Supporting Information

Tunable Room-Temperature Synthesis of Coinage Metal Chalcogenide Nanocrystals from *N*-Heterocyclic Carbene Synthons

Haipeng Lu and Richard L. Brutchey*

Department of Chemistry, University of Southern California, Los Angeles, California 90089-0744, USA

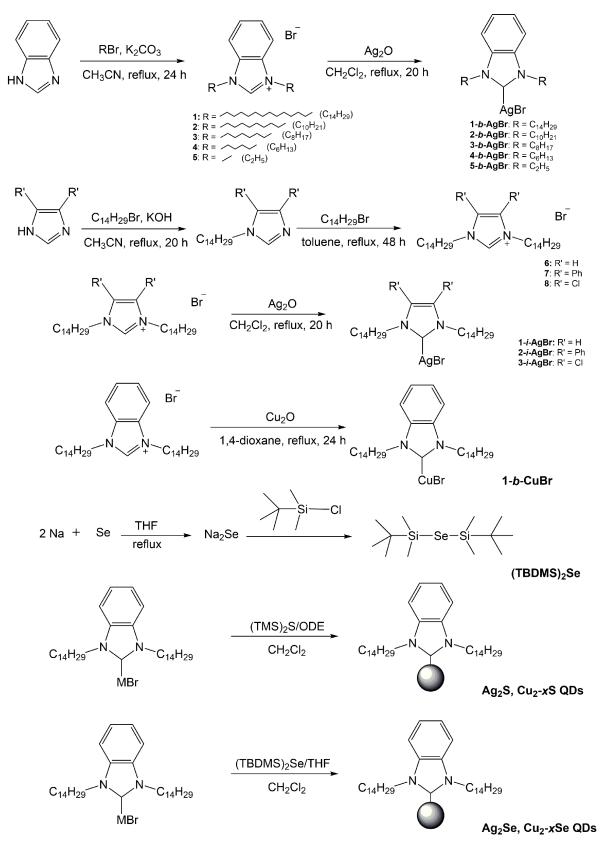
Table of Contents:

- S1. General synthetic scheme
- **S2.** Synthetic procedures
- S3. Reaction kinetics monitored by UV-vis-NIR absorption and TEM analysis

S4. TEM micrographs of Ag₂S QDs prepared from oleate and oleylamine ligands

S5. XRD data of Ag₂S from various NHC-AgBr complexes

S6. TEM micrographs of Ag₂S QDs prepared from various benzimidazole-based NHC-AgBr precursors


S7. High-resolution XPS spectra of NHC-AgBr, NHC-Ag₂S and NHC-Cu_{2-x}S QDs

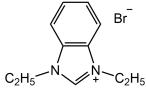
S8. FT-IR spectra and TGA traces of NHC-AgBr, NHC-Ag₂S and NHC-Cu_{2-x}S QDs

S9. Calculations of NHC ligand coverage on the surface of Ag₂S QDs

S10. ¹H NMR and ¹³C NMR spectra of the benzimidazolium salt, NHC-AgBr, NHC-CuBr complexes and (TBDMS)₂Se

S1. General synthetic scheme

S2. Synthetic procedures


Benzimidazolium salts **1–5**, benzimidazole-based NHC-AgBr (**j**-*b*-AgBr, j = 1–5) and NHC-CuBr complexes, imidazole-based NHC-AgBr (**j**-*i*-AgBr, j = 1–3) complexes, and (TBDMS)₂Se were synthesized according to modified literature procedures.¹⁻⁴ The following abbreviations are used: s = singlet, d = doublet, t = triplet, q = quadruplet, m = multiplet, br = broad.

1,3-(Ditetradecyl)benzimidazolium bromide (1).¹ Benzimidazole (2.36 g, 20.0 mmol), K₂CO₃ Br⁻ (2.76 g, 20.0 mmol), *n*-tetradecyl bromide (18 mL, 60 mmol) and CH₃CN (20 mL) were added into a three-neck flask and stirred at reflux (~85 °C) for 24 h. After the reaction, the solvent was removed under reduced pressure, and the resulting solid was dissolved in CH₂Cl₂. The mixture was filtered to remove the KBr precipitate. The filtrate was then concentrated under reduced pressure. After, the residue was recrystallized from CH₂Cl₂/pentane and dried under vacuum to yield a white solid (6.8 g, 57%). ¹H NMR (400 MHz, CDCl₃) δ 11.56 (s, 1H), 7.71–7.63 (m, 4 H), 4.62 (t, *J* = 7.6 Hz, 4H), 2.10–2.00 (m, 4H), 1.45–1.2 (m, 44H), 0.87 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 143.06, 131.46, 127.18, 113.18, 47.82, 32.04, 29.79, 29.76, 29.70, 29.68, 29.62, 29.51, 29.47, 29.17, 22.81, 14.24.

1,3-(Didecyl)benzimidazolium bromide (**2**). Benzimidazole (2.36 g, 20.0 mmol), K₂CO₃ (2.76 g, Br^{-} 20.0 mmol), *n*-decyl bromide (13 mL, 60 mmol) and CH₃CN (20 mL) were added into a three-neck flask and stirred at reflux (~85 °C) for 24 h. After the reaction, the solvent was removed under reduced pressure, $C_{10}H_{21}$ $N_{-}C_{10}H_{21}$ followed by the dissolution in CH₂Cl₂. The mixture was filtered to remove the KBr precipitate. The filtrate was then concentrated under reduced pressure. After, the residue was recrystallized from CH₂Cl₂/pentane and dried under vacuum to yield a white solid (3.4 g, 35%). ¹H NMR (500 MHz, CDCl₃) δ 11.56 (s, 1H), 7.71–7.65 (m, 4 H), 4.62 (t, *J* = 7.49 Hz, 4H), 2.08–2.02 (m, 4H), 1.43–1.23 (m, 28H), 0.86 (t, *J* = 6.64 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 142.94, 131.45, 127.19, 113.19, 47.82, 31.93, 29.66, 29.55, 29.48, 29.33, 29.15, 26.67, 22.75, 14.20.

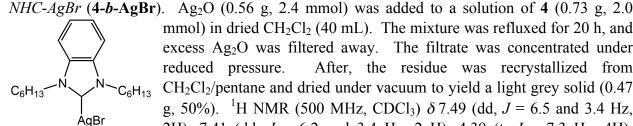
1,3-(Dioctyl)benzimidazolium bromide (**3**). Benzimidazole (2.36 g, 20.0 mmol), K₂CO₃ (2.76 g, Br^{-} 20.0 mmol), *n*-octyl bromide (12 mL, 60 mmol) and CH₃CN (20 mL) were added into a three-neck flask and stirred under reflux (~85 °C) for 24 h. After the reaction, the solvent was removed under reduced C_8H_{17} N C_8H_{17} pressure, followed by the dissolution in CH₂Cl₂. The mixture was filtered to remove the KBr precipitate. The filtrate was then concentrated under reduced pressure. After, the residue was recrystallized from CH₂Cl₂/pentane and dried under vacuum to yield a white solid (2.5 g, 30%). ¹H NMR (500 MHz, CDCl₃) δ 11.49 (s, 1H), 7.71–7.64 (m, 4 H), 4.62 (t, *J* = 7.52 Hz, 4H), 2.08–2.02 (m, 4H), 1.44–1.23 (m, 20H), 0.85 (t, *J* = 6.70 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 142.85, 131.43, 127.20, 113.19, 47.81, 31.76, 29.63, 29.12, 29.08, 26.65, 22.65, 14.13. *1,3-(Dihexyl)benzimidazolium bromide* (**4**). Benzimidazole (2.36 g, 20.0 mmol), K₂CO₃ (2.76 g, P_{r} 20.0 mmol), *n*-hexyl bromide (5.6 mL, 40 mmol) and CH₃CN (20 mL) were added into a three-neck flask and stirred under reflux (~85 °C) for 24 h. After the reaction, the solvent was removed under reduced $C_{6H_{13}}$ $P_{C_{6H_{13}}}$ pressure, followed by the dissolution in CH₂Cl₂. The mixture was filtered to remove the KBr precipitate. The filtrate was then concentrated under reduced pressure. After, the residue was recrystallized from CH₂Cl₂/pentane and dried under vacuum to yield a white solid (3.2 g, 44%). ¹H NMR (500 MHz, CDCl₃) δ 11.60 (s, 1H), 7.71–7.65 (m, 4 H), 4.62 (t, *J* = 7.52 Hz, 4H), 2.08–2.02 (m, 4H), 1.42–1.33 (m, 12H), 0.87 (t, *J* = 7.52 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 143.06, 131.46, 127.21, 113.18, 47.82, 31.27, 29.64, 26.35, 22.54, 14.06.

