Electronic Supporting Information

Fine Tuning the Performance of Multiorbital Radical Conductors by Substituent Effects

Aaron Mailman, ${ }^{a}$ Joanne W. L. Wong, ${ }^{a}$ Stephen M. Winter, ${ }^{a}$ Robert C. M. Claridge, ${ }^{a}$ Craig M. Robertson, ${ }^{b}$ Abdeljalil Assoud, ${ }^{a}$ Wenjun Yong, ${ }^{c}$ Eden Steven, ${ }^{d}$ Paul A. Dube, ${ }^{e}$ John S. Tse, ${ }^{f}$ Serge Desgreniers, ${ }^{g}$ Richard A. Secco ${ }^{c}$ and Richard T. Oakley ${ }^{a, *}$
${ }^{a}$ Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
${ }^{b}$ Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom. ${ }^{c}$ Department of Earth Sciences, University of Western Ontario, London, Ontario N6A 5B7, Canada.
${ }^{d}$ Department of Physics, Florida State University, Tallahassee, Florida 32310, United States. ${ }^{\text {eBrockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4M1, Canada. }}$
${ }^{\prime}$ Department of Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada. ${ }^{\text {s Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada. }}$

Corresponding author email address: oakley@uwaterloo.ca

Contents (11 pages total)

Figure S1. (a) TGA and (b) DSC measurements on $\mathbf{2 a} \cdot \mathrm{MeCN}$.
Figure S2. (a) Experimental and (b) simulated EPR spectrum of 2a in toluene.

Figure S1. (a) TGA and (b) DSC Measurements on $\mathbf{2 a} \cdot \mathrm{MeCN}$. The loss of 1.0 mol MeCN from $\mathbf{2 a} \cdot \mathrm{MeCN}$ requires a 12.4% weight loss, in good agreement with the value of 13% obtained experimentally. The temperature of phase transition by DSC matches that obtained by TGA.

Figure S2. (a) Experimental and (b) simulated (with Winsim) EPR spectrum of 2a in toluene (at $v=9.821796 \mathrm{GHz})$. The UB3LYP/6-311G(d,p) spin density distribution is also shown.

Table S1. Gaussian Archive Files for 2a (PCM - Acetonitrile).

Radical

1|1|UNPC-OAKLEY-PC|FOpt|UB3LYP|6-311G(d, p) |C6N303S4 (2) |RICHARD OAKLEY| 22-Apr-2014|0||\# opt ub3lyp/6-311g(d,p) scrf=(solvent=acetonitrile,pcm) geom=connectivity||ub3lyp/6-311g(d,p) full optimization run on NO2BB O radical with $\mathrm{PCM||0,2|C,-0.0001224193,0.938521604,-0.0000106043|C,1.2}$ $650819803,-1.1736326852,0.0000279024 \mid C,-1.2648482808,-1.1738943188,-0$. $0000005504|C, 1.2304017482,0.254479783,0.0000337945| \mathrm{C},-1.2304832456,0.2$ $542540518,-0.0000441108|N, 2.4082380514,-1.8200678883,-0.0000004575| N,-$ $2.4078658994,-1.8205302423,0.0000170595 \mid S, 3.7602064884,-0.8953877782$, -$0.0001480478|S,-3.7600060438,-0.8961456806,0.0000975597| S, 2.797696582$, $1.0392352919,0.0001433025|S,-2.7979385703,1.0386438281,-0.0001874208| 0$, 1.0880410024,2.9520746301,-0.00007520910, -1.0887727893,2.9518028104, -$0.0000104448|N,-0.000288064,2.3600549275,-0.0000294439| C, 0.0002061063$, $-1.9797644811,0.0000469729|0,0.0003213134,-3.1910342124,0.0000155678| \mid$ Version=EM64W-G09RevD. 01 |State=2-A|HF=-2211.417761|S2=0.795332|S2-1=0. $|S 2 A=0.751071| R M S D=8.036 e-009|R M S F=8.389 e-006|$ Dipole=-0.0016493,0.6372 $022,0.0000105 \mid$ Quadrupole $=18.7792845,-21.9219212,3.1426366,0.0059038,-0$ $.0003856,0.0002128|\mathrm{PG}=\mathrm{C01} \quad[\mathrm{X}(\mathrm{C} 6 \mathrm{~N} 303 \mathrm{~S} 4)]| \mid @$

