only Ti<sup>3+</sup><sub>sub-surf</sub> and TiO<sub>2</sub> with only Ti<sup>3+</sup><sub>surf</sub>

Electrochemical impendance spectra (EIS) for  $R_{F-4}$ , crystalline P25, TiO<sub>2</sub> with only  $Ti_{sub-surf}^{3+}$  and TiO<sub>2</sub> with only  $Ti_{surf}^{3+}$  excluding the effects of light absorbance have been investigated to further clarify the effects on DD tailoring, as shown in SI Fig.8. This EIS result supports that our suggested synergetic charge-carriers transmission mechanism enhancing the carriers transport initiates from the DD tailoring, ruling out the effects of light irradiation.

The working electrodes were fabricated by coating a slurry containing 80 wt% of active materials (P25 and our synthesized samples), 10 wt% of acetylene black (Super-P), and 10 wt% of polyvinylidene fluoride (PVDF) dissolved in N-methyl-2-pyrrolidinone onto a copper foil and dried at 100 °C in vacuum for 12 h before pressing. Standard CR2032-type coin cells were assembled in an Ar-filled glovebox (KIYON, Korea) by using the as-prepared anode, Li metal foil (0.4 mm thick) as the counter electrode, and a separator (Solupor 7P03A). Electrochemical impedance spectra (EIS) were measured using the same electrochemical workstation by applying an AC voltage of 10 mV amplitude over the frequency range from 100 kHz to 0.1 Hz.

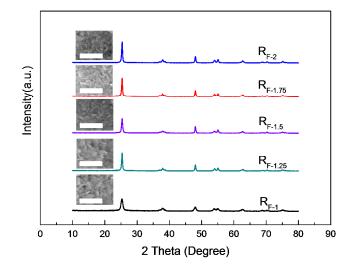



Figure S12. The XRD spectra of  $R_{F-1}$ ,  $R_{F-1.25}$ ,  $R_{F-1.5}$ ,  $R_{F-1.75}$  and  $R_{F-2}$ . The insets are the SEM imgaes of prepared TiO<sub>2</sub> (scale bar: 60nm).

As is shown in Figure S9, the XRD spectra and SEM images (the insets in Figure S11) indicate that the samples  $R_{F-1}$ ,  $R_{F-1,25}$ ,  $R_{F-1,5}$ ,  $R_{F-1,75}$  and  $R_{F-2}$  have nearly the same morphology and polymorph.

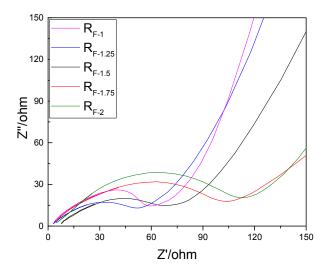



Figure S13. EIS for R<sub>F-1</sub>, R<sub>F-1.25</sub>, R<sub>F-1.5</sub>, R<sub>F-1.75</sub>, R<sub>F-2</sub>.

As shown in Figure S10, the EIS shows that all the plots of the samples comprise two semicircles followed by an inclined linear tail. The diameters of the first and second semicircles correspond to the resistances caused by the solid

electrolyte inter-face film ( $R_f$ ) and the charge transfer resistance ( $R_{ct}$ ). For the samples  $R_{F-1}$ ,  $R_{F-1.25}$ ,  $R_{F-1.5}$ ,  $R_{F-1.75}$ ,  $R_{F-2}$ , as the RTT decreases from 1.6 ( $R_{F-2}$ ) to 0.34 ( $R_{F-1.25}$ ), the  $R_{ct}$  decreases progressively and the 0.18 ( $R_{F-1}$ ) shows the worse performance than 0.34 ( $R_{F-1.25}$ ). These results are consistent with our suggested synergetic charge-carriers transmission mechanism. The proper defection distribution can promote the carriers kinetics and the optimal RTT is 0.34.