1,3-(Diethyl)benzimidazolium bromide (5). Benzimidazole (2.36 g, 20.0 mmol), K₂CO₃ (2.76 g,

20.0 mmol), *n*-ethyl bromide (3.0 mL, 40 mmol) and CH₃CN (20 mL) were added into a three-neck flask and stirred under reflux (~85 °C) for 24 h. After the reaction, the solvent was removed under reduced pressure, followed by the dissolution in CH₂Cl₂. The mixture was filtered to remove the KBr precipitate. The filtrate was then

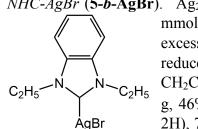
concentrated under reduced pressure. After, the residue was recrystallized from CH₂Cl₂/pentane and dried under vacuum to yield a white solid (3.3 g, 66%). ¹H NMR (500 MHz, CDCl₃) δ 11.28 (s, 1H), 7.75–7.62 (m, 4 H), 4.67 (q, J = 7.34 Hz, 4H), 1.70 (t, J = 7.36 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 142.04, 131.22, 127.25, 113.17, 42.99, 14.98.

NHC-AgBr (1-*b*-AgBr).¹ Ag₂O (0.56 g, 2.4 mmol) was added to a solution of 1 (1.2 g, 2.0 mmol) in dried CH₂Cl₂ (40 mL). The mixture was refluxed for 20 h, and excess Ag₂O was filtered away. The filtrate was concentrated under reduced pressure. After, the residue was recrystallized from CH₂Cl₂/pentane and dried under vacuum to yield a light brown solid (0.94 g, 74%). ¹H NMR (500 MHz, CD₂Cl₂) δ 7.51 (dd, *J* = 5.9 and 3.0 Hz, 2H), 7.43 (dd, *J* = 6.0 and 3.2 Hz, 2 H), 4.62 (t, *J* = 7.3 Hz, 4H),

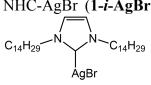

2.10–1.9 (m, 4H), 1.4–1.1 (m, 44H), 0.87 (t, J = 6.7 Hz, 6H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 134.27, 124.41, 112.14, 50.14, 32.50, 30.81, 30.26, 30.23, 30.20, 30.12, 30.04, 29.93, 29.81, 27.40, 23.27, 14.45.

NHC-AgBr (2-*b*-AgBr). Ag₂O (0.56 g, 2.4 mmol) was added to a solution of **2** (0.96 g, 2.0 mmol) in dried CH₂Cl₂ (40 mL). The mixture was refluxed for 20 h, and excess Ag₂O was filtered away. The filtrate was concentrated under reduced pressure. After, the residue was recrystallized from CH₂Cl₂/pentane and dried under vacuum to yield a white solid (0.65 g, 56%). ¹H NMR (500 MHz, CDCl₃) δ 7.49 (dd, *J* = 6.2 and 3.1 Hz, 2H), 7.41 (dd, *J* = 6.1 and 3.1 Hz, 2 H), 4.39 (t, *J* = 7.3 Hz, 4H), 1.93–1.87 (m,

4H), 1.33–1.24 (m, 28H), 0.86 (t, J = 6.8 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 133.79, 124.12, 111.66, 49.76, 31.97, 30.50, 26.61, 29.57, 29.39, 29.37, 27.00, 22.80, 14.24.


NHC-AgBr (3-b-AgBr). Ag₂O (0.56 g, 2.4 mmol) was added to a solution of 3 (0.85 g, 2.0 mmol) in dried CH₂Cl₂ (40 mL). The mixture was refluxed for 20 h, and excess Ag₂O was filtered away. The filtrate was concentrated under reduced pressure. After, the residue was recrystallized from CH₂Cl₂/pentane and dried under vacuum to yield a light grey solid (0.62 C_8H_{17} C₈H₁₇ g, 59%). ¹H NMR (500 MHz, CDCl₃) δ 7.48 (dd, J = 6.2 and 3.0 Hz, ÁgBr 2H), 7.41 (dd, J = 6.1 and 3.1 Hz, 2 H), 4.39 (t, J = 7.3 Hz, 4H),

1.93–1.87 (m, 4H), 1.36–1.24 (m, 20H), 0.86 (t, J = 6.5 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ133.797, 124.13, 111.67, 49.77, 31.86, 30.50, 29.33, 29.23, 27.00, 22.73, 14.20.


mmol) in dried CH₂Cl₂ (40 mL). The mixture was refluxed for 20 h, and excess Ag₂O was filtered away. The filtrate was concentrated under After, the residue was recrystallized from reduced pressure. CH₂Cl₂/pentane and dried under vacuum to yield a light grey solid (0.47 g, 50%). ¹H NMR (500 MHz, CDCl₃) δ 7.49 (dd, J = 6.5 and 3.4 Hz, 2H), 7.41 (dd, J = 6.2 and 3.4 Hz, 2 H), 4.39 (t, J = 7.3 Hz, 4H),

1.94–1.86 (m, 4H), 1.33–1.31 (m, 12H), 0.87 (t, J = 7.3 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ133.77, 124.14, 111.66, 49.76, 31.48, 30.45, 26.63, 22.60, 14.10.

NHC-AgBr (5-b-AgBr). Ag₂O (0.56 g, 2.4 mmol) was added to a solution of 5 (0.51 g, 2.0 mmol) in dried CH₂Cl₂ (40 mL). The mixture was refluxed for 20 h, and excess Ag₂O was filtered away. The filtrate was concentrated under reduced pressure. After, the residue was recrystallized from CH₂Cl₂/pentane and dried under vacuum to yield a light grey solid (0.33 g, 46%). ¹H NMR (500 MHz, CDCl₃) δ 7.50 (dd, J = 6.1 and 3.1 Hz, 2H), 7.42 (dd, J = 6.1 and 3.1 Hz, 2 H), 4.47 (q, J = 7.3 Hz, 4H), 1.53 (t,

J = 7.3 Hz, 6H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 133.48, 124.24, 111.58, 44.74, 16.12.

NHC-AgBr (1-*i*-AgBr).³ Imidazole (2.0 g, 30 mmol), KOH (3.3 g, 60 mmol), *n*-tetradecyl bromide (9.0 mL, 30 mmol) and CH₃CN (17 mL) were added into a C₁₄H₂₉ three-neck flask under nitrogen and stirred under reflux (~85 °C) for 20 h. After the reaction was finished, CH₃CN was removed under reduced pressure. The solid was then dissolved in CH₂Cl₂, washed with water (2

× 100 mL) and brine (100 mL), and dried by Na₂SO₄. An orange oil was obtained after the liquid was concentrated by vacuum. Subsequently, n-tetradecyl bromide (9.0 mL, 30 mmol) and toluene (20 mL) were added to the product under nitrogen, and the mixture was stirred under reflux for 48 h. The solvent was then evaporated to give a red oil (6). Ag₂O (0.56 g, 2.4 mmol) was added to a solution of 6 (1.2 g, 2.0 mmol) in dried CH₂Cl₂ (40 mL). The mixture was refluxed for 20 h before filtering off excess Ag₂O. The CH₂Cl₂ was then removed under reduced pressure. An orange powder (1-i-AgBr, 0.26 g, 20%) was obtained after adding excess acetone to the organic residue, and drying under vacuum. ¹H NMR (500 MHz, CDCl₃) δ 6.95 (s, 2H), 4.07 (t, J = 7.3 Hz, 4H), 1.82–1.77 (m, 4H), 1.29–1.25 (m, 44H), 0.88 (t, J = 6.8 Hz, 6H), ¹³C

