Supporting Information for

Impact of Molecular Arrangement and Torsional Motion on the Fluorescence of Salophen and its Metal Complexes

Tuhin Khan and Anindya Datta*

Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076.

Table of contents

Serial no.	Content	Page no.
1	Solid state absorption spectrum and TD-DFT calculated transitions of salophen	S3
2	Nanosecond decay of salan and salpphen in crystal form	S4
3	Steady state excitation anisotropy of salophen	S5
4	Decay profiles of dropcasted salophen at different spots	S6
5	Fluorescence decays of salophen for different emission wavelengths at 77K.	S7
6	Singlet and triplet energy level diagram of cis-mono keto form of salophen	S8
7	Energy level diagram of enol, cis- monoketo and trans- monoketo form of salophen	S9
8	Energy profile for rotation	S10
9	Fluorescence decays of SalAl ⁺ in different solvent	S11
10	Fluorescence decays of SalAl ⁺ in different batches of solid form	S12
11	Concentration dependent decay of SalAl ⁺ in methanol	S13
12	Fluorescence decays of salophen and its complexes at 77K	S14

Figure S1. Solid state absorption spectrum of salophen crystal (black) and TD-DFT transitions of salophen (blue) in its crystal geometry (B3LYP/6-311++G(d,p)/Acetonitrile). In order to construct the absorption spectrum, salophen crystals are crushed to a powder and mixed with BaSO₄ with a final sample concentration of ~5% (v/v). Diffuse reflectance of this powder is measured on a Shimadzu-3600 spectrometer fitted with MPC-3100 multi-purpose compartment. The absorption spectrum is then generated from measured reflectance via Kubelka-Munk transformation.

Figure S2. Decay profiles of dropcasted salophen at different spots. The smallest lifetime is 0.95 ns whereas the median lifetime is 1.2 ns.

Figure S3. Nanosecond fluorescence decay of salan and salpphen in crystal form.

Figure S4. Steady state excitation anisotropy of salophen in crystalline form and PMMA matrix monitored at 550 nm.

Figure S5. Fluorescence decays of salophen for different emission wavelengths at 77K.

Figure S6. Energy level diagram of cis-mono keto form of salophen showing both its singlet (solid line) and triplet states (dotted line).

Figure S7. Ground state (solid line) and their corresponding excited state (dotted line) energy level of enol, cis-mono keto form and trans mono-keto form of salophen.

Figure S8. Energy profile for rotation indicated in blue.

Figure S9. Fluorescence decays of SalAl⁺ in methanol (red), acetone (green), ethanol (orange) and propanol (blue).

Figure S11. Fluorescence decays of $SalAl^+$ in methanolic solutions, at different concentration. The arrow indicates the direction of increase in concentration. The mentioned concentrations are approximate.

Figure S12. Fluorescence decays of salophen and its complexes at 77K. Straight solid line (black) is used as a reference to indicate the deviation of the decay curve from single exponential behavior.