Cation

1|1|UNPC-OAKLEY-PC|FOpt|RB3LYP|6-311G(d,p)|C6N3O3S4(1+)|RICHARD OAKLEY |21-Apr-2014|0||\# opt b3lyp/6-311g(d,p) scrf=(solvent=acetonitrile,pcm) geom=connectivity||b3lyp/6-311g(d,p) full optimization run on NO2BBO cation with PCM||1,1|C, -0.0126046194,-1.5331577358,0.0661739736|C,-1. $2622974608,0.5992258218,-0.026433354 \mid C, 1.2496346295,0.5918459987,-0.02$ $56143483|\mathrm{C},-1.2349767402,-0.837277232,0.0358387429| \mathrm{C}, 1.2137888893,-0.8$ $444262794,0.0366406985|N,-2.4197665459,1.2128399586,-0.0534007008| N, 2$. $4107486202,1.1985719036,-0.051719613 \mid \mathrm{S},-3.7408085854,0.2992741103,-0.0$ $140905697|\mathrm{~S}, 3.7263449852,0.2771348511,-0.0114746895| \mathrm{S},-2.7724898964,-1$ $.5953767856,0.068553021|S, 2.7467755313,-1.6115231388,0.0703830757| 0,-1$ $.1078876998,-3.5323306091,0.152708861210,1.0718746698,-3.5379193619,0$. $1534232017|N,-0.0165442077,-2.9551058327,0.1279406744| C,-0.0039417854$, $1.4102733879,-0.0613244584|0,-0.0003700444,2.6150541132,-0.1131211153|$ |Version=EM64W-G09RevD.01|State=1-A|HF=-2211.2394728|RMSD=5.011e-009|R $\mathrm{MSF}=4.821 \mathrm{e}-005$ | Dipole= $=0.002684,-0.3992757,0.0170825 \mid$ Quadrupole=35.342 $5106,-26.9999415,-8.3425691,-0.185422,0.0174672,0.8079855 \mid \mathrm{PG}=\mathrm{C} 01$ [X(C6 N3O3S4)] | @

Closed Shell Singlet Anion

1|1|UNPC-OAKLEY-PC|FOpt|RB3LYP|6-311G(d, p)|C6N3O3S4 (1-)|RICHARD OAKLEY |22-Apr-2014|0||\# opt b3lyp/6-311g(d,p) scrf=(solvent=acetonitrile,pcm) geom=connectivity||b3lyp/6-311g(d,p) full optimization run on NO2BBO anion with PCM||-1,1|C,-0.0122045335,-1.5157382384,0.0628500443|C,-1. $2833187548,0.5764657858,-0.0225087451 \mid C, 1.2700661982,0.5697111087,-0.0$ $218299894|C,-1.2472727458,-0.8374529099,0.0351324438| C, 1.2264522823,-0$ $.8439762576,0.035732996|N,-2.4079945712,1.2646910998,-0.0506527195| N, 2$ $.3983928088,1.2519760238,-0.0493215691 \mid S,-3.7954702874,0.3315340734,-0$ $.0127970641|S, 3.7808735643,0.3114548997,-0.0106916195| S,-2.8475829922$, $-1.6423287936,0.0677404539|S, 2.8224958049,-1.6573785367,0.0691782629| 0$, -1.1048231948, -3.5338724378, 0.1448286103|0,1.0696183928, -3.5396597798 , $0.1454300135|N,-0.0159641777,-2.9330319002,0.1205641157| C,-0.00449807$ $33,1.3699437003,-0.0547727944 \mid 0,-0.0012899803,2.5847653323,-0.10439903$ 93||Version=EM64W-G09RevD.01|State=1-A|HF=-2211.5512286|RMSD=9.290e-00 $9|\mathrm{RMSF}=1.765 e-005|$ Dipole=-0.0030768,-0.9287994,0.0379806|Quadrupole=2. $1579546,-16.8498135,14.6918589,-0.0517619,0.0001229,1.2872465 \mid \mathrm{PG}=\mathrm{C} 01$ [X(C6N303S4)]||@

Table S1. Gaussian Archive File for 2a (PCM - Acetonitrile), continued.

Triplet Anion

1|1|UNPC-OAKLEY-PC|FOpt|UB3LYP|6-311G(d, p)|C6N303S4(1-,3)|RICHARD OAKL EY|22-Apr-2014|0||\# opt ub3lyp/6-311g(d,p) scrf=(solvent=acetonitrile, pcm) geom=connectivity||ub3lyp/6-311g(d,p) full optimization run on NO 2BBO triplet anion with PCM||-1,3|C,-0.0001133743,0.954378738,0.000000 3333 | C, 1. $2524498317,-1.1709494807,0.0001178763$ |C, -1. $2522257834,-1.1712$ $138279,0.0000054763|C, 1.2269639059,0.2402848866,0.0001670252| C,-1.2270$ $367439,0.2400240753,-0.0001163121 \mid N, 2.4149941132,-1.8482386896,-0.0000$ $834116|N,-2.4146290793,-1.8487458495,0.0000719915| S, 3.7742267223,-0.89$ $01097224,-0.0005745451$ IS, $-3.7740706774,-0.8909113885,0.0001813073 \mid S, 2$. $7914512231,1.0500037442,0.0006052705$ IS, $-2.7916935199,1.0494120938,-0.0$ $00497599910,1.0932139711,2.963583467,-0.000199008 \mid 0,-1.0939085633,2.96$ $33225936,0.00008212251 \mathrm{~N},-0.0002738007,2.3450274126,-0.0000562112 \mid \mathrm{C}, 0.0$ $001950498,-1.9574890642,0.000133858410,0.0003246851,-3.1897693484,0.00$ $00376966 \mid$ Version=EM64W-G09RevD. 01 |State=3-A|HF=-2211.5706369|S2=2.022 $554|S 2-1=0 .|S 2 A=2.000266| R M S D=8.157 e-009| R M S F=1.297 e-005 \mid$ Dipole=-0.000 $0953,1.3952769,-0.0000148 \mid$ Quadrupole=7.5214872,-22.7180931,15.1966059, $0.0031401,-0.0000595,0.0006144|\mathrm{PG}=\mathrm{C01} \quad[\mathrm{X}(\mathrm{C} 6 \mathrm{~N} 303 \mathrm{~S} 4)]| \mid @$

