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Photoinduced conductivity of RGO films annealed at four different temperatures
with several pump fluences, F
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Figure S1 Photo-excited transient THz transmission response of multilayer RGO film annealed at
different temperatures (200°C 400 ‘C 600°C 800°C) with several fluence, F.
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Figure S2 The real parts of the static conductivity of the multilayer RGO films at THz frequencies

extracted from the amplitude and phase of relative THz-TDS transmission.
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According to the intrinsic conductivity of the four RGO samples in Figure S2,
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we can rough estimate the |Eg| by opc = VN, (N is the number of layers).

Here we assume the momentum scattering time T remains the same as that without
pump excitation. Expect for the RGO sample annealed at 200 °C, all other three
samples show a shorter momentum scattering time at higher annealing temperature
(just as shown in table 1). This may be on account of that the RGO film annealed at
200 °C is affected more by the oxygen defects. As the intrinsic conductivity shifts
from 0.9% 107%S to 3.69 x 107*S with the annealing temperature increases, also
the scattering time T decrease at higher annealing temperature, and |Eg| turns larger
as the annealing temperature increases. The magnitude of |Ep| can be tuned by the
annealing temperature, i.e. |[Ep| increases with increasing the annealing temperature.
On the other hand, photoconductivity, Ac is related to electron temperature T,

by [
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Ao = 0-intra(Te) - 0-intra(TO) 5 0-intra(T) = 1n[2COSh(2kB

)L (D

Here, the lattice temperature Ty=300 K, T is obtained from fitting frequency
dependence of the dynamical photoconductivity. The electron temperature (Te)
therefore can be determined by the photoinduced conductivity (Ao).

For the Supercollision (SC) mechanism the rate equation governing the cooling

of the electron temperature is given by %!

. Tel,0
Tei(t) = 1+(A/a)(t—to) Ter0 2

Here Tej is the initial temperature, A/a is the SC rate coefficient. If the Fermi
level |Ep| is smaller than 2KgT (at room temperature), Ac ~ Te. Therefore, the
dynamics of photo-induced conductivity can be fitted by Eq (2), as shown in the
Figures below. The best fit is obtained with the fitting parameter of A/a= 6.3~7.8
X 10° K~1s~1, which is very close to the reported rate coefficient for the suspended
graphene (A/a=5.5X10% K~1s™1) Bl and chemical reduced graphene oxide ( A/a =
2.6 X10® K~1s71) M We find A/o is independent on the annealing temperature.
Predicted by the SC model, T = [(A/a)Ty] 1 (T, is the initial electron temperature),
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the cooling time () is independent on the annealing temperature in the case of similar

electron temperature (T,), as shown in Fig.S3.
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Figure S3 The SC rate coefficient with the RGO samples at four annealing
temperatures
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