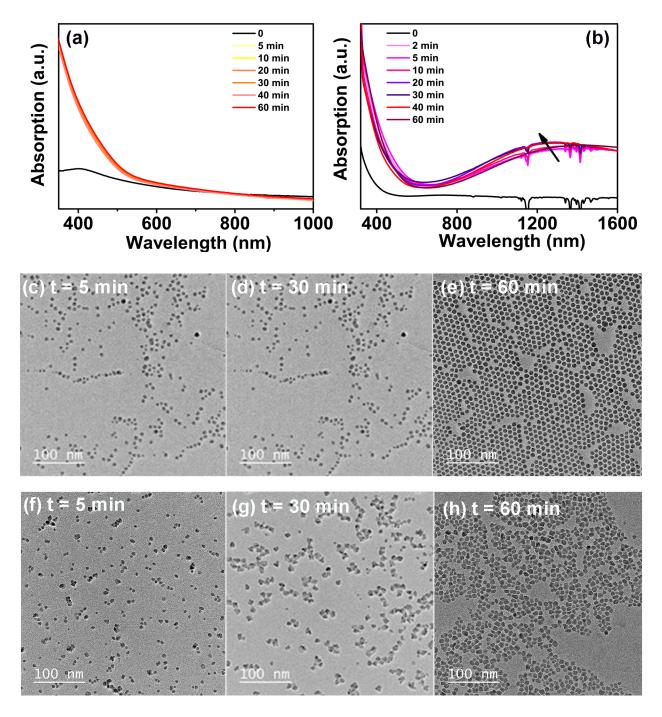
NMR (125 MHz, CDCl₃) *δ* 120.78, 52.28, 32.08, 31.63, 29.84, 29.81, 29.77, 29.68, 29.59, 29.51, 29.30, 26.63, 22.85, 14.28.

solid was obtained after the liquid was concentrated by vacuum. Subsequently, *n*-tetradecyl bromide (4.5 mL, 15 mmol) and toluene (10 mL) were added to the product under nitrogen, and the mixture was stirred under reflux for 48 h. The solvent was then evaporated to give a white solid (7). Ag₂O (0.56 g, 2.4 mmol) was added to a solution of 7 (1.4 g, 2.0 mmol) in dried CH₂Cl₂ (40 mL). The mixture was refluxed for 20 h before filtering excess Ag₂O. The CH₂Cl₂ was then removed under reduced pressure. A white solid (**2-***i***-AgBr**, 0.78 g, 49%) was obtained after adding excess acetone to the organic residue, and drying under vacuum. ¹H NMR (500 MHz, CDCl₃) δ 7.36–7.31 (m, 6H), 7.18–7.16 (m, 4H), 4.07–4.04 (t, 4H), 1.62–1.57 (m, 4H), 1.31–1.12 (m, 44H), 0.87 (t, *J* = 6.9 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 131.89, 130.55, 129.26, 128.89, 128.23, 50.01, 32.07, 31.77, 29.83, 29.80, 29.74, 29.62, 29.51, 29.44, 29.03, 26.53, 22.84, 14.27.

NHC-AgBr (**3-***i***-AgBr**). 4,5-dichloroimidazole (2.0 g, 15 mmol), KOH (1.7 g, 30 mmol), *n*- $C_{14H_{29}}$, $N_{C_{14}H_{29}}$, $N_{C_{14}H_{29}$

orange oil was obtained after the liquid was concentrated by vacuum. Subsequently, *n*-tetradecyl bromide (4.5 mL, 15 mmol) and toluene (10 mL) were added to the product under nitrogen, and the mixture was stirred under reflux for 48 h. The solvent was then evaporated to give a red oil (8). Ag₂O (0.56 g, 2.4 mmol) was added to a solution of 8 (1.2 g, 2.0 mmol) in dried CH₂Cl₂ (40 mL). The mixture was refluxed for 20 h before filtering off excess Ag₂O. The CH₂Cl₂ was then removed under reduced pressure. A pale grey powder (**3**-*i*-AgBr, 0.28 g, 20%) was obtained after adding excess acetone to the organic residue, and drying under vacuum. ¹H NMR (600 MHz, CDCl₃) δ 4.13 (t, 4H), 1.82–1.77 (m, 4H), 1.32–1.25 (m, 44H), 0.88 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 117.17, 51.43, 32.07, 30.98, 29.83, 29.80, 29.76, 29.68, 29.56, 29.51, 29.27, 26.57, 22.84, 14.27.

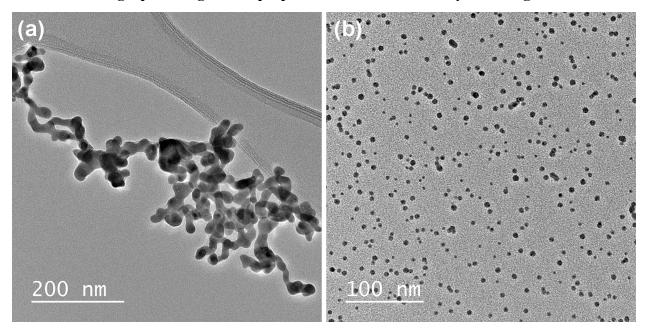
NHC-CuBr (1-*b*-CuBr).² Cu₂O (0.34 g, 2.4 mmol) was added to a solution of 1 (1.2 g, 2.0 mmol) in dried 1,4-dioxane (40 mL). The mixture was refluxed for 20 h, and excess Cu₂O was then filtered off. The filtrate was concentrated under reduced pressure. The solid was isolated by filtration, and washed


ĊuBr

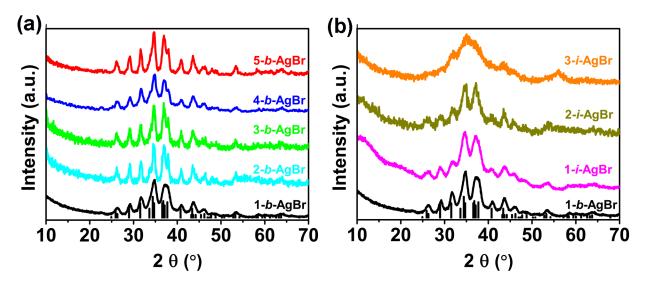
with hexanes. After drying under vacuum, the title compound was obtained as a brown solid (0.9 g, 74%). ¹H NMR (500 MHz, CD₂Cl₂) δ 7.48 (dd, *J* = 6.0 and 3.0 Hz, 2H), 7.40 (dd, *J* = 6.0 and 3.0 Hz, 2 H), 4.62 (t, *J* = 7.2 Hz, 4H), 2.10–1.9 (m, 4H), 1.4–1.1 (m, 44H), 0.87 (t, *J* = 6.8 Hz, 6H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 124.25, 111.94, 49.49, 32.50, 30.82, 30.26, 30.23, 30.20, 30.12, 30.04, 29.93, 29.78, 27.38, 23.27, 14.45.

 $(TBDMS)_2Se.^4$ 0.62 g (27 mmol) Na, 1.07 g (13.0 mmol) Se powder, and 0.10 g (0.78 mmol) C₁₀H₈ were weighed into a three-neck Schlenk flask. 60 mL of dried THF was added. The solution was refluxed under a nitrogen atmosphere for 4 h, followed by cooling to room temperature. The dark solution was further cooled to 0 °C by an ice bath. 4.07 g (27.0 mmol) (^tBuMe₂Si)₂Cl was added to the solution at 0 °C. The reaction mixture was allowed to stir with warming to room temperature overnight, and residual solids were filtered away. The filtrate was concentrated under reduced pressure and dried under vacuum. A reddish solid product was then obtained (3 g, 75%). ¹H NMR (400 MHz, C₆D₆) δ 1.01 (s, 9H), 0.37 (s, 6H). ¹³C NMR (125 MHz, C₆D₆) δ 26.47, 19.40, 0.38.

Control experiment #1: Synthesis of Ag_2S QDs using oleate ligands under ambient conditions. Ag(oleate) was prepared by dissolving Ag_2O (115 mg, 0.500 mmol) with excess oleic acid (5 mL) at 100 °C for 2 h. A clear Ag(oleate) solution was obtained and subsequently diluted with 15 mL of CH₂Cl₂ to give a 50 mM Ag(oleate) stock solution. 0.5 mL of (TMS)₂S/ODE (0.1 M) was injected rapidly into 2 mL of the Ag(oleate) stock solution. The reaction mixture was allowed to stir at room temperature for 1 h before precipitation from excess acetone and redispersion in toluene.