Broken Symmetry Singlet Anion

1|1|UNPC-OAKLEY-PC|FOpt|UB3LYP|6-311G(d,p)|C6N303S4(1-)|RICHARD OAKLEY |23-Apr-2014|0||\# opt ub3lyp/6-311g(d,p) guess=mix SCF=tight vshift=20 0 scrf=(solvent=acetonitrile, pcm) geom=connectivity||ub3lyp/6-311g(d,p) full optimization run on NO2BBO BSS anion with PCM||-1,1|C,-0.00 $01103386,0.9521099903,-0.0000278811 \mid C, 1.2554848945,-1.1669863392,-0.00$ $00642058|C,-1.2552611014,-1.1672484602,-0.0000056964| C, 1.2284257181,0$. $2387225195,-0.0001107322|C,-1.2284950861,0.2384699875,0.0000468522| N, 2$ $.4173439943,-1.849778852,0.000069701 \mid N,-2.4169699686,-1.8502959871,-0$. 0000244002 IS, $3.7752097448,-0.8910365086,0.0003442713 \mid$ S , -3.7750448156 , -$0.8918483562,-0.0000819605|S, 2.7953623952,1.0530492957,-0.0003640474| S$, -2. $7955792098,1.0525139419,0.000258113910,1.0933953365,2.96039574,0.0$ $000454971|0,-1.0941296074,2.9601001466,-0.0001362366| N,-0.0002841629,2$ $.3410214548,-0.0000133181|C, 0.0001955248,-1.9558927568,-0.0000869396| 0$, 0.0003246423,-3.184686176,0.0000268525||Version=EM64W-G09RevD.01|Stat $e=1-A|H F=-2211.5684995| S 2=1.006863|S 2-1=0 .|S 2 A=0.157073| R M S D=8.279 e-00$ $9|\mathrm{RMSF}=2.753 \mathrm{e}-005|$ Dipole=$=0.0001081,1.2097439,-0.000003 \mid$ Quadrupole=7.19 $94677,-22.2767473,15.0772796,0.0026491,0.0000141,0.0005256 \mid \mathrm{PG}=\mathrm{C} 01$ [X(C 6N3O3S4)] | \| @

Summary of Derived Parameters (for Table 1, main text)

State	Energy, H	Energy, eV	$\left.<S^{2}\right\rangle$		Energy, eV	Rel. to U^{\prime}, eV
Radical	-2211.41776100	-60176.21554523	0.7953	IP	4.85150800	
Cation	-2211.23947277	-60171.36403723		EA	3.63186830	
CSS Anion	-2211.55122865	-60179.84741353		$E A^{\prime}$	4.15999866	
BSS Anion	-2211.56849952	-60180.31738154	1.0069	$E A^{\prime \prime}$	4.04547203	
TS Anion	-2211.57063693	-60180.37554388	2.0226	U	1.21963969	0.52813035
				U^{\prime}	0.69150934	0.00000000
OSS Anion		-60180.26101726		U"	0.80603597	0.11452662

Table S2. Gaussian Archive Files for 2b (PCM - Acetonitrile).

Radical

1|1|UNPC-OAKLEY-PC|FOpt|UB3LYP|6-311G(d,p)|C6H1N2O1S4 (2) |RICHARD OAKLE Y|31-Jul-2013|0||\# ub3lyp/6-311g(d,p) Opt SCRF=(PCM, solvent=acetonitr ile)||ub3lyp/6-311g(d,p) full optimization run on HBBO radical with PC $\mathrm{M}||0,2| \mathrm{C},-1.2643087809,0.6839744978,0.0000152873| \mathrm{C},-1.2052740295,-0.74$ $95542698,0.0000399864|C,-0.000000455,-1.4480789307,0.0000190121| C, 1.20$ $52752546,-0.749549441,-0.0000086898 \mid C, 1.26431297,0.6839751289,-0.00003$ $53559|C, 0.0000029967,1.4933776626,-0.0000756858| S, 2.7882417409,-1.5424$ $280596,-0.0000087552|S, 3.7660658787,0.3892443167,-0.0000358205| N, 2.409$ $8105834,1.318535277,-0.0000464236 / N,-2.4098038139,1.3185330984,0.00004$ $71654|S,-3.7660609253,0.3892477854,0.0001119011| \mathrm{S},-2.7882435305,-1.542$ $4258208,0.000106884|0,0.0000018084,2.7070618296,0.0000095383| \mathrm{H}, 0.00000$ 13025,-2.5295380744,0.0000419562||Version=EM64W-G09RevD. 01 |State=2-A|H $\mathrm{F}=-2006.8564114|\mathrm{~S} 2=0.819503| \mathrm{S} 2-1=0 .|\mathrm{S} 2 \mathrm{~A}=0.752008| \mathrm{RMSD}=4.557 \mathrm{e}-009 \mid \mathrm{RMSF}=$ $6.114 e-005 \mid$ Dipole $=-0.0000963,-2.4872239,-0.0000146 \mid$ Quadrupole=10. 43821 $24,-8.4323559,-2.0058565,-0.0000833,-0.0002478,-0.0001372 \mid \mathrm{PG}=\mathrm{C} 01 \quad[\mathrm{X}(\mathrm{C} 6$ H1N2O1S4)] ||@