| Sample                                                                  | $\tau_1/ns$ | $\mathbf{f}_1$ | $\tau_2/ns$ | $f_2$ | $\tau_{ave}/ns$ |
|-------------------------------------------------------------------------|-------------|----------------|-------------|-------|-----------------|
| TiO <sub>2</sub> with both surface and sub-<br>surface Ti <sup>3+</sup> | 0.523       | 0.671          | 5.282       | 0.329 | 2.09            |
| $TiO_2$ with surface $Ti^{3+}$                                          | 0.505       | 0.515          | 5.788       | 0.485 | 3.07            |
| $TiO_2$ with sub-surface $Ti^{3+}$                                      | 0.502       | 0.494          | 5.412       | 0.506 | 2.99            |
| P25                                                                     | 0.563       | 0.491          | 5.869       | 0.509 | 3.26            |

Table S1. PL lifetimes and fractional intensities of four kinds of TiO<sub>2</sub>.

Table S2. Comparison of the photocatalytic hydrogen generation from water splitting of the prepared designed  $TiO_2 R_{F-1.25}$  with previously reported anatase  $TiO_2$ .

| Photocatalyst                                            | Incident<br>light | Photocatalysis<br>parameters                                       | H <sub>2</sub> generation<br>rate (mmol/g/g) | Reference                                                   |
|----------------------------------------------------------|-------------------|--------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------|
| Hydrogenated anatase<br>TiO <sub>2</sub>                 | AM1.5             | 0.6 wt.% Pt loading<br>in 1:1 methanol/H <sub>2</sub> O            | ~10                                          | Science. 2011.<br>331. 746-750 <sup>9</sup>                 |
| Hydrogenated ordered mesoporous anatase TiO <sub>2</sub> | AM.15             | 1 wt.% Pt loading in<br>1:4 methanol/H <sub>2</sub> O              | 1.362                                        | J. Am. Chem. Soc.<br>2014, 136,<br>9280–9283 <sup>10</sup>  |
| Anatase TiO <sub>2</sub> by Al reduction                 | AM1.5             | 0.5 wt.% Pt loading<br>in 1:4<br>methanol/H2O                      | 7.4                                          | Energy Environ.<br>Sci., 2014, 7, 967–<br>972 <sup>11</sup> |
| Hydrogenated anatase<br>TiO <sub>2</sub>                 | AM1.5             | 0.5 wt.% Pt loading<br>in 1:4 methanol/H <sub>2</sub> O            | 8.2                                          | Adv. Funct.<br>Mater., 2013, 23,<br>5444 <sup>12</sup>      |
| Hydrogenated anatase<br>TiO <sub>2</sub>                 | AM 1.5            | 1.0 wt. % Pt loading<br>in 1:4 CH <sub>3</sub> OH/H <sub>2</sub> O | 2.15                                         | Chem. Commun.<br>2012, 48, 5733-<br>5735 <sup>13</sup>      |
| P25                                                      |                   | 0.57                                                               |                                              |                                                             |

| S doped H-TiO <sub>2</sub>                                   | AM 1.5 | 0.5 wt. % Pt loading<br>in 1:3 CH <sub>3</sub> OH/H <sub>2</sub> O | 0.258 | J. Am. Chem. Soc.<br>2013, 135, 17831-<br>17838 <sup>14</sup> |  |
|--------------------------------------------------------------|--------|--------------------------------------------------------------------|-------|---------------------------------------------------------------|--|
| Defective anatase TiO <sub>2</sub><br>(R <sub>F-1.25</sub> ) | AM 1.5 | 1 wt. % Pt loading                                                 | 13.21 | Our work                                                      |  |
| P25                                                          |        | in 1:4 CH <sub>3</sub> OH/H <sub>2</sub> O                         | 0.54  |                                                               |  |

### 3. References

(1) Wang, Z. Y.; Lv, K. L.; Wang, G. H.; Deng, K. J.; Tang, D. G. Study on the Shape Control and Photocatalytic Activity of High-energy Anatase Titania. *Appl. Catal. B-environ* **2010**, *100*, 378-385.

(2) Zuo, F.; Wang, L.; Wu, T.; Zhang, Z. Y.; Borchardt, D.; Feng, P. Y. Self-Doped Ti<sup>3+</sup> Enhanced Photocatalyst for Hydrogen Production under Visible Light. *J. Am. Chem. Soc.* **2010**, *132*, 11856-11857.

