Supporting information

CO₂ Photoreduction by Formate Dehydrogenase and a Ru-complex in

a Nanoporous Glass Reactor

Tomoyasu Noji,*^a Tetsuro Jin,^b Mamoru Nango,^{a,c} Nobuo Kamiya^a and Yutaka Amao^a

^a The OCU Advanced Research Institute for Natural Science & Technology (OCARINA), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan, E-mail: tnoji@ocarina.osaka-cu.ac.jp, TEL: +8152-735-3486

^b Inorganic Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan

^c Monozukuri research center, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan

*Corresponding Authors: tnoji@ocarina.osaka-cu.ac.jp (T.N.)

Abbreviations (page S3)

Materials and methods (page S-3 – S-12)

Figure S1. Estimation of the amount of formate dehydrogenase (FDH) adsorbed in PGP50. (page S13)

Figure S2. Distribution of rhodamine-labeled formate dehydrogenase (Rh-FDH) inside PGP50. (page S14)

Figure S3. Fluorescence spectra measured at 0, 140, and 240 µm from the surface inside Rh-FDH/PGP50. (page S15)

Figure S4. Transmittance spectra of PGP50 and Ru(bpy)₃²⁺/MV²⁺/PGP50 immersed in a solution. (page S16)

Figure S5. Time evolution of light-induced formic acid production by $Ru(bpy)_3^{2+}/MV^{2+}/FDH/PGP50$ in 0.1 M MES-NaOH (pH 6.6), 20 mM EDTA without NaHCO₃ and the $Ru(bpy)_3^{2+}/MV^{2+}/FDH$ solution consisting 0.1 M MES-NaOH (pH 6.6), 20 mM EDTA, 0.5 mM $Ru(bpy)_3^{2+}$, 3 mM MV^{2+} , and 41 μ M FDH without NaHCO₃. (page S17)

Figure S6. Proposed enhancement mechanism of the CO₂ photoreduction rate of Ru(bpy)₃²⁺/MV²⁺/FDH/PGP50. (page S18)

References (page S19)

Abbreviations

ADH : alcohol dehydrogenase, AldDH : aldehyde dehydrogenase, FDH : formate dehydrogenase, MV^{2+} : methyl viologen, MV^{*+} : the reduced form of methyl viologen, PGP50 : porous glass plate with nanopores of 50-nm, Rh-FDH : rhodamine-labelled formate dehydrogenase, $Ru(bpy)_3^{2+}$: tris(bipyridine)ruthenium(II), $Ru(bpy)_3/MV^{2+}$ solution : a solution containing $Ru(bpy)_3^{2+}$ and MV^{2+} , $Ru(bpy)_3/MV^{2+}/FDH$ solution : a solution containing $Ru(bpy)_3^{2+}$, MV^{2+} , and FDH, $Ru(bpy)_3/MV^{2+}/PGP50$: PGP50 adsorbed $Ru(bpy)_3^{2+}$ and MV^{2+} , and hydrogenase in the nanopores, $Ru(bpy)_3^{2+}/MV^{2+}/FDH/PGP50$: PGP50 adsorbed $Ru(bpy)_3^{2+}/MV^{2+}/FDH/PGP50$: PGP50 adsorbed $Ru(bpy)_3^{2+}$, MV^{2+} , and $Ru(bpy)_3^{2+}$, MV^{2+} , and FDH in the nanopores

Materials and methods

Preparation of PGP. PGPs with dimensions of 1 mm \times 4 cm \times 4 cm and an average inner pore diameter of 50 nm (PGP50) were synthesized by acid leaching of phase-separated borosilicate glass.^{1,2} The mother glass with a composition of 62.5SiO₂-28.3B₂O₃-9.2Na₂O (wt%) was first melted in a platinum crucible and then heated at 610 °C for 32 h for phase separation. The phase-separated glass was then leached in 1 N sulfuric acid at 90 °C for 2 days. The pore diameter, pore volume, and surface area of PGP50 were estimated by mercury penetration methods.^{1,2} Pore volume,

and area receiving sunlight per unit weight of PGP50 were 0.323 cm³/g and 9.7 cm²/g, respectively.