Cation

1|1|UNPC-OAKLEY-PC|FOpt|RB3LYP|6-311G(d,p)|C6H1N2O1S4(1+)|RICHARD OAKL EY|31-Jul-2013|0||\# b3lyp/6-311g(d,p) Opt SCRF=(PCM, solvent=acetonitr ile)||b3lyp/6-311g(d,p) full optimization run on HBBO cation with PCM| |1,1|C,1.2526634194,0.6925698782,0.0000804567|C,1.1971882193, -0.756773 $4731,-0.0000147042|C,-0.0000161848,-1.4671570053,0.0000268997| C,-1.197$ $2266795,-0.7567845332,0.000020139 \mid C,-1.2526781575,0.6925646806,0.00011$ $91085|C,-0.000009613,1.5116369873,0.0003935711| S,-2.7476993739,-1.5175$ $106025,0.0001615701|S,-3.7364374974,0.3702704142,-0.0003677086| N,-2.41$ $20448886,1.2888433782,0.0000736727$ |N, $2.4120347728,1.2888351905,-0.0000$ 199322 IS, $3.7364135454,0.3702530186,-0.0005405867$ IS, $2.747666597,-1.5175$ $217739,0.000063928310,-0.0000154457,2.7202246274,0.0001552989 \mid \mathrm{H}, 0.0000$ $032863,-2.5470617869,0.0000572867| | V e r s i o n=E M 64 W-G 09 R e v D .01|S t a t e=1-A|$ $H F=-2006.6870066|R M S D=3.728 e-009| R M S F=1.114 e-004 \mid$ Dipole=-0.0000048, -3. $0768688,-0.00025591$ Quadrupole=27.6560461,-14.4926948,-13.1633513,-0.00 00034,-0.0009361,-0.0017574|PG=C01 [X(C6H1N2O1S4)]||@

Closed Shell Singlet Anion

1|1|UNPC-OAKLEY-PC|FOpt|RB3LYP|6-311G(d, p) |C6H1N2O1S4(1-)|RICHARD OAKL EY|31-Jul-2013|0||\# b3lyp/6-311g(d,p) Opt SCRF=(PCM, solvent=acetonitr ile) ||b3lyp/6-311g(d,p) full optimization run on HBBO anion with PCM|| $-1,1|C, 1.2797737004,0.6761157753,-0.000038474| C, 1.2129125237,-0.740205$ 1077, - 0.0000204667 |C, $0.0000002369,-1.4251147717,-0.0000373732 \mid C,-1.212$ $9122772,-0.7402063397,-0.0000048756 \mid C,-1.2797749479,0.6761147314,0.000$ $0055497|\mathrm{C},-0.0000010987,1.4771316482,-0.0001576788| \mathrm{S},-2.827897087,-1.5$ $676377172,0.0000468156 / \mathrm{S},-3.7977590517,0.4050432633,0.0001994987 \mid N,-2$. $4089732358,1.3519227436,0.0001013913 \mid N, 2.4089712747,1.3519252322,-0.00$ 00455174 IS, $3.7977581826,0.4050461687,-0.0000598352 \mid S, 2.8278970695,-1.5$ $676351625,0.000114648610,-0.0000015566,2.694557337,0.0001921251 \mid \mathrm{H}, 0.00$ $00012671,-2.508881801,-0.0000258082| | V e r s i o n=E M 64 W-G 09 R e v D .01 \mid$ State=1$A|H F=-2006.9804626| R M S D=5.398 e-009|R M S F=9.107 e-005| D i p o l e=-0.0000052$, -$1.9974619,-0.0002107 \mid$ Quadrupole=-7.0408857,-2.2582355,9.2991213, -0.000 0124,0.0001565,-0.000977|PG=C01 [X(C6H1N2O1S4)]||@

Page S5

Table S2. Gaussian Archive File for 2b (PCM - Acetonitrile), continued.