Control experiment #2: Synthesis of Ag_2S nanocrystals using oleylamine under ambient conditions. AgBr(oleylamine) was prepared by dissolving AgBr (190 mg, 1.00 mmol) with excess oleylamine (5 mL) at 120 °C for 3 h. A clear AgBr(oleylamine) solution was obtained and subsequently diluted with 15 mL of toluene to give a 50 mM AgBr(oleylamine) stock solution. 0.5 mL of (TMS)₂S/ODE (0.1 M) was injected rapidly into 2 mL of the AgBr(oleylamine) stock solution. The reaction mixture was allowed to stir at room temperature for 1 h before precipitation from excess acetone and redispersion in toluene.

S3. Reaction kinetics monitored by UV-vis-NIR absorption and TEM analysis


Figure S1. (a,b): UV-vis-NIR absorption spectra of in-situ reaction of Ag₂S QDs (from 1-*b*-AgBr) and Cu_{2-x}S (from 1-*b*-CuBr), respectively. (c–e) TEM micrographs of Ag₂S QDs at various time points. Size analysis reveals $d = 7.8 \pm 0.8$ nm (5 min), to 8.2 ± 0.7 nm (30 min), and 10.3 ± 0.6 nm (60 min) (300 counts for each). (f–h) TEM micrographs of Cu_{2-x}S QDs at different time points. Size analysis presents $d = 6.8 \pm 1.0$ nm (5 min), to 8.4 ± 1.2 nm (30 min), and 8.8 ± 0.8 nm (60 min) (300 counts for each).

S4. TEM micrographs of Ag₂S QDs prepared from oleate and oleylamine ligands

Figure S2. (a,b) TEM micrographs of Ag₂S QDs prepared from Ag(oleate), and AgBr(oleylamine) under ambient conditions, respectively.

S5. XRD data of Ag₂S from various NHC-AgBr complexes

Figure S3. XRD patterns of the purified products prepared from different benzimidazole-based NHC-AgBr complexes (**j**-*b*-AgBr, j = 1-5) (a), and imidazole-based NHC-AgBr complexes (**j**-*i*-AgBr, j = 1-3) (b). All of the products are phase-pure monoclinic Ag₂S (PDF#00-014-0072).

S6. TEM micrographs of Ag₂S QDs prepared from various benzimidazole-based NHC-AgBr

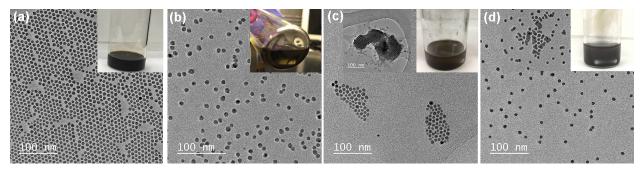
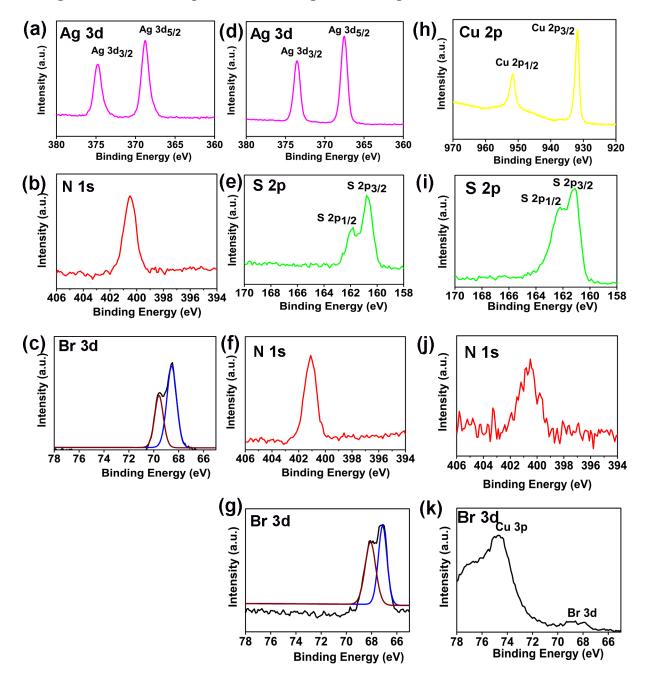
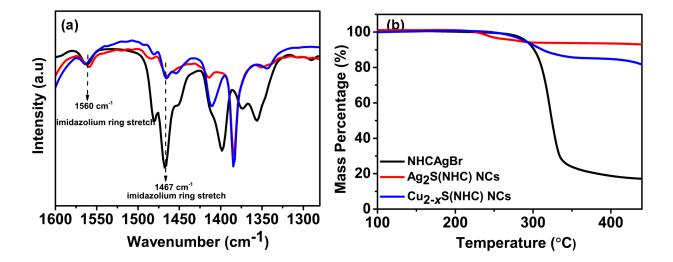




Figure S4. (a–d) TEM micrographs of Ag_2S QDs prepared from 1-*b*-AgBr (10.3 ± 0.6 nm), 2-*b*-AgBr (9.7 ± 0.6 nm), 3-*b*-AgBr (9.2 ± 1.0 nm), and 4-*b*-AgBr (9.6 ± 1.0 nm) complex, respectively. The insets on the upper right corner of each micrograph are photos of each solution mixture after a 1 h reaction. No precipitates were observed in the reaction using 1-*b*-AgBr complex, while black solids were observed from solutions using 2-*b*-AgBr, 3-*b*-AgBr, and 4-*b*-AgBr complex. More aggregates were observed as the length of *N*-alkyl chains decrease (from 2-*b*-AgBr, 3-*b*-AgBr, to 4-*b*-AgBr). The insets on the upper left corner of (c) and (d) were representative TEM images of corresponding Ag_2S QDs, showing aggregates upon synthesized.

Figure S5. High-resolution XPS spectra of NHC-AgBr (1-*b*-AgBr, a–c), NHC-Ag₂S QDs (d–g), and NHC-Cu_{2-x}S QDs (h–k). The absence of the strong Cu²⁺ satellite peaks (at 942 eV and 962 eV) in (h) proves that the oxidation state of Cu_{2-x}S NCs is mostly Cu⁺.

Figure S6. (a) FT-IR spectra and (b) TGA traces of NHC-AgBr (1-*b*-AgBr), NHC-Ag₂S, and NHC-Cu_{2-x}S QDs.

S9. Calculations of NHC ligands on the surface of Ag₂S QDs

The number of NHC ligands per QD can be calculated based on the mass loss from TGA and the mean radius of QDs obtained from TEM analysis. The calculations are performed below:

NHC molecular weight (1 minus proton and bromine): $m_{NHC} = 510.49$ g/mol $m_{Ag2S} = 247.7$ g/mol; Density $\rho_{Ag2S} = 7.23$ g/cm³

 $d_{Ag2S} = 10 \text{ nm}$

Assuming each ligand is binding to X number of Ag₂S units, we can solve for the ratio of NHC:Ag₂S. Define $X = \frac{N_{NHC}}{N_{Ag2S}}$ where N is the number of atoms.

For Ag₂S QDs, since the mass percentage of NHC ligands is 10%, we have:

$$0.073 = \frac{X * m_{NHC}}{(X * m_{NHC} + m_{Ag2S})}$$
$$X = \frac{N_{NHC}}{N_{Ag2S}} = 0.038$$

of NHC ligands per Ag₂S QD = V*density*(Avogardro's number) *(ratio NHC:Ag₂S)/m_{Ag2S} =

$$\frac{\frac{4}{3}*Pi*r^{3}*7.23*6.02*10^{23}*0.038}{247.7} = 346 \text{ NHC}/1-\text{Ag}_2\text{S QD}$$

Here we assume a smooth, spherical Ag₂S QD.

S10. ¹H NMR and ¹³C NMR spectra of the benzimidazolium salt, NHC-AgBr, NHC-CuBr complexes and (TBDMS)₂Se

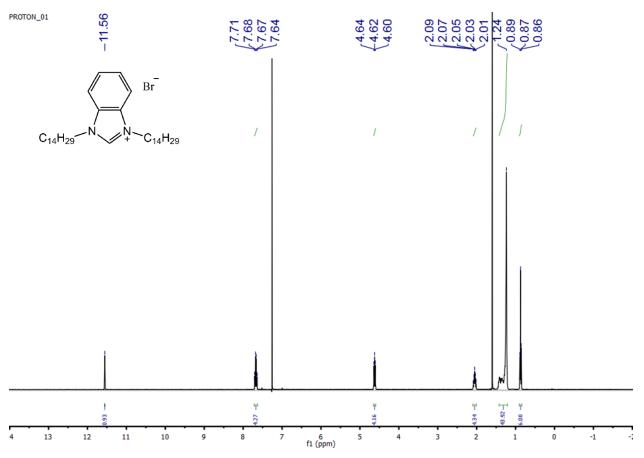


Figure S7. ¹H NMR spectrum of 1 in CDCl₃.

