Supporting Information

Use of Primary and Secondary Polyvinylamines for Efficient Gene Transfection

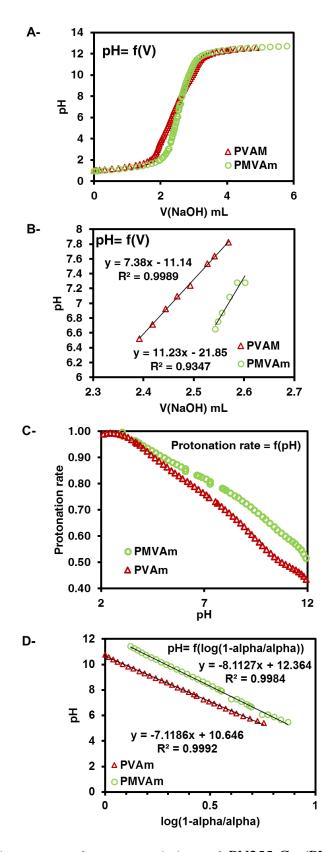
Mathilde Dréan,^{a,b} Antoine Debuigne,^b Cristine Goncalves,^c Christine Jérôme^b, Patrick Midoux,^c Jutta Rieger,^a Philippe Guégan^a

a Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, F-75005 Paris, France.

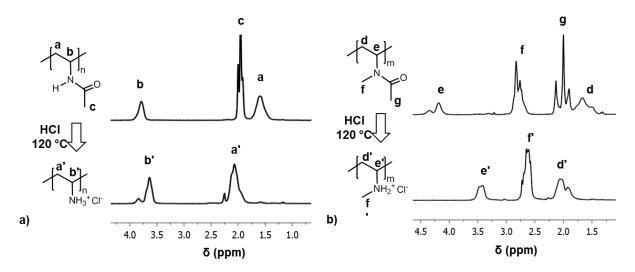
b Center for Education and Research on Macromolecules (CERM), Department of Chemistry, University of Liege (ULg), Sart-Tilman, Allée de la Chimie 3, Bat. B6a, B-4000 Liège, Belgium.

c Centre de Biophysique Moléculaire, UPR4301 CNRS, Rue Charles Sadron, 45071 Orléans Cedex 2, France

Entry	Polymer	%C ^e	%N ^e	C/N _{exp} ^e	C/N _{theor.} f	% of hydrolysis ^g
1	PN700-Fs ^a	32.115	17.650	2.904	1.716	94
2	PN150-Cs ^a	n.d.	n.d.	n.d.	n.d.	n.d.
3	PN255-Cs ^a	33.105	17.675	1.873	1.716	91 ^h
4	PN660-Cs ^a	32.595	18.085	1.802	1.716	$94^{\rm h}$
5	PN940-Cs ^a	32.080	17.630	1.820	1.716	$95^{\rm h}$
6	PN1510-Cs ^a	32.485	17.930	1.812	1.716	$94^{\rm h}$
7	PN50-R ^b	32.420	17.920	1.809	1.716	99 ⁱ
8	PN170-R ^b	32.840	17.875	1.837	1.716	98 ⁱ
9	PN200-R ^b	31.825	18.150	1.753	1.716	$\geq 99^{i}$
10	PM100-Fh ^c	41.620	14.105	2.951	2.573	78^{j}
11	PM140-Fh ^c	38.945	13.410	2.904	2.573	81 ^j
12	PM165-Fh ^c	41.700	14.975	2.785	2.573	88^{j}
14	PM285-Fh ^c	46.165	15.060	3.065	2.573	71 ^j
15	PM110-Ch ^c	43.630	15.135	2.883	2.573	82^{j}
16	PM265-Ch ^c	43.895	15.680	2.799	2.573	87 ^j
17	PM310-Ch ^c	42.400	15.700	2.701	2.573	93 ^j
18	PM680-Ch ^c	43.610	16.010	2.724	2.573	91 ^j
19	PM155-Fm 23 ^d	52.480	13.450	3.902	2.573	23 ^j
20	PM155-Fm 37 ^d	50.800	13.935	3.645	2.573	37 ^j
21	PM155-Fm 44 ^d	48.570	13.740	3.535	2.573	44 ^j
22	PM155-Fm 54 ^d	46.665	13.940	3.348	2.573	54 ^j
23	PM155-Fm 64 ^d	44.345	13.895	3.191	2.573	64 ^j
24	PM155-Fm 76 ^d	43.760	14.670	2.983	2.573	76 ^j
25	PM155-Fm 94 ^d	42.005	15.695	2.676	2.573	94 ^j


<u>Table S1.</u> Determination of the hydrolysis level of the poly(*N*-vinylamines) (PVAm) and poly(*N*-methylvinylamines) (PMVAm) by elemental analysis.