Triplet Anion

1|1|UNPC-OAKLEY-PC|FOpt|UB3LYP|6-311G(d, p)|C6H1N2O1S4(1-, 3)|RICHARD OA KLEY|31-Jul-2013|0||\# opt ub3lyp/6-311g(d,p) SCRF=(PCM, solvent=aceton itrile)||ub3lyp/6-311g(d,p) full optimization run on triplet HBBO anio n with PCM||-1,3|C,1.2384373849,0.6983563112,0.0000276572|C,1.19464560 $33,-0.7334709128,0.0000596008|C, 0.0000001679,-1.4508816,0.0000519863| C$, $-1.194645424,-0.7334711767,0.0000005612$ | C , -1.2384375233, 0.6983560368, $-0.0000341595|\mathrm{C},-0.0000001557,1.4849022172,-0.0000010436| \mathrm{S},-2.76845196$ $11,-1.551374052,-0.0000322562 \mid S,-3.7728134355,0.3757987954,-0.00011771$ $58|\mathrm{~N},-2.4202849235,1.3411829777,-0.0000936162| \mathrm{N}, 2.4202846431,1.3411835$ $142,0.0000295711|\mathrm{~S}, 3.7728133665,0.3757996344,0.0000709287| S, 2.76845232$ $11,-1.5513734394,0.000105292310,-0.0000002938,2.7378969809,-0.00008268$ $81|\mathrm{H}, 0.0000002871,-2.5321880569,0.0000749419| \mid V e r s i o n=E M 64 W-G 09 R e v D .01$ \mid State $=3-A|H F=-2006.9955949| S 2=2.026528|S 2-1=0 .|S 2 A=2.000376| R M S D=8.98$ $3 e-009|R M S F=6.602 e-005|$ Dipole $=0.0000004,-3.6152397,0.0001031 \mid$ Quadrupol $e=-1.1537646,-7.0363457,8.1901103,0.0000007,-0.0002441,0.0004812 \mid \mathrm{PG}=\mathrm{C} 0$ 1 [X(C6H1N2O1S4)]||@

Broken Symmetry Singlet Anion

1|1|UNPC-RTO2008|FOpt | UB3LYP|6-311G(d, p) | C6H1N201S4 (1-) |USER|01-Aug-20 13|0||\# opt ub3lyp/6-311g(d,p) guess=mix scf=tight vshift=200 SCRF=(PC M, solvent=acetonitrile)||ub3lyp/6-311g(d,p) full optimization run on BSS HBBO anion with PCM||-1,1|C,1.2451654751,0.6888398432,0.0000157234 $|C, 1.1972053057,-0.7307554656,0.0000537173| C, 0.0000001604,-1.446276134$ $6,0.0000412714|C,-1.1972051343,-0.7307557172,-0.0000078144| C,-1.245165$ $6088,0.6888395775,-0.0000473393 \mid C,-0.0000001497,1.4812311653,-0.000043$ 2803|S, $-2.7810646828,-1.5539853321,-0.0000050864 \mid S,-3.7766241913,0.383$ $6230238,-0.0001062804 \| N,-2.4223327257,1.3475377365,-0.0000858386 \mid N, 2.4$ $223324577,1.347538255,0.0000258791$ IS, $3.7766241209,0.3836238341,0.00011$ $55656|\mathrm{~S}, 2.7810650288,-1.5539847452,0.0000956034| 0,-0.0000002812,2.7229$ $90303,-0.0000648351|\mathrm{H}, 0.000000275,-2.5277491136,0.0000717743| \mid$ Version $=$ IA32W-G09RevA. 02 | State=1-A|HF=-2006.9912887|S2=0.955675|S2-1=0.|S2A=0. $094032|R M S D=9.078 e-009| R M S F=3.510 e-005 \mid$ Dipole $=0.0000004,-3.1698561,0.0$ 000848 lQuadrupole $=-2.0877701,-6.1435635,8.2313336,0.0000007,-0.0001313$, $0.0003745|\mathrm{PG}=\mathrm{C} 01 \quad[\mathrm{X}(\mathrm{C} 6 \mathrm{H} 1 \mathrm{~N} 2 \mathrm{O} 1 \mathrm{~S} 4)]| \mid @$

Summary of Derived Parameters (for Table 1, main text)

State	Energy, H	Energy, eV	$<S^{2}>$		Energy, eV	Rel. to U', eV
Radical	-2006.85641137	-54609.77392364	0.8195	IP	4.60977375	
Cation	-2006.68700664	-54605.16414989		EA	3.37563299	
CSS Anion	-2006.98046262	-54613.14955663		$E A^{\prime}$	3.78740709	
BSS Anion	-2006.99128868	-54613.44415104	0.9557	$E A^{\prime \prime}$	3.56854329	
TS Anion	-2006.99559492	-54613.56133073	2.0265	U	1.23414076	0.41177409
				U'	0.82236666	0.0000000
OSS Anion		-54613.34246692		U"	1.04123047	0.21886380

Page S6

Table S3. Gaussian Archive Files for 2c (PCM - Acetonitrile).