(3) Cargnello, M.; Gordon, T. R.; Murray, C. B. Solution-phase Synthesis of Titanium Dioxide Nanoparticles and Nanocrystals. *Chem. Rev.* **2014**, *114*, 9319-9345.

(4) Naldoni, A.; Allieta, M.; Santangelo, S.; Marelli, M.; Fabbri, F.; Cappelli, S.; Bianchi, C. L.; Psaro, R.; Dal Santo, V. Effect of Nature and Location of Defects on Bandgap Narrowing in Black TiO<sub>2</sub> Nanoparticles. *J. Am. Chem. Soc.* **2012**, *134*, 7600-7603.

(5) Czoska, A.; Livraghi, S.; Chiesa, M.; Giamello, E.; Agnoli, S.; Granozzi, G.; Finazzi, E.; Valentin, C. D.; Pacchioni, G. The Nature of Defects in Fluorine-doped TiO<sub>2</sub>. *J. Phys. Chem. C* **2008**, *112*, 8951-8956.

(6) Gordon, T. R.; Cargnello, M.; Paik, T.; Mangolini, F.; Weber, R. T.; Fornasiero, P.; Murray, C. B. Nonaqueous Synthesis of TiO<sub>2</sub> Nanocrystals using TiF<sub>4</sub> to Engineer Morphology, Ooxygen Vacancy Concentration, and Photocatalytic Activity. *J. Am. Chem. Soc.* **2012**, *134*, 6751-6761.

(7) Chen, J.; Song, W.; Hou, H.; Zhang, Y.; Jing, M.; Jia, X.; Ji, X.  $Ti^{3+}$  Self-Doped Dark Rutile TiO<sub>2</sub> Ultrafine Nanorods with Durable High-Rate Capability for Lithium-Ion Batteries. *Adv. Funct. Mater.* **2015**, *25*, 6793-6801.

(8) Cui, H.; Zhao, W.; Yang, C.; Yin, H.; Lin, T.; Shan, Y.; Xie, Y.; Gu, H.; Huang, F. Black TiO<sub>2</sub> Nanotube Arrays for High-efficiency Photoelectrochemical Water-splitting. *J. Mater. Chem. A* **2014**, *2*, 8612-8616.

(9) Chen, X.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. *Science* **2011**, *331*, 746-750.

(10) Zhou, W.; Li, W.; Wang, J. Q.; Qu, Y.; Yang, Y.; Xie, Y.; Zhang, K.; Wang, L.; Fu, H.; Zhao, D. Ordered Mesoporous Black TiO<sub>2</sub> as Highly Efficient Hydrogen Evolution Photocatalyst. *J. Am. Chem. Soc.* **2014**, *136*, 9280-9283.

(11) Lin, T.; Yang, C.; Wang, Z.; Yin, H.; Lu, X.; Huang, F.; Lin, J.; Xie, X.; Jiang, M. Effective Nonmetal Incorporation in Black Titania with Enhanced Solar Energy Utilization. *Energy Environ. Sci.* **2014**, *7*, 967-972.

(12) Wang, Z.; Yang, C.; Lin, T.; Yin, H.; Chen, P.; Wan, D.; Xu, F.; Huang, F.; Lin, J.; Xie, X.; Jiang, M. H-Doped Black Titania with Very High Solar Absorption and Excellent Photocatalysis Enhanced by Localized Surface Plasmon Resonance. *Adv. Funct. Mater.* **2013**, *23*, 5444-5450.

(13) Zheng, Z.; Huang, B.; Lu, J.; Wang, Z.; Qin, X.; Zhang, X.; Dai, Y.; Whangbo, M.-H. Hydrogenated Titania: Synergy of Surface Modification and Morphology Improvement for Enhanced Photocatalytic Activity. *Chem. Commun.* **2012**, *48*, 5733-5735.

(14) Yang, C.; Wang, Z.; Lin, T.; Yin, H.; Lü, X.; Wan, D.; Xu, T.; Zheng, C.; Lin, J.; Huang, F.; Xie, X.; Jiang, M. Core-shell Nanostructured "Black" Rutile Titania as Excellent Catalyst for Hydrogen Production Enhanced by Sulfur Doping. *J. Am. Chem. Soc.* **2013**, *135*, 17831-17838.