^a Hydrolysis conditions: HCl 2 N at 120°C for 14h. ^b Hydrazinolysis conditions: [NVPi]/[hydrazine] = 1/24, in 1.4-dioxane/MeOH 1/2 at 65°C for one night. ^c Hydrolysis conditions: HCl 6 N at 120°C for 64 h. ^d Hydrolysis conditions: HCl 3 N at 100°C ^e Determined by elementary analysis. ^f Calculated for full hydrolysis of the amides moieties. ^g NVA hydrolysis level = 100 × (1- $f_{NVA residual}$) where $f_{NVA residual}$ is the molar fraction of the residual non-hydrolyzed NVA units, and NMVA hydrolysis level = 100 × (1- $f_{NVA residual}$) where $f_{NVA residual}$ where $f_{NVA residual}$ is the molar fraction of the residual non-hydrolyzed NMVA units. ^{h-j} $f_{NVA residual}$, $f_{NWVA residual}$ and $f_{NVPi residual}$ are determined based on formulas h-j (see below) established by taking into account the molar fraction of each comonomer in the copolymer precursor (F_{NVA}^0 , F_{NMVA}^0 and F_{NVPi}^0) and the respective numbers of carbon and nitrogen atoms in the hydrolyzed and non-hydrolyzed monomer units. MM_c and MM_N are the molar mass of C and N, respectively. n.d. = not determined.


^h
$$F_{NVA\,residual} = \frac{[MM_N \times \frac{C}{N}] - [2 \times MM_C]}{2 \times MM_C}$$

ⁱ
$$F_{residual NVPi} = \frac{\left[MM_N \times \frac{C}{N}\right] - [2 \times MM_C]}{8 \times MM_C}$$

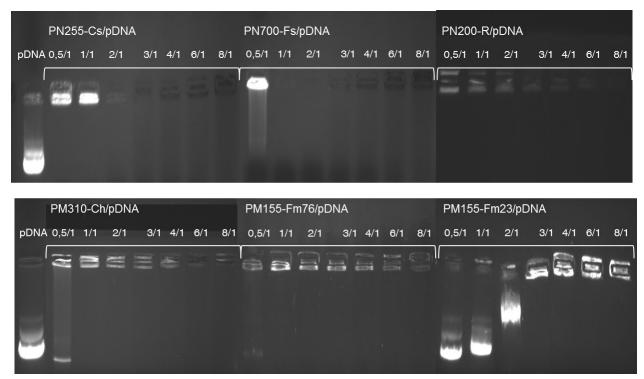
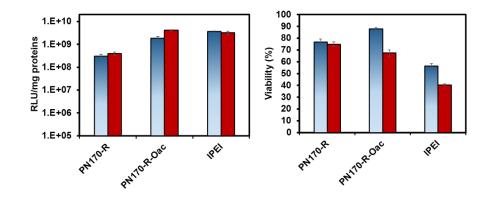

^j
$$F_{NMVA\,residual} = \frac{\left[MM_N \times \frac{C}{N}\right] - [3 \times MM_C]}{2 \times MM_C}$$

Figure S1. (A) Titration curves of aqueous solutions of PN255-Cs (PVAm) and PM140-Fh (PMVAm) (50 mg/ml in 10 mL of HCl 1M) with 0.5M NaOH, (B) linear regression of the titration curves of aqueous solutions of PN255-Cs and PM140-Fh in order to determine their buffer capacities between 6.5 < pH < 7.5, (C) the resulting protonation curves versus the pH and (D) determination of the pKa.

Figure S2. ¹H NMR analyses of **a**) PNVA ($M_{n \text{ SEC-MALLS}} = 56300 \text{ g/mol}$, D = 1.18) and **b**) PNMVA ($M_{n \text{ SEC-MALLS}} = 30800 \text{ g/mol}$, D = 1.12) samples before and after acid hydrolysis (6 N HCl/120°C). Spectra were recorded at 298K in D₂O.