Radical

1|1|UNPC-YOUR-9431D622DB|FOpt|UB3LYP|6-311G(d, p)|C6F1N2O1S4 (2)|USER|04 -Mar-2014|0||\# opt ub3lyp/6-311g(d,p) SCRF=(PCM, solvent=acetonitrile) ||ub3lyp/6-311g(d,p) full optimization run on FBBO radical in acetonit rile||0,2|C,-1.2654855231, 0.8648563027,0.0000372983|C, -1.2157528565, -0 $.5682921516,0.0000847039|C, 0.0000003972,-1.2350811121,0.000111583| C, 1$. $2157531293,-0.5682938355,0.0000996418 \mid C, 1.2654852828,0.8648559246,0.00$ 00528985 | C, $-0.0000002463,1.6752046369,0.0000050326 \mid N, 2.4147736518,1.48$ $85413192,0.0000445136 / N,-2.4147744691,1.4885426227,0.0000150354 \mid S, 2.77$ $64958176,-1.3859595942,0.0001406525 / S,-2.7764947621,-1.3859594279,0.00$ $0107021|S, 3.7643566049,0.5519417657,0.0000886428| S,-3.764356996,0.5519$ $413258,0.0000431587|0,0.0000001661,2.8875358886,0.0000084913| \mathrm{F},-0.0000$ $009991,-2.585494665,0.0001583265| | V e r s i o n=I A 32 W-G 09 R e v A .02 \mid$ State=2-A|H $\mathrm{F}=-2106.1153378|\mathrm{~S} 2=0.820399| \mathrm{S} 2-1=0 .|\mathrm{S} 2 \mathrm{~A}=0.75201| \mathrm{RMSD}=4.956 \mathrm{e}-009 \mid \mathrm{RMSF}=6$ $.567 e-005 \mid$ Dipole=0.0000177, -1.7231177, 0.0000303| Quadrupole=13.8879426, $-13.2464354,-0.6415072,0.0000289,0.0000857,0.0002757 \mid P G=C 01 \quad[X(C 6 F 1 N 20$ 1S4)] | | @

Cation

1|1|UNPC-YOUR-9431D622DB|FOpt | RB3LYP|6-311G(d, p) |C6F1N2O1S4 (1+) |USER|0 4-Mar-2014|0||\# opt b3lyp/6-311g(d,p) SCRF=(PCM, solvent=acetonitrile) ||b3lyp/6-311g(d,p) full optimization run on FBBO cation in acetonitri le||1,1|C,1.2546472379,0.8733772892,0.0000294705|C,1.2082036915, -0. 574 $0877968,-0.0000066791|C, 0.0000000585,-1.255441755,-0.000047258| C,-1.20$ $82036124,-0.5740879215,-0.0000397081 \mid C,-1.25464732,0.873377183,-0.0000$ $031608|C,-0.0000000727,1.6932829564,-0.0000264649| N,-2.4179661996,1.45$ $93488694,0.0000462204|N, 2.4179660464,1.4593491224,0.0000857403| \mathrm{S},-2.73$ $92118873,-1.3600703908,-0.0000598627 \mid S, 2.73921205,-1.3600701388,0.0000$ $448391|S,-3.7366192251,0.5350823986,0.0000969397| S, 3.7366191515,0.5350$ 827353, 0.0000714478|O, -0.0000001264, 2. $9003906005,0.0001104195 \mid \mathrm{F}, 0.0000$ $001181,-2.5952271519,-0.0000649436| | V e r s i o n=I A 32 W-G 09 R e v A .02 \mid$ State=1-A $|H F=-2105.9395332| R M S D=5.883 e-009|R M S F=1.077 e-004|$ Dipole=0.0000004,-1. $9952511,-0.000079$ |Quadrupole=31.0501259,-19.3300125,-11.7201134,0.0000 013,-0.0000346,-0.0003928|PG=C01 [X(C6F1N2O1S4)]||@

Closed Shell Singlet Anion

1|1|UNPC-YOUR-9431D622DB|FOpt|RB3LYP|6-311G(d, p)|C6F1N2O1S4 (1-)|USER|0 4-Mar-2014|0||\# opt b3lyp/6-311g(d,p) SCRF=(PCM, solvent=acetonitrile) ||b3lyp/6-311g(d,p) full optimization run on FBBO Anion in acetonitril e||-1, 1|C, -1.2805591931, 0.856871368, -0.0000462206|C, -1.2231843036, -0.5 $607101755,0.0000141584|C,-0.0000000349,-1.2109178769,0.000034144| C, 1.2$ $2318429,-0.5607102706,0.0000281687 \mid \mathrm{C}, 1.2805592341,0.8568712824,-0.0000$ $308032|\mathrm{C}, 0.0000000383,1.6592856456,-0.0001733494| \mathrm{N}, 2.4130014712,1.5208$ $600125,-0.0000084096|N,-2.4130014057,1.5208601783,-0.0000394563| S, 2.81$ $26034351,-1.4135165949,0.0001130547 \mid S,-2.8126035028,-1.4135164256,0.00$ $00842851|S, 3.7943525703,0.5646543154,0.0000962755| S,-3.79435255,0.5646$ $545788,0.0000462117|0,0.0000000982,2.8751431284,0.0000474417| F,-0.0000$ $00112,-2.5730971659,0.0001034994| | V e r s i o n=I A 32 W-G 09 R e v A .02|S t a t e=1-A| H$ $\mathrm{F}=-2106.2454965|\mathrm{RMSD}=7.369 \mathrm{e}-009| \mathrm{RMSF}=4.702 \mathrm{e}-005 \mid \mathrm{Dipole}=-0.0000002,-1.5$ 283135,-0.0000978| Quadrupole=-3.576416,-7.0279189, 10.6043349,-0.000001 6,-0.0000819,-0.000153|PG=C01 [X(C6F1N2O1S4)]||@

