Supporting Information

Journal of Organic Chemistry

Access to enantiopure α -hydrazino acids for *N*-amino peptide synthesis

Chang Won Kang, Matthew P. Sarnowski, Yassin M. Elbatrawi, and Juan R. Del Valle* Department of Chemistry, University of South Florida

CONTENTS (46 pages)

•	¹ H and ¹³ C NMR Spectra	S	2
•	X-ray diffraction for compound 2	S	45

¹H AND ¹³C NMR SPECTRA

¹H NMR 400 MHz (CDCl₃)

¹H NMR 400 MHz (CDCl₃)

¹H NMR 400 MHz (CDCl₃)

¹H NMR 400 MHz (CDCl₃)

-100

0 -10

10

¹H NMR 400 MHz (CDCl₃)

¹H NMR 400 MHz (CDCl₃)

¹³C NMR 126 MHz (CDCl₃)

¹H NMR 400 MHz (CDCl₃)

40

20 10 ò -10

90

¹H NMR 400 MHz (CDCl₃)

¹H NMR 400 MHz (CDCl₃)

¹H NMR 400 MHz (DMSO-*d*₆)

¹H NMR 500 MHz (DMSO-*d*₆)

¹H NMR 500 MHz (CDCl₃)

¹H NMR 500 MHz (DMSO-*d*₆)

-0

-50

¹H NMR 500 MHz (DMSO- d_6)

¹H NMR 500 MHz (DMSO- d_6)

¹H NMR 400 MHz (CDCl₃)

¹H NMR 500 MHz (DMSO-*d*₆)

¹H NMR 500 MHz (DMSO- d_6)

¹H NMR 500 MHz (DMSO-*d*6)

¹³C NMR 126 MHz (DMSO-*d*6)

RP-HPLC (C12 column, 0-30% MeCN in 0.1M aq. HCO2H linear gradient)

¹H NMR 500 MHz (DMSO-*d*6)

RP-HPLC (C₁₂ column, 0-30% MeCN in 0.1M aq. HCO₂H linear gradient)

X-RAY DIFFRACTION FOR COMPOUND 2

The X-ray diffraction data for compound **2** were measured on Bruker D8 Venture PHOTON 100 CMOS system equipped with a Cu K_{α} INCOATEC ImuS micro-focus source ($\lambda = 1.54178$ Å). Indexing was performed using *APEX3* [1] (Difference Vectors method). Data integration and reduction were performed using SaintPlus 6.01 [2]. Absorption correction was performed by multi-scan method implemented in SADABS [3]. Space groups were determined using XPREP implemented in APEX3 [1]. Structures were solved using SHELXS-97 (direct methods) and refined using SHELXL-2014 [4-6] (full-matrix least-squares on F²) through OLEX2 interface program [7]. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms of –CH, -CH₃, groups were placed in geometrically calculated positions and were included in the refinement process using riding model with isotropic thermal parameters: Uiso(H) = 1.2[1.5]Ueq(-CH,-CH3]). Hydrogen atoms of –NH- groups were found from difference Fourier map and were refined with distance restraint and Uiso(H)=1.5[-N-].

Figure 1. Thermal ellipsoid plot of the X-ray diffraction structure of **2** (ellipsoid contours shown at 50% probability level with hydrogens fixed as 0.25 Å spheres).

Crystal data and structure refinement for 2			
Identification code	BK_01_017_0m		
Empirical formula	$C_{19}H_{30}N_2O_5$		
Formula weight	366.45		
Temperature/K	99.99		
Crystal system	orthorhombic		
Space group	P2 ₁ 2 ₁ 2 ₁		
a/Å	6.0244(4)		
b/Å	16.4432(10)		
c/Å	20.5214(13)		
$\alpha/^{\circ}$	90		
β/°	90		
γ/°	90		
Volume/Å ³	2032.9(2)		
Z	4		
$\rho_{calc}g/cm^3$	1.197		
μ/mm^{-1}	0.707		
F(000)	792.0		
Crystal size/mm ³	$0.12 \times 0.03 \times 0.01$		
Radiation	$CuK\alpha \ (\lambda = 1.54178)$		
2@ range for data collection/° 6.888 to 133.204			
Index ranges	$-5 \le h \le 6, -19 \le k \le 19, -24 \le l \le 24$		
Reflections collected	8097		
Independent reflections	3421 [$R_{int} = 0.0685$, $R_{sigma} = 0.0868$]		
Data/restraints/parameters	3421/2/248		
Goodness-of-fit on F ²	1.046		
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0704, wR_2 = 0.1644$		
Final R indexes [all data]	$R_1 = 0.1085, wR_2 = 0.1892$		
Largest diff. peak/hole / e Å ⁻³ 0.23/-0.26			
Flack parameter	-0.1(4)		

[1] Bruker (2016). APEX3 (Version 2015.9). Bruker AXS Inc., Madison, Wisconsin, USA.

[2] Bruker (2016) SAINT V8.35A. Data Reduction Software.

[3] Sheldrick, G. M. (1996). SADABS. Program for Empirical Absorption

Correction. University of Gottingen, Germany.

- [4] Sheldrick, G.M. (1997) SHELXL-97. Program for the Refinement of Crystal
- [5] Sheldrick, G.M. (1990) Acta Cryst. A46, 467-473

[6] Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

[7] Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H., OLEX2: A complete structure solution, refinement and analysis program (2009). J. Appl. Cryst., 42, 339-341