Preparation of $Ru(bpy)_3^{2+}/MV^{2+}/formate$ dehydrogenase-immobilized PGP50 ($Ru(bpy)_3^{2+}/MV^{2+}/FDH/PGP50$). FDH from *Candida boidinii* was purchased (0.4 U/mg lyophilizate, 3 U/mg protein, Roche Life Science). Mole concentration of FDH was calculated by assuming that all protein in lyophilizate is FDH. A PGP50 substrate (thickness: 1.0 mm) was immersed in a formate dehydrogenase (FDH)-containing medium (41 µM FDH in 25 mM MES-NaOH (pH 6.6)) at 4 °C for 24 h. The amount of FDH adsorbed in PGP50 was determined from the decrease in the absorbance of the soaking solution at 280 nm using a spectrophotometer (UV-1800, Shimadzu, Kyoto, Japan) (Figure S1). The resulting FDH immobilized-PGP50 was then immersed in medium A (0.1 M MES-NaOH (pH 6.6) and 20 mM EDTA·2Na) containing 0.5 mM Ru(bpy)_3²⁺ and 3 mM MV²⁺ at 4 °C for 24 h. The amounts of Ru(bpy)_3²⁺ and MV²⁺ in the soaking solution according to a previously reported method. ³ The resulting Ru(bpy)_3²⁺/MV²⁺/FDH/PGP50 was rinsed with medium A.

Light-induced formic acid production assay. The total volume of the reaction cell for $Ru(bpy)_3^{2+}/MV^{2+}/FDH/PGP50$ (thickness: 1.0 mm) was 4.5 mL. The outer medium surrounding $Ru(bpy)_3^{2+}/MV^{2+}/FDH/PGP50$ was composed of medium B (0.1 M S-4

MES-NaOH (pH 6.6), 20 mM EDTA 2Na, and 24 mM NaHCO₃). The volume of the outer 4.3 mL. medium was adjusted to А 64 mg fragment of $Ru(bpy)_3^{2+}/MV^{2+}/FDH/PGP50$ was put into the reaction cell. In the case of $Ru(bpy)_3^{2+}$, MV^{2+} , and FDH in solution (Ru(bpy)₃²⁺/MV²⁺/FDH solution), the reaction medium composition was medium B containing 0.5 mM Ru(bpy)₃²⁺, 3 mM MV²⁺, and 41 μ M FDH. The $Ru(bpy)_3^{2+}/MV^{2+}/FDH$ solution (0.65 mL) was put in a quartz cell with a 2 mm path length. $Ru(bpy)_3^{2+}/MV^{2+}/FDH/PGP50$ and the $Ru(bpy)_3^{2+}/MV^{2+}/FDH$ solution were irradiated using a solar simulator (YSS-E40, Yamasita Denso, Tokyo, Japan) with stirring of the outer medium and $Ru(bpy)_3^{2+}/MV^{2+}/FDH$ solution. The density of the photon flux generated by the solar simulator was measured in the wavelength range of 400-700 nm using a spectrometer (SILVER-Nova, 1 nm resolution, StellarNet, Tampa, FL, USA). The spectroradiometric calibration of the spectrometer was carried out at the time of factory shipment. From the reaction cell, 40-300 µL of solution was collected using a pipette, then diluted 10-20 times with Milli-Q water. The resulting solution was analyzed using an ion chromatography system (Dionex ICS-1100, Thermo Scientific, Waltham, MA, USA). The formic acid concentration was calibrated in advance. The rates of formic acid production/area (μ mol HCOOH/($m^2 \cdot s$)) were calculated from the light-receiving areas of 3.25 cm^2 for the solution system (0.65 mL solution) and 9.7 cm²/g for the 1.0 mm thick PGP50 system. The light-induced formic acid production of Ru(bpy)₃²⁺/MV²⁺-immobilized PGP50 (Ru(bpy)₃²⁺/MV²⁺/PGP50) and a solution containing $Ru(bpy)_3^{2+}$ and MV^{2+} ($Ru(bpy)_3^{2+}/MV^{2+}$ solution) without FDH were also estimated using the same procedure. In Figure 2 in main text, the light-induced formic acid production per unit of light-receiving area of Ru(bpy)3²⁺/MV²⁺/FDH/PGP50 and