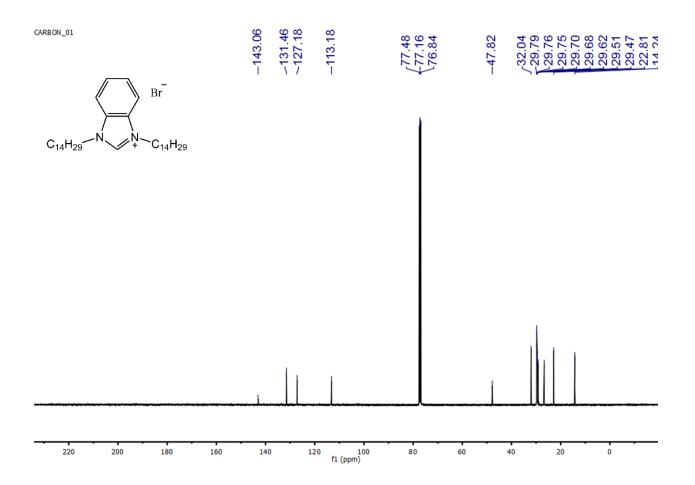


Figure S8. ¹³C NMR spectrum of 1 in CDCl₃.

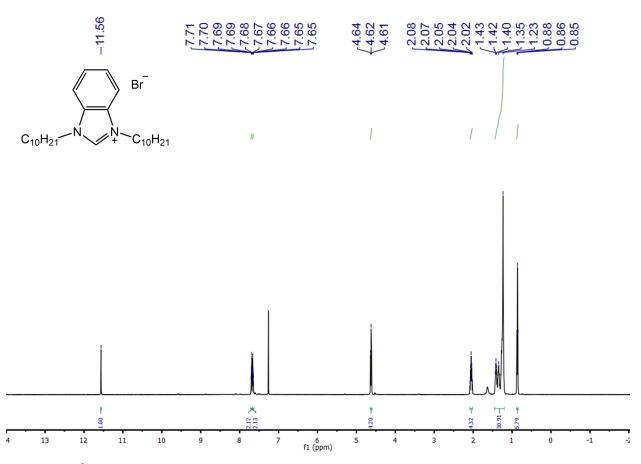


Figure S9. ¹H NMR spectrum of 2 in CDCl₃.

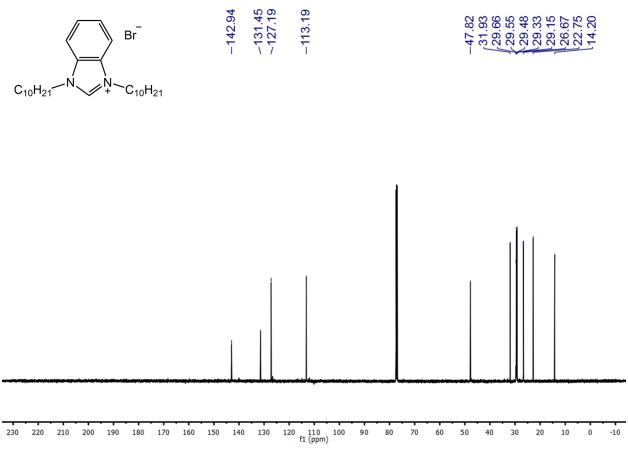


Figure S10. ¹³C NMR spectrum of 2 in CDCl₃.

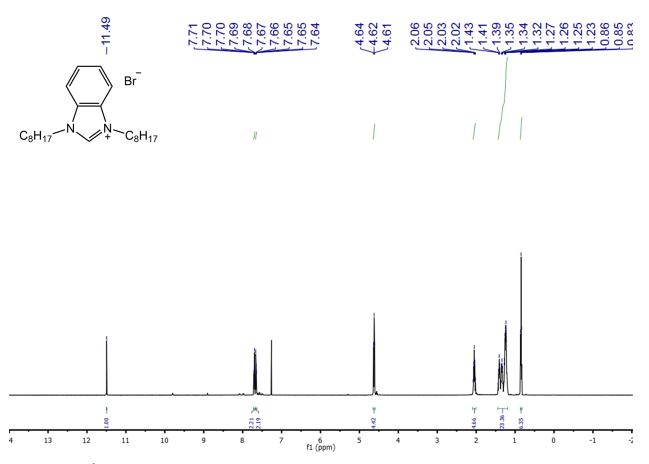


Figure S11. ¹H NMR spectrum of 3 in CDCl₃.

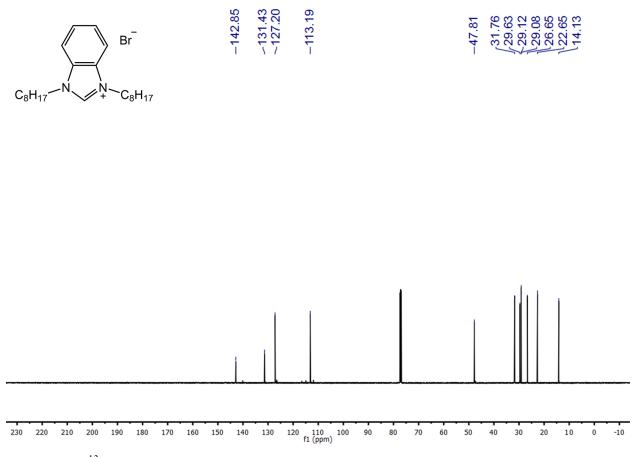


Figure S12. ¹³C NMR spectrum of 3 in CDCl₃.

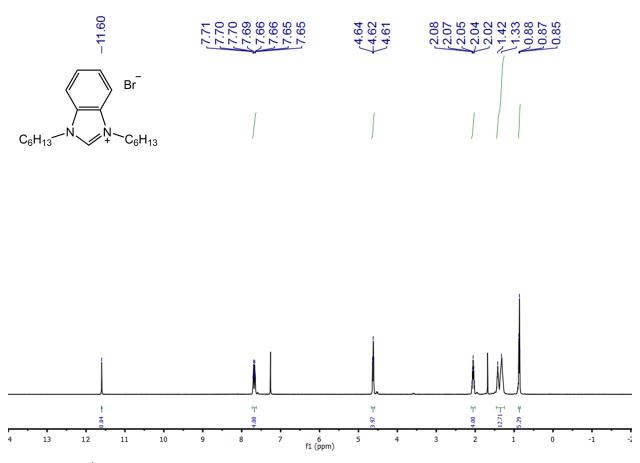


Figure S13. ¹H NMR spectrum of 4 in CDCl₃.

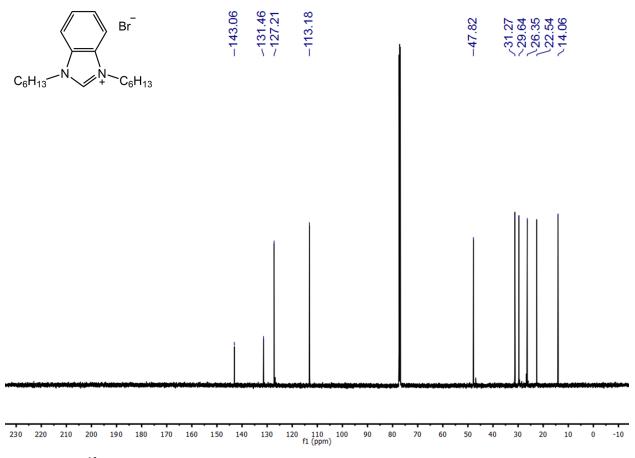


Figure S14. ¹³C NMR spectrum of 4 in CDCl₃.