Figure S3. Agarose gel electrophoresis retardation assays of polyplexes made with different polyvinylamines (PN) (top) and poly(*N*-methylvinylamines) (PM) (bottom). Polyplexes were formed with various polymer/pDNA weight ratios (WR).

<u>Table S2.</u> Characteristics of polyvinylamine (PVAm) synthesized by RAFT polymerization of *N*-vinylphthalimide and successive hydrazinolysis.


			PNVPi ^a					PVAm ^b		
Entry	Name	$\overline{M_{ m n,th}}^{ m c}$	$M_{\rm n}^{\rm LS}$	<i>DP</i> ^e _n	${oldsymbol{ heta}}^{ m f}$	Conv.	% of	M _n		
			(kg/mol) ^d	DI n		(%)	hydrazinolysis ^g	(kg/mol) ^h		
	1	PN50-R	5	8	46	1.43	> 99	99	2.0	
	2	PN170-R	21	29	167	1.52	81	98	7.2	
	3	PN200-R	23	35	200	1.61	59	99	8.6	

^a Conditions for PN50-R, PN170-R and PN200-R are respectively: [NVPi]/[AIBN]/[CTA] = 25/0.25/1, 150/0.25/1 and 227/0.25/1, for 12 h, 24 h and 72 h. ^b Conditions of the hydrazinolysis: [PNVPi]/[hydrazine] = 1/24, in 1.4-dioxane/MeOH 1/2 at 65°C for one night. ^c $M_{n,th} = DP_n^{th} x$ conversion x MM_{monomer} ^d M_n^{LS} determined by SEC in DMF equipped with a MALLS detector, $dn/dc_{PNVPi} = 0.131$. ^e Calculated using the following formula: $DP_n = M_n/MM_{monomer}$. ^f Determined by SEC in DMF using a PMMA calibration. ^g Determined by elemental analysis (SI Table S1 for crude EA analysis and calculations). ^h Number-average molar mass calculated by the molar mass of the precursor.

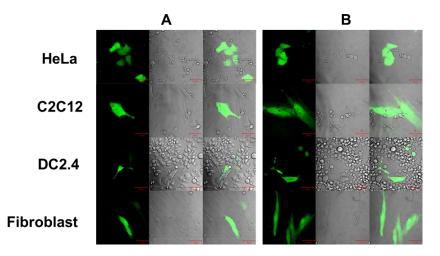

Entry	Polyplexes	polymer/pDNA WR ^a	N/P ^b	$\mathbf{D_h}^{\mathbf{c}}$	$\zeta^{\mathbf{d}}$	
	_ •- <i>5</i> F ••••			(nm)	(mV)	
1	PN50-R-plex	1	7	3490	+27	
		3	22	150	+37	
2	PN170-R-plex	1	7	460	+40	
		3	21	140	+44	
3	PN200-R-plex	1	7	90	+23	
		3	22	130	+40	
2'	PN170-R-OAc-plex ^e	1	2	185	+27	
		3	5	140	+33	

Table S3. Characteristics of pDNA complexes made with PVAm polymers prepared via RAFT polymerization

^a WR = polymer/pDNA weight ratio. ^b amine/phosphate molar ratio calculated as described in experimental part. ^c Hydrodynamic diameters D_h of the polyplexes at 298K in HEPES 10 mM, pH 7.4. ^d ζ potential of polyplexes at 298K in HEPES 10 mM, pH 7.4. ^e Obtained by acetylation of PN170-R (degree of acetylation = 50 %).

Figure S4. (A) Transfection efficiency and (B) cell viability of HeLa cells. Transfection was performed with PVAm (made by RAFT) before (PN170-R) and after 50 % acetylation (PN170-R-OAc) polyplexes at two polymer/pDNA ratios (ratio 1 (blue) and ratio 2 (red): lower and higher amount of polymer, Table S3). The luciferase activity was measured 48 h after the transfection and expressed as RLU/mg of protein. The cell viability was evaluated by MTT assay 48 h after transfection and expressed as percentage relative to untreated cells.

Figure S5. HeLa, C2C12, DC2.4 cells and fibroblasts were transfected with PM140-Fh polyplexes at N/P = 3 (A) and 6 (B) containing pDNA encoding EGFP. EGFP-positive cells were analyzed by fluorescent confocal microscopy. Fluorescence images (left), phase contrast images (middle) and their merge (right).