the Ru(bpy)₃²⁺/MV²⁺/FDH solution were corrected by approximately 0.5 μ mol HCOOH/(m²·s), corresponding to the production observed for both Ru(bpy)₃²⁺/MV²⁺/PGP50 and the Ru(bpy)₃²⁺/MV²⁺ solution. The conversion efficiency from photon to formic acid was evaluated as 2 × [formic acid production rate (μ mol HCOOH/(m²·s))]/[photon flux density (μ mol/(m²·s))]. The photon flux density within the wavelength range of 400–700 nm was 1300 μ mol/(m²·s).

Preparation of rhodamine-labelled formate dehydrogenase (Rh-FDH). The FDH buffer solution (MES-NaOH buffer, 25 mM, pH 6.6) was replaced with a phosphate buffer solution (0.1 M, pH 7.2) containing 0.15 M NaCl by use of an ultrafiltration membrane (Amicon, 30 kDa-cutoff, Millipore, Billerica, MA, USA) to obtain 11 μ M FDH. NHS-rhodamine (Thermo Scientific, Waltham, MA, USA) was dissolved in this solution, and the final FDH and NHS-rhodamine concentrations were adjusted to 5.4 and 55 μ M, respectively. The solution was allowed to react in an ice bath for 12 h under dark conditions. Unreacted compounds were removed with a micro bio-spin column (Bio-Rad, Hercules, CA, USA). The conjugation ratio (rhodamine/FDH) was estimated to be 0.30 from the absorbance at 280 and 555 nm.

Preparation of rhodamine-FDH-immobilized PGP50. A PGP50 substrate (thickness:
1.0 mm) was immersed in an Rh-FDH-containing medium (6.0 μM Rh-FDH, 25 mM MES-NaOH, pH 6.6) at 4 °C for 24 h. The amount of Rh-FDH adsorbed onto PGP50 S-6

was determined from the decrease in the absorbance of the soaking solution at 555 nm using a spectrophotometer (UV-1800, Shimadzu, Kyoto, Japan).

Confocal laser scanning microscopy. Fluorescence imaging of the emission from Rh-FDH immobilised in PGP50 nanopores was performed using a confocal laser scanning microscope (NX-3DFLIM-N03, Tokyo Instruments, Tokyo, Japan) equipped with an objective lens (LUCPLFLN ×20; numerical aperture = 0.45, Olympus, Tokyo, Japan) and a CCD detector (DV420A-BEX2-DD, Andor Technology, Tokyo, Japan). A 532 nm semiconductor laser (J050GS-11; Showa Optronics Co., Ltd., Tokyo, Japan) was used as the excitation source. Using a laser intensity of 8.6 μ W, a cross-section of PGP50 was observed to detect emissions from Rh-FDH at 563–661 nm. The XY images were obtained with a unit pixel size of 0.25 μ m × 0.25 μ m and a typical accumulation time of 0.01 s for each pixel.

The accumulation rate of formic acid in the nanopores inside PGP50.

[Production rate of formic acid per unit of light-receiving area (µmol HCOOH/(m²·s))] \times 3600/10000 \times [light-receiving area per unit weight of PGP50 (cm²/g PGP50)] / [pore volume per unit weight of PGP50 (cm³/g PGP50)] = 1.4 \times 3600/10000 \times 9.7/0.323 = 15 mM HCOOH/h

The accumulation rate of formic acid in the $Ru(bpy)_3^{2+}/MV^{2+}/FDH$ solution.