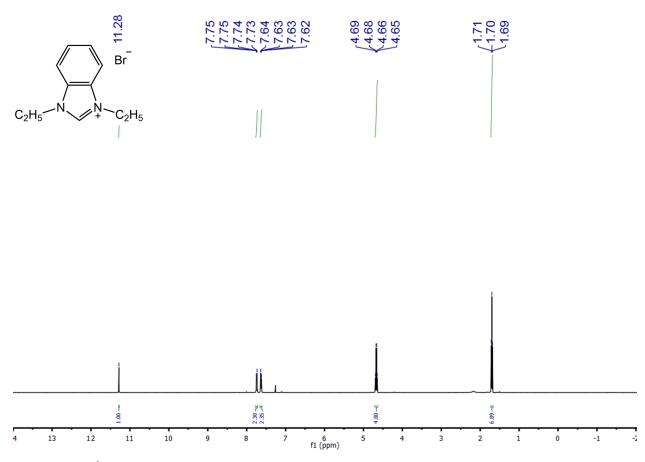


Figure S15. ¹H NMR spectrum of 5 in CDCl₃.

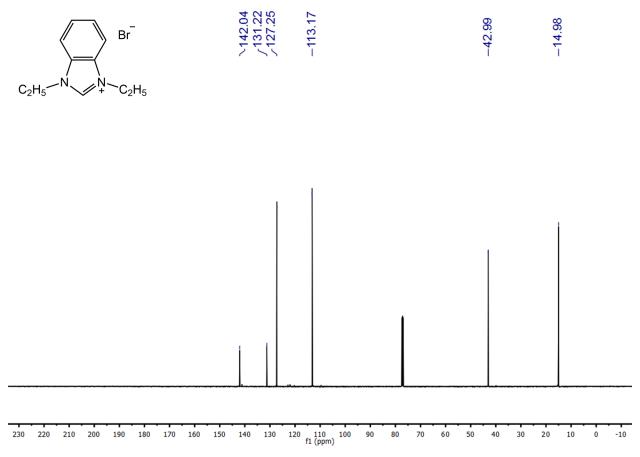


Figure S16. ¹³C NMR spectrum of 5 in CDCl₃.

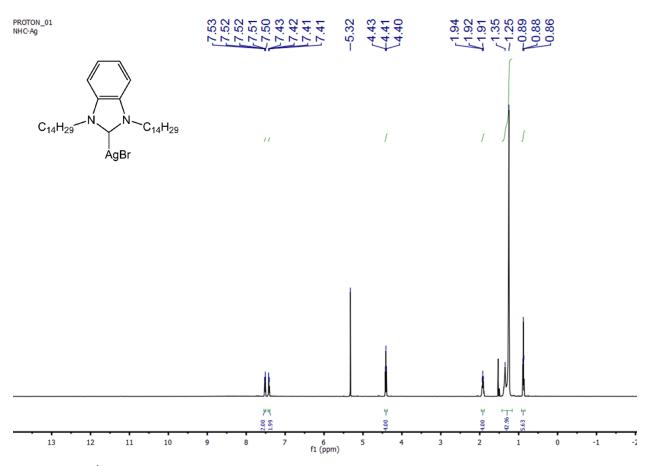


Figure S17. ¹H NMR spectrum of 1-*b*-AgBr in CD₂Cl₂.

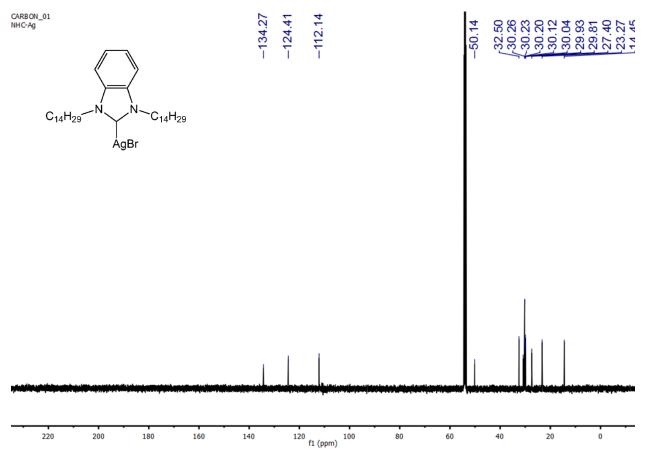


Figure S18. ¹³C NMR spectrum of 1-*b*-AgBr in CD₂Cl₂.

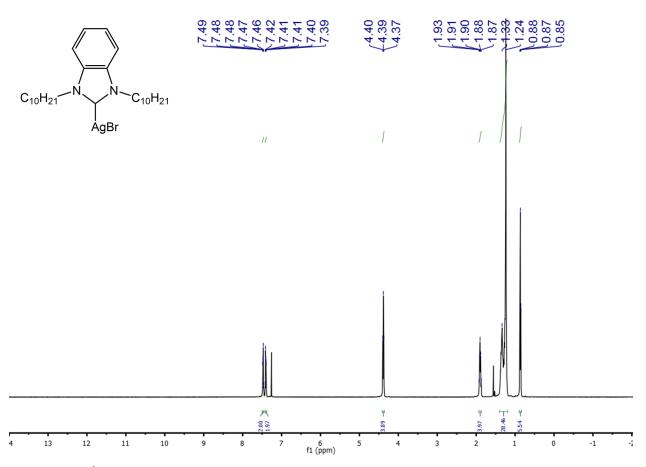


Figure S19. ¹H NMR spectrum of **2-***b***-AgBr** in CDCl₃.

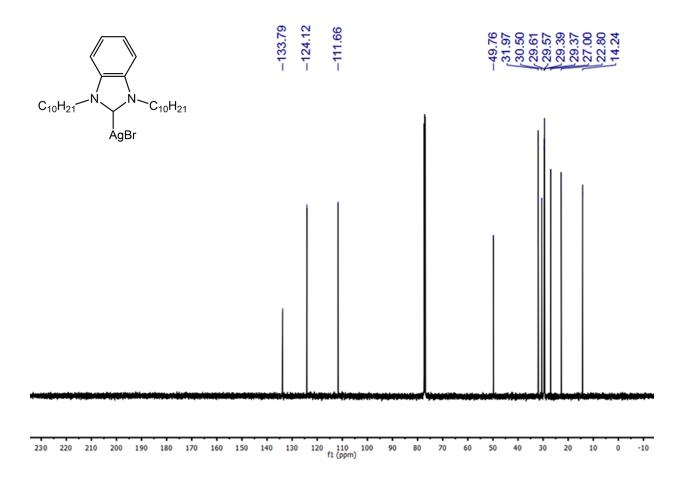


Figure S20. ¹³C NMR spectrum of 2-*b*-AgBr in CDCl₃.

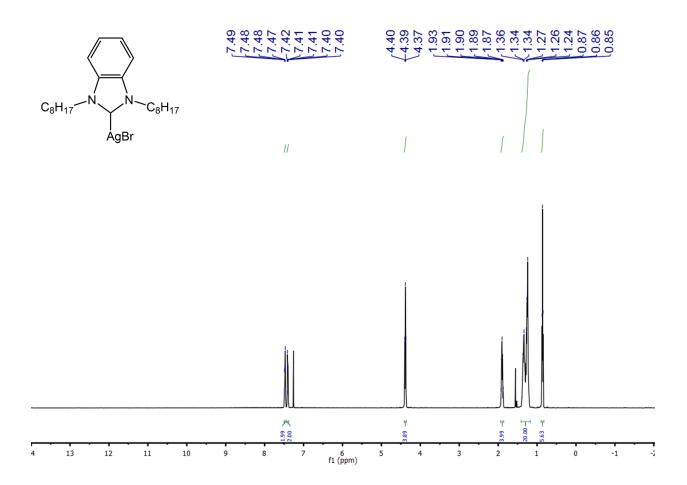


Figure S21. ¹H NMR spectrum of **3-***b***-AgBr** in CDCl₃.

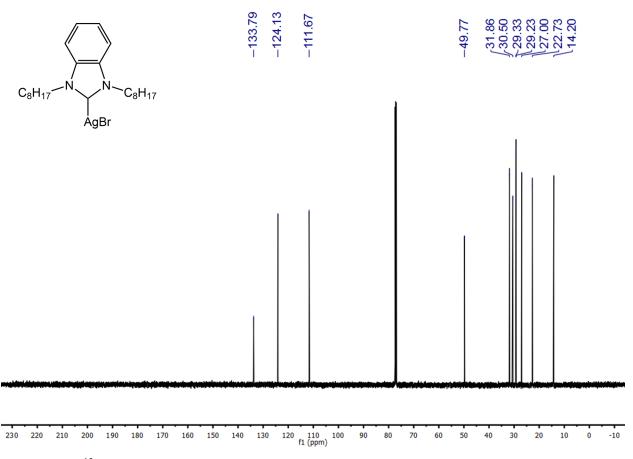


Figure S22. ¹³C NMR spectrum of **3-***b***-AgBr** in CDCl₃.