Table S3. Gaussian Archive File for 2c (PCM - Acetonitrile), continued.

Triplet Anion

1|1|UNPC-YOUR-9431D622DB|FOpt | UB3LYP|6-311G(d, p) |C6F1N2O1S4(1-, 3) |USER |05-Mar-2014|0||\# opt ub3lyp/6-311g(d,p) SCRF=(PCM, solvent=acetonitri le)||ub3lyp/6-311g(d,p) full optimization run on FBBO TSAnion in Aceto nitrile||-1, 3|C, 1.238276355, 0.8808854609, 0.000113182|C, 1.205934196, -0. $5548880589,0.0000769501|\mathrm{C}, 0.0000000351,-1.234042885,0.0000519232| \mathrm{C},-1$. $2059342738,-0.5548882641,0.0000623592 \mid C,-1.2382766405,0.8808852489,0.0$ $000982934|C,-0.0000002372,1.6669688398,0.0001101598| N,-2.4242754374,1$. $5088616802,0.0001174926|N, 2.4242749945,1.5088621601,0.0001465812| S,-2$. $7569248146,-1.3947174436,0.0000433058 \mid S, 2.7569249451,-1.3947169288,0.0$ $000760203|S,-3.7696555697,0.538727531,0.0000912658| S, 3.769655343,0.538$ $7281566,0.0001374684|0,-0.0000003384,2.921394398,0.0001909992| \mathrm{F}, 0.0000$ $001651,-2.5983488949,0.0000259991$ ||Version=IA32W-G09RevA. 02|State=3-A| $H F=-2106.2559093|S 2=2.027659| S 2-1=0 .|S 2 A=2.000404| R M S D=9.323 e-009 \mid R M S F$ $=9.121 e-005 \mid$ Dipole=0., $-3.2242313,-0.0001069 \mid$ Quadrupole=3.0047748,-12. 8 $994076,9.8946328,0.0000009,-0.0000398,-0.0007309 \mid P G=C 01 \quad[\mathrm{X}(\mathrm{C} 6 \mathrm{~F} 1 \mathrm{~N} 2 \mathrm{O} 1 \mathrm{~S} 4)$] | | @

Broken Symmetry Singlet Anion

1|1|UNPC-YOUR-9431D622DB|FOpt | UB3LYP|6-311G(d, p) |C6F1N2O1S4 (1-) |USER|0 6-Mar-2014|0||\# opt ub3lyp/6-311g(d,p) guess=mix SCF=tight vshift=300 $\operatorname{SCRF}=(\mathrm{PCM}$, solvent=acetonitrile) ||ub3lyp/6-311g(d,p) full optimization run on FBBO BSS Anion||-1,1|C,-1.2506136196,0.8642120473,0.0000731084 $|C,-1.2105013164,-0.5575784269,0.0000956371| C,-0.0000002573,-1.2305001$ 269, 0.0001026721|C,1.2105009345,-0.5575785772,0.0001102599|C, 1. 2506134 $027,0.8642118042,0.0000882117$ | C, $-0.0000000118,1.6578921433,0.000073491$ $6|N, 2.4240986827,1.5125493235,0.0000815222| N,-2.4240987247,1.512549537$ $1,0.0000520629$ IS, $2.7759147534,-1.4055734959,0.0001123795 \mid S,-2.77591532$ $87,-1.4055729337,0.0000795142|S, 3.7769970016,0.5445641066,0.000117271|$ S, -3.7769971366, 0.5445647733, 0.0000708026|0,0.0000000636, 2.896115488, -$0.0001671002|\mathrm{~F},-0.0000002903,-2.5955166627,0.0001071671| \mid$ Version=IA32W -G09RevA. 02|State=1-A|HF=-2106.2523759|S2=0.877237|S2-1=0.|S2A=0.08505 $2|\mathrm{RMSD}=9.378 \mathrm{e}-009| \mathrm{RMSF}=1.350 \mathrm{e}-004 \mid \mathrm{Dipole}=-0.0000014,-2.5582463,0.00020$ $56 \mid$ Quadrupole $=1.0447216,-11.0000346,9.955313,-0.000002,-0.000053,0.001$ $3711 \mid P G=C 01$ [X(C6F1N2O1S4)]||@