[Production rate of formic acid per unit of light-receiving area (μ mol HCOOH/(m²·s))] / [light pass length (cm)] × 3600/10000 = 0.10/0.2 × 3600/10000 = 0.18 mM HCOOH/h

The accumulation rate of $MV^{\bullet+}$ per unit of light-receiving area of $Ru(bpy)_{3^{2+}}/MV^{2+}/PGP50$. The photon flux density of a solar simulator (YSS-E40, Yamasita Denso, Tokyo, Japan) within 400-700 nm was 1300 µmol/(m²·s) using a sensitivity corrected spectrometer (SILVER-Nova, StellarNet, Tampa, FL, USA). Blue trace in Figure S4 shows the photon flux density spectrum of a solar simulator. Black and red traces in Figure S4 show the transmittance spectra of PGP50 and $Ru(bpv)_3^{2+}/MV^{2+}/PGP50$ immersed in a solution, respectively (These spectra is referred from supprimentaly information in Ref.3). A green trace in Figure S4 shows a spectrum of photon flux density absorbed by $Ru(bpy)_3^{2+}/MV^{2+}/PGP50$, and equals to ([Transmittance spectra of PGP50 (%)] – [Transmittance spectra of $Ru(bpy)_{3}^{2+}/MV^{2+}/PGP50$ (%)]) × [Photon flux density of a solar simulator $(\mu mol/(m^2 \cdot s))$]/100. The photon flux density absorbed by Ru(bpy)₃²⁺/MV²⁺/PGP50 was 430 μ mol/(m²·s) in the range of 400–700 nm, correspond to 33% of the photon flux density of a solar simulator. The efficiency of the MV²⁺-photoreduction estimated from the number of photons absorbed by $Ru(bpy)_3^{2+}$ in $Ru(bpy)_3^{2+}/MV^{2+}/PGP50$ (thickness: 1.0 mm) was about 3% under aerobic conditions.³ The accumulation rate of MV⁺⁺ per S-8

unit of light-receiving area of Ru(bpy)₃²⁺/MV²⁺/PGP50 was evaluated as $3/100 \times$ [The photon flux density absorbed by Ru(bpy)₃²⁺/MV²⁺/PGP50 (µmol/(m²·s))] = $3/100 \times 430$ = 13 µmol MV⁺⁺/(m²·s).

The conversion efficiency of MV^{+} production in $Ru(bpy)_3^{2+}/MV^{2+}/PGP50$

[Rate of reduction of MV^{2+} per area (μ mol/($m^2 \cdot s$))] / [Photon flux density of a solar simulator (μ mol/($m^2 \cdot s$))] × 100 = 13/1300 × 100 = 1%.

The conversion efficiency from MV^+ to formic acid in nanopores inside PGP50.

[Rate of formic acid production per area (μ mol/(m²·s))] / [rate of reduction of MV²⁺ per area (μ mol/(m²·s))] × 2 × 100 = 1.4/13 × 2 × 100 = 22 %.

The conversion efficiency from MV^{+} to formic acid in the $Ru(bpy)_{3}^{2+}/MV^{2+}/FDH$ solution.

The conversion efficiency of the MV^{2+} -photoreduction of the $Ru(bpy)_3^{2+}/MV^{2+}$ solution per the photon flux density of a solar simulator within the wavelength range of 400-700 nm is about 1.5% under aerobic conditions.³ The accumulation rate of MV^{*+} per unit of light-receiving area of the $Ru(bpy)_3^{2+}/MV^{2+}$ solution was evaluated as 1.5/100 × [Photon flux density of a solar simulator $(\mu mol/(m^2 \cdot s))$] = 1.5/100 × 1300 = 20 μmol MV^{+/}(m²·s). The conversion efficiency from MV⁺⁺ to formic acid evaluated as 2 × 100 × [rate of formic acid production per area $(\mu mol/(m^2 \cdot s))$] / [rate of reduction of MV²⁺ per area $(\mu mol/(m^2 \cdot s))$] = 2 × 100 × 0.1/20 = 1 %.