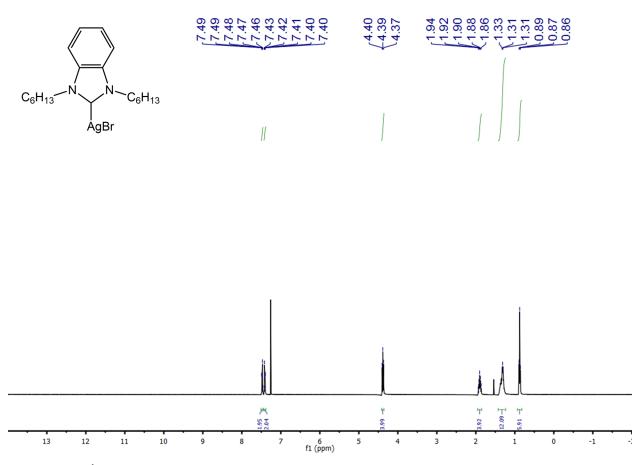


Figure S23. ¹H NMR spectrum of 4-*b*-AgBr in CDCl₃.

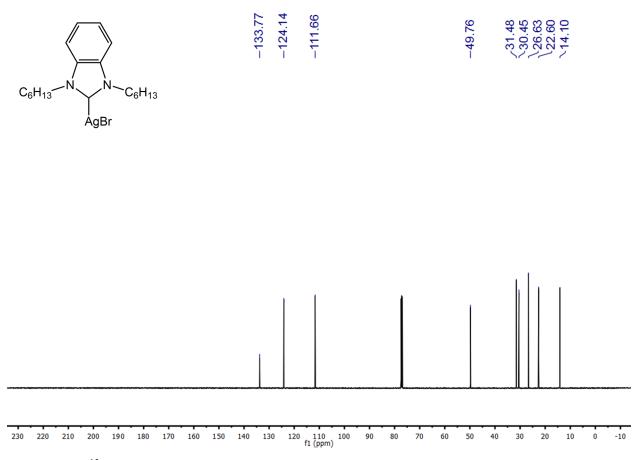


Figure S24. ¹³C NMR spectrum of 4-*b*-AgBr in CDCl₃.

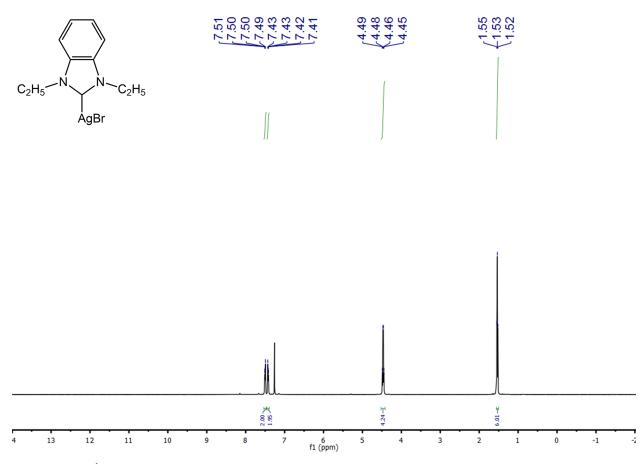


Figure S25. ¹H NMR spectrum of 5-*b*-AgBr in CDCl₃.

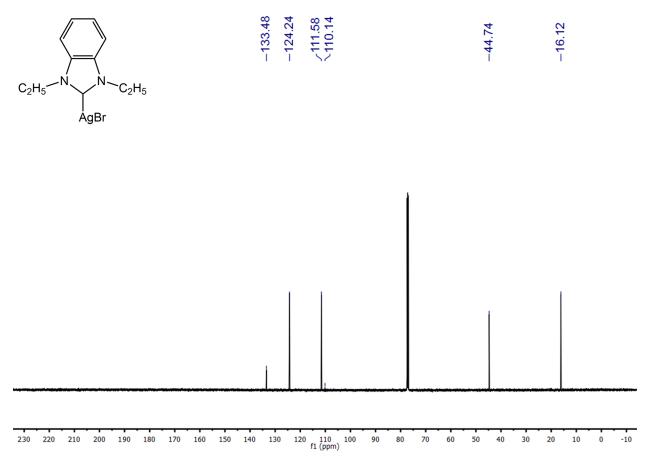


Figure S26. ¹³C NMR spectrum of 5-*b*-AgBr in CDCl₃.

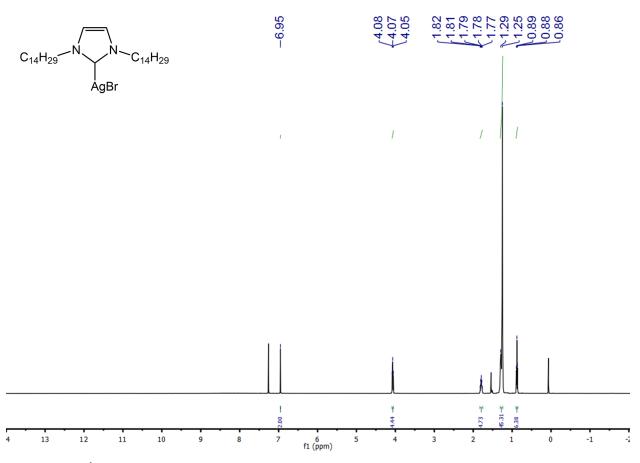


Figure S27. ¹H NMR spectrum of 1-*i*-AgBr in CDCl₃.

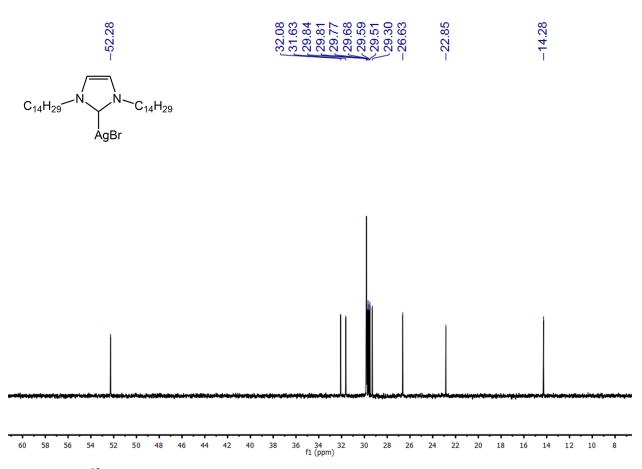


Figure S28. ¹³C NMR spectrum of 1-*i*-AgBr in CDCl₃.

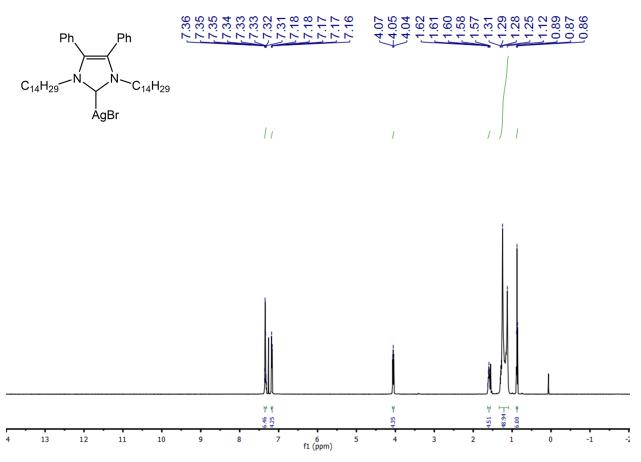


Figure S29. ¹H NMR spectrum of 2-*i*-AgBr in CDCl₃.