Summary of Derived Parameters (for Table 1, main text)

State	Energy, H	Energy, eV	$\left.<S^{2}\right\rangle$		Energy, eV	Rel. to U', eV
Radical	-2106.11533776	-57310.76812499	0.8204	IP	4.78392282	
Cation	-2105.93953322	-57305.98420217		EA	3.54182675	
CSS Anion	-2106.24549647	-57314.30995174		$E A^{\prime}$	3.82517761	
BSS Anion	-2106.25237590	-57314.49715204	0.8772	EA"	3.65803192	
TS Anion	-2106.25590934	-57314.59330260	2.0277	U	1.24209607	0.28335085
				U^{\prime}	0.95874521	0.00000000
OSS Anion		-57314.42615691		U'	1.12589090	0.16714569

Page S8

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN} \cdots \mathrm{~S} 1 \mathrm{~A}^{\prime}=3.044(4) \AA \\
& \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN} \ldots \mathrm{SBC}^{\prime}=3.237(4) \AA \\
& \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN} \cdots \mathrm{~S} 3 \mathrm{D}^{\prime}=3.195(5) \AA \\
& \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN} \ldots \mathrm{SBB}^{\prime}=3.175(4) \AA \\
& \text { S1A } \ldots \text { O1C }{ }^{\prime}=2.814(2) A \\
& \mathrm{~S} 1 \mathrm{~A} \cdots \mathrm{~N} 2 \mathrm{C}^{\prime}=3.281(3) \AA \\
& \mathrm{S} 2 \mathrm{~A} \cdots \mathrm{O}^{\prime} \mathrm{C}^{\prime}=2.763(3) \AA \\
& \text { S4C } \cdots \text { O1D }=2.932(3) \AA \\
& \text { S3C } \cdots \mathrm{O}^{\prime} \mathrm{O}^{\prime}=2.916(3) \AA \\
& \mathrm{S} 3 \mathrm{C} \cdots \mathrm{~N} 2 \mathrm{D}^{\prime}=3.210(3) \AA \\
& \text { S3D } \cdots \mathrm{O}^{\prime} \mathrm{B}^{\prime}=2.919(2) \AA \\
& \text { S4D } \cdots \mathrm{OBB}^{\prime}=2.720(3) \AA \\
& \text { S4B } \cdots .01 A^{\prime}=2.824(3) \AA \\
& \text { S3B } \cdots O 1 A^{\prime}=2.834(3) A \\
& \mathrm{~S} 3 \mathrm{~B} \cdots \mathrm{~N} 1 \mathrm{~A}^{\prime}=3.194(3) \AA
\end{aligned}
$$

Figure S3. Pinwheel intermolecular contacts in $\mathbf{2 a} \cdot 1 / 4 \mathrm{EtCN}$.

Table S4. High Pressure Powder Crystallographic Data for $\mathbf{2 a} \cdot \mathrm{MeCN}$.

Pressure	2.0 GPa	4.4 GPa	6.1 GPa
Formula a	$\mathrm{C}_{6} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}_{4}$	$\mathrm{C}_{6} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}_{4}$	$\mathrm{C}_{6} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}_{4}$
fw	290.32	290.32	290.32
a, \AA	$3.3487(12)$	$3.2557(8)$	$3.2128(6)$
b, \AA	$30.019(15)$	$29.515(8)$	$29.387(7)$
c, \AA	$10.792(4)$	$10.6182(29)$	$10.5438(21)$
β, deg	$88.20(7)$	$87.58(6)$	$87.03(4)$
V, \AA^{3}	$1084.3(6)$	$1019.4(4)$	$994.15(27)$
$\rho($ calcd $), \mathrm{g} \mathrm{cm}^{-3}$	1.778	1.892	1.940
space group	$P 2{ }_{1} / n$	$P 2_{1} / n$	$P 21_{1} / n$
Z	4	4	4
temp, K	$296(2)$	$296(2)$	$296(2)$
λ, \AA	0.509176	0.509176	0.509176
Solution method	powder data	powder data	powder data
$R, R w\left(\right.$ on $\left.F^{2}\right)$	$0.0097,0.0149$	$0.0101,0.0145$	$0.0103,0.0147$

[^0]

Figure S4. Powder diffraction pattern for $\mathbf{2 a} \cdot \mathrm{MeCN}$ at 2.0 GPa .

Figure S5. Powder diffraction pattern for $\mathbf{2 a} \cdot \mathrm{MeCN}$ at 4.4 GPa .

Figure S6. Powder diffraction pattern for $\mathbf{2 a} \cdot \mathrm{MeCN}$ at 6.1 GPa.

[^0]: ${ }^{a}$ The solvent molecule was not included in the solution (in DASH) or Rietveld refinement (in GSAS). The formula and mass correspond to the radical itself.