The accumulation rate of MV^{+} concentration in the nanocavity inside PGP50.

[Accumulation rate of MV^{*+} per unit of light-receiving area (µmol MV^{*+}/(m²·s))] × 3600/10000 × [light-receiving area per unit weight of PGP50 (cm²/g PGP50)] / [pore volume per unit weight of PGP50 (cm³/g PGP50)] = $13 \times 3600/10000 \times 9.7/0.323 = 140 \text{ mM MV}^{*+}/h$

The accumulation rate of $MV^{\bullet+}$ concentration in the the $Ru(bpy)_3^{2+}/MV^{2+}$ solution.

[Rate of formic acid production per area (μ mol/(m²·s))] / [light pass length (cm)] ×3600/10000 = 20/0.2 × 3600/10000 = 36 mM MV⁺⁺/h.

Physical appearance concentration of $Ru(bpy)_{3^{2+}}$ *in* $Ru(bpy)_{3^{2+}}/MV^{2+}/FDH/PGP50$ *and the effective light-pass length of* PGP50

Physical appearance concentration of $\text{Ru}(\text{bpy})_3^{2+}$ in $\text{Ru}(\text{bpy})_3^{2+}/\text{MV}^{2+}/\text{FDH/PGP50}$ is calculated by the amount of $\text{Ru}(\text{bpy})_3^{2+}$ per unit of light-receiving area of PGP50 (0.31 μ mol/cm²) and the thickness of PGP50 (1 mm).

 $(0.31 \mu \text{mol/cm}^2) / (1 \text{ mm}) = 3.1 \text{ mM}$

The effective light-pass length of PGP50 is calculated using $Ru(bpy)_3^{2+}$ per unit of light-receiving area of PGP50 of 0.31 µmol/cm², physical appearance concentration in PGP50 system of 3.1 mM, and the concentration in nanopores of 9.3 mM.

 $0.31 \ \mu mol/cm^2 = 3.1 \ mM \times 1 \ mm = 9.3 \ mM \times 0.33 \ mm.$

The value of 0.33 mm is also obtained from the pore volume per unit weight of PGP50 of 0.323 cm³/g and the area receiving sunlight per unit weight of PGP50 of 9.7 cm²/g $((0.323 \text{ cm}^3/\text{g}) / (9.7 \text{ cm}^2/\text{g}) = 0.33 \text{ mm}).$

Because the effective light-pass length of PGP50 is 33% of the thickness of PGP50, the self-light-shielding effect of $Ru(bpy)_3^{2+}$ is mitigated to 33% of $Ru(bpy)_3^{2+}$ concentration in nanopores. Thus, the effects when light-pass length is shorter, is obtained by using porous glass plate.⁴

The accumulation rate of MV^{*+} of solution system containing 1.6-3.1 mM $Ru(bpy)_3^{2+}$ and 3 mM MV^{2+} was about 49-66% of solution system containing 0.5 mM

 $Ru(bpy)_3^{2+}$ and 3 mM MV²⁺ by the self-light-shielding effect of $Ru(bpy)_3^{2+}$ (data not shown). On the other hand, the accumulation efficiencies of MV^{*+} with respect to photon flux density for the PGP50 system was about 67% of the solution system containing 0.5 mM $Ru(bpy)_3^{2+}$ and 3 mM MV^{2+} (Figure 3 in text). The rate of photoreaction achieved inside PGP50 was higher than that of the solution system with similar self-light-shielding effect. This result seems to be obtained by not only mitigation of the self-light-shielding effect using PGP50, but also condensation of MV^{2+} in nanopores.

Figure S1. Estimation of the amount of FDHadsorbed in PGP50 (thickness: 1 mm). Dilution factor-corrected absorption spectra of FDH solutions before (black line) and after soaking PGP50 (red line). The soaking solution (25 mM MES-NaOH, pH 6.6) contained 41 μ M FDH. The spectra were acquired using a quartz cell with an optical path length of 10 mm.