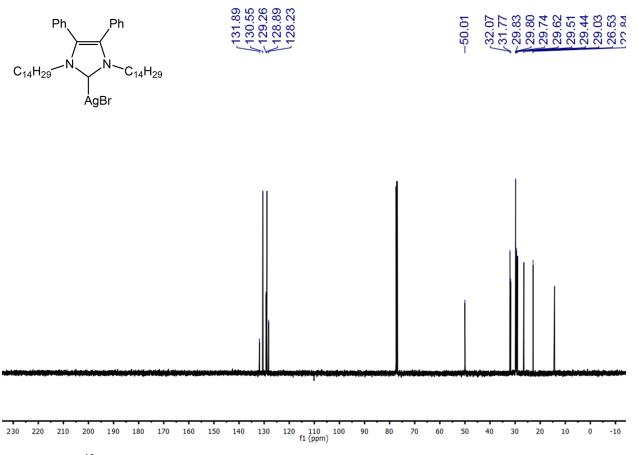


Figure S30. ¹³C NMR spectrum of 2-*i*-AgBr in CDCl₃.

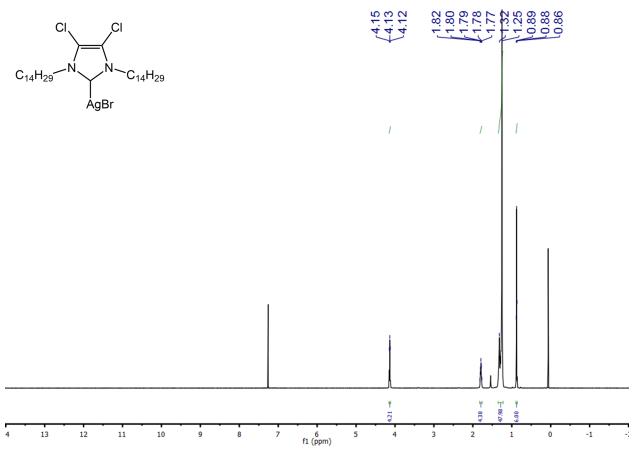


Figure S31. ¹H NMR spectrum of **3-***i***-AgBr** in CDCl₃.

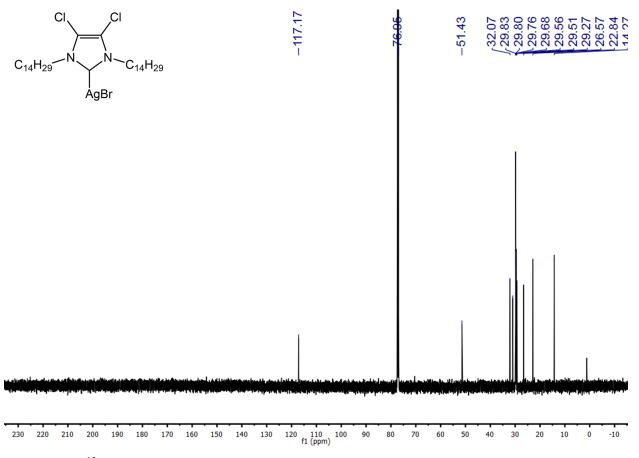


Figure S32. ¹³C NMR spectrum of **3-***i***-AgBr** in CDCl₃.

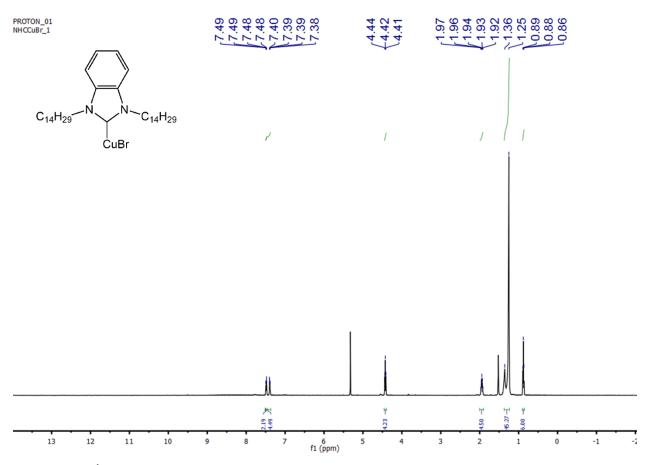


Figure S33. ¹H NMR spectrum of 1-*b*-CuBr in CD₂Cl₂.

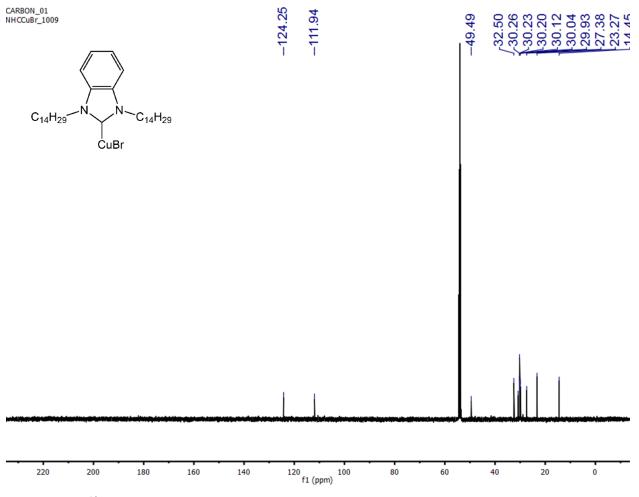
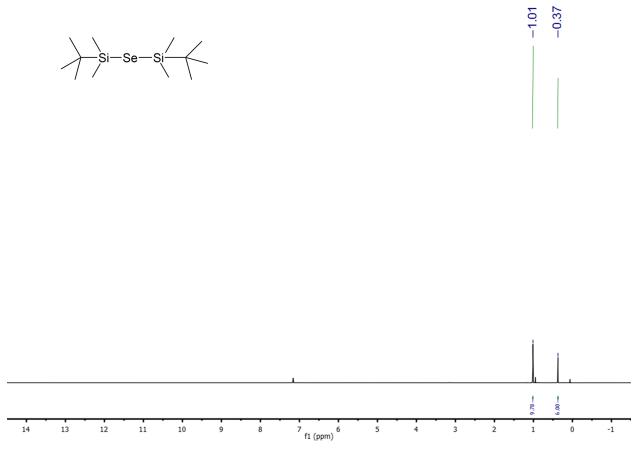



Figure S34. ¹³C NMR spectrum of 1-*b*-CuBr in CD₂Cl₂.

Figure S35. ¹H NMR spectrum of (TBDMS)₂Se in C₆D₆.

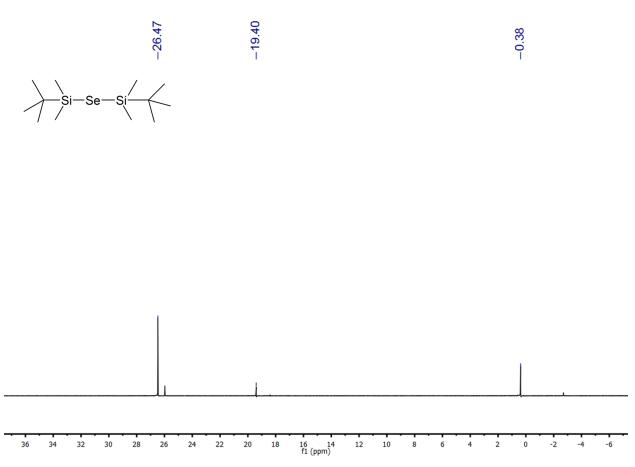


Figure S36. ¹³C NMR spectrum of (TBDMS)₂Se in C₆D₆.

References

1. Ling, X.; Roland, S.; Pileni, M.-P., Supracrystals of N-Heterocyclic Carbene-Coated Au Nanocrystals. *Chem. Mater.* **2015**, *27*, 414-423.

2. Chun, J.; Lee, H. S.; Jung, I. G.; Lee, S. W.; Kim, H. J.; Son, S. U., Cu2O: A Versatile Reagent for Base-Free Direct Synthesis of NHC-Copper Complexes and Decoration of 3D-MOF with Coordinatively Unsaturated NHC-Copper Species. *Organometallics* **2010**, *29*, 1518-1521.

3. Mebrouk, K.; Camerel, F.; Jeannin, O.; Heinrich, B.; Donnio, B.; Fourmigué, M., High Photothermal Activity within Neutral Nickel Dithiolene Complexes Derived from Imidazolium-Based Ionic Liquids. *Inorg. Chem.* **2016**, *55*, 1296-1303.

4. Hatanpää, T.; Pore, V.; Ritala, M.; Leskelä, M., Alkylsilyl Compounds of Selenium and Tellurium: New Precursors for ALD. *ECS Trans.* **2009**, *25*, 609-616.