Supporting Information

Computational Studies on Rhodium(III) Catalyzed C–H Functionalization versus Deoxygenation of Quinoline *N*-Oxides with Diazo Compounds

Chao Deng, Wai Han Lam* and Zhenyang Lin*

Department of Chemistry, the Hong Kong University of Science and Technology, Clear

Water Bay, Kowloon, Hong Kong, People's Republic of China

Author Email Address: chsue@hku.hk; chzlin@ust.hk

Contents:

- (1) Figure S1. Free energy profile calculated for the protonation of **8CH** with [QNO-H]⁺ via a metathesis step. (Page S2)
- (2) Table S1. Comparison of results from single-point energy calculations using different DFT methods relative free energies (kcal/mol) calculated for selected species. (Page S3)
- (3) Table S2. Results compared with geometry optimization calculations using B3LYP-D3/6-31G(d)/SMD – relative free energies (kcal/mol) calculated for two selected transition states (Page S4)

Figure S1. Free energy profile calculated for the protonation of **8CH** with [QNO-H]⁺ via a metathesis step. The solvation-corrected free energies are given in kcal/mol.

Table S1. Comparison of results from single-point energy calculations using different DFT methods – relative free energies (kcal/mol) calculated for selected species

Species	M06/6-311++G(//B3LYP/6-31G((d,p) wB97XD/6-3 (d) ^a //B3LYP/6-3	$\frac{311++G(d,p)}{1G(d)^a} \frac{B3LY}{//B3L}$	ZP-D3/6-311++G(d,p) ZYP/6-31G(d) ^a
$1 + N_2C(COOMe)_2$	0.0	0.0)	0.0
$\mathbf{TS3-4CH} + N_2C(COC$	$OMe)_2$ 25.3	26	.5	25.9
$TS6-7CH + H-QNO^+$	+ QNO 28.0	31	.6	32.9
$7CH + H-QNO^{+} + QN$	$IO + N_2$ 4.4	4.3	3	3.4
TS3-4DO + QNO	30.6	32	.6	30.4
$\mathbf{4DO} + \mathbf{QNO} + \mathbf{N}_2$	12.2	13	.3	8.6

Reactions of dimethyl diazomalonate

Reactions of methyl phenyldiazoacetate

Species	M06/6-311+ //B3LYP/6-3	++G(d,p) 31G(d) ^{<i>a</i>}	wB97XD/6 //B3LYP/6	5-311++G(d,p) $5-31G(d)^{a}$	B3LY //B3L	P-D3/6-311++G(d,p) YP/6-31G(d) ^a	
$1 + N_2 C(Ph)(COOMe)$	(0.0	(0.0		0.0	
TS6-7CHPh + H-QNO	$D^+ + QNO$	23.6		24.8		27.7	
$7\mathbf{CHPh} + \mathbf{H} - \mathbf{QNO}^+ + $	$QNO + N_2$ ·	-6.3	-	-5.6		-4.9	
TS3-4DOPh + QNO	,	21.4	2	21.0		21.1	
$4DOPh + QNO + N_2$		-6.0	-	-6.5		-8.8	

a) See the Computational Details section in the main text for the detailed description of the basis set. The single-point energy calculations were performed in conjunction with the solvation model density (SMD) continuum method in dichloroethane.

Table S2. Results compared with geometry optimization calculations using B3LYP-D3/6-31G(d)/SMD – relative free energies (kcal/mol) calculated for two selected transition states

Reactions of dimethyl diazomalonate

Species	M06/6-311++G(d,p) //B3LYP/6-31G(d) ^a	B3LYP-D3/6-31G(d)/SMD		
$1 + N_2C(COOMe)_2$	0.0	0.0		
$TS6-7CH + H-QNO^+$	+ QNO 28.0	35.5		
TS3-4DO + QNO	30.6	29.8		

a) See the Computational Details section in the main text for the detailed description of the basis set. The single-point energy calculations were performed in conjunction with the solvation model density (SMD) continuum method in dichloroethane.