Figure S2. Distribution of rhodamine-labeled formate dehydrogenase (Rh-FDH) inside PGP50 (thickness: 1.0 mm). The fluorescence intensity at 563–661 nm was detected with a confocal laser scanning microscope by x-scanning along the thickness direction of PGP. The black line represents the raw fluorescence intensity profile. The amount of Rh-FDH adsorbed inside PGP50 was 35 nmol/g PGP50. The fluorescence spectra inside Rh-FDH/PGP50 measured at 0, 140, and 240 μ m from the surface are shown in Figure S3. The insets shows a photograph of a cross-section of Rh-FDH/PGP50. Rh-FDH (pink) was preferentially adsorbed within a depth of ~0.3 mm from the surfaces of PGP50.

Figure S3. The fluorescence spectra measured at 0 (black), 140 (red), and 240 μ m (green) from the surface inside Rh-FDH/PGP50.

Figure S4. Transmittance spectra of PGP50 (black trace) and $Ru(bpy)_3^{2+}/MV^{2+}/PGP50$ (red trace) immersed in a solution. The thickness of PGP50 was 1 mm. The photon flux density of a solar simulator used in this work (YSS-E40, Yamasita Denso, Tokyo, Japan) is shown as a blue trace. The photon flux density absorbed by $Ru(bpy)_3^{2+}/MV^{2+}/PGP50$ is shown as a green trace.

Figure S5. Time evolution of light-induced formic acid production by $Ru(bpy)_3^{2+}/MV^{2+}/FDH/PGP50$ (•) in 0.1 M MES-NaOH (pH 6.6), 20 mM EDTA without NaHCO₃ and the $Ru(bpy)_3^{2+}/MV^{2+}/FDH$ solution (•) consisting 0.1 M MES-NaOH (pH 6.6), 20 mM EDTA, 0.5 mM $Ru(bpy)_3^{2+}$, 3 mM MV^{2+} , and 41 μ M FDH without NaHCO₃. The amounts of $Ru(bpy)_3^{2+}$, MV^{2+} , and FDH inside PGP50 are described in the text.

Figure S6. Proposed enhancement mechanism of the CO_2 photoreduction rate of $Ru(bpy)_3^{2+}/MV^{2+}/FDH/PGP50$. Because MV^{*+} at the both sides of the plate reduce oxygen to reactive oxygen species (ROS), oxygen concentration in the central region inside PGP is significantly low. CO_2 photoreduction is mainly occurred by photoreactions in the central region inside PGP.

REFERENCES

- Tanaka, H.; Yazawa, T.; Eguchi, K.; Nagasawa, H.; Matsuda, N.; Einishi, T. Precipitation of Colloidal Silica and Pore Size Distribution in High Silica Porous Glass. J. Non-Cryst. Solids 1984, 65, 301-309.
- (2) Yazawa, T.; Tanaka, H.; Eguchi, K.; Yokoyama, S. Novel Alkali-Resistant Porous Glass Prepared from a Mother Glass Based on the SiO2–B2O3–RO–ZrO2 (R=Mg, Ca, Sr, Ba and Zn). *J. Mater. Sci.* **1994**, *29*, 3433-3440.
- (3) Noji, T.; Kondo, M.; Jin, T.; Yazawa, T.; Osuka, H.; Higuchi, Y.; Nango, M.; Itoh, S.; Dewa, T. Light-Driven Hydrogen Production by Hydrogenases and a Ru-Complex inside a Nanoporous Glass Plate under Aerobic External Conditions. *J. Phys. Chem. Lett.* 2014, *5*, 2402-2407.
- (4) Noji, T.; Kawakami, K.; Shen, J.-R.; Dewa, T.; Nango, M.; Kamiya, N.; Itoh, S.; Jin, T. Oxygen-Evolving Porous Glass Plates Containing the Photosynthetic Photosystem II Pigment–Protein Complex. *Langmuir* 2016, *32*, 7796-7805.