Supporting Information ## Excitonic and Polaronic Properties of 2D Hybrid Organic-Inorganic Perovskites Jun Yin, ^{1,2} Hong Li, ¹ Daniele Cortecchia, ³ Cesare Soci, ² and Jean-Luc Brédas ^{1,*} ¹ Laboratory for Computational and Theoretical Chemistry of Advanced Materials, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia ² Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 ³ Energy Research Institute@NTU (ERI@N), Research Techno Plaza, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553 ## **Corresponding Author** jean-luc.bredas@kaust.edu.sa; jean-luc.bredas@chemistry.gatech.edu **Figure S1.** Band structures and densities of states of the two-dimensional perovskites: (a) (EDBE)PbCl₄ and (b) (EDBE)PbBr₄, calculated at the HSE+SOC level (VASP code). **Figure S2.** Band structures of the two-dimensional perovskites (a) (EDBE)PbCl₄ and (b) (EDBE)PbBr₄, calculated with and without consideration of spin-orbit coupling at the PBE level, used for the evaluation of the optical response (Quantum Espresso code). ΑВ D E С **Γ Z** Υ **Figure S3.** Bandgaps calculated using different methodologies (PBE, PBE+SOC, HSE+SOC, and PBE+SOC+G0W0) for the two-dimensional perovskites (EDBE)PbCl₄ and (EDBE)PbBr₄. **Figure S4.** (a) Projected densities of states of (EDBE)PbCl₄ in the bulk and for a single layer with NH₂ terminations. (b) Molecular structures of the (EDBE)₃₂Pb₁₂Cl₅₆ cluster and corresponding simplified model of (CH₃NH₃)₃₂Pb₁₂Cl₅₆.