Supporting Information

Photo-induced Terahertz Conductivity and Carrier Relaxation in Thermal-reduced Multilayer Graphene Oxide Films

Xiao Xing¹, Litao Zhao², Zeyu Zhang¹, Liang Fang¹, Zhengfu Fan¹, Xiumei Liu¹, Xian Lin¹, Jianhua Xu², Jinquan Chen², Xinluo Zhao¹, Zuanming Jin^{1*} and Guohong Ma^{1*}

¹Department of physics, Shanghai Universtiy, 99 Shangda Road, Shanghai 200444, P.
R. China

²State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China

Photoinduced conductivity of RGO films annealed at four different temperatures with several pump fluences, F

Figure S1 Photo-excited transient THz transmission response of multilayer RGO film annealed at different temperatures (200° C 400° C 600° C 800° C) with several fluence, F.

Figure S2 The real parts of the static conductivity of the multilayer RGO films at THz frequencies extracted from the amplitude and phase of relative THz-TDS transmission.

According to the intrinsic conductivity of the four RGO samples in Figure S2, we can rough estimate the $|E_F|$ by $\sigma_{DC} = \frac{\tau E_F e^2}{\pi \hbar^2} \sqrt{N}$, (N is the number of layers). Here we assume the momentum scattering time τ remains the same as that without pump excitation. Expect for the RGO sample annealed at 200 °C, all other three samples show a shorter momentum scattering time at higher annealing temperature (just as shown in table 1). This may be on account of that the RGO film annealed at 200 °C is affected more by the oxygen defects. As the intrinsic conductivity shifts from $0.9 \times 10^{-4} S$ to $3.69 \times 10^{-4} S$ with the annealing temperature increases, also the scattering time τ decrease at higher annealing temperature, and $|E_F|$ turns larger as the annealing temperature increases. The magnitude of $|E_F|$ can be tuned by the annealing temperature, i.e. $|E_F|$ increases with increasing the annealing temperature.

On the other hand, photoconductivity, $\Delta\sigma$ is related to electron temperature T_e by $^{[1]}$

$$\Delta\sigma = \sigma_{intra}(T_e) - \sigma_{intra}(T_0) \ , \\ \sigma_{intra}(T) = \frac{{}_2G_0\tau k_BT}{\hbar(\omega^2\tau^2+1)}ln[2cosh(\frac{E_F}{2k_BT})], \ \ (1)$$

Here, the lattice temperature T_0 =300 K, τ is obtained from fitting frequency dependence of the dynamical photoconductivity. The electron temperature (T_e) therefore can be determined by the photoinduced conductivity ($\Delta \sigma$).

For the Supercollision (SC) mechanism the rate equation governing the cooling of the electron temperature is given by ^[2]

$$T_{el}(t) = \frac{T_{el,0}}{1 + (A/\alpha)(t - t_0)T_{el,0}}$$
 (2)

Here $T_{el,0}$ is the initial temperature, A/α is the SC rate coefficient. If the Fermi level $|E_F|$ is smaller than $2K_BT$ (at room temperature), $\Delta\sigma\sim T_{el}$. Therefore, the dynamics of photo-induced conductivity can be fitted by Eq (2), as shown in the Figures below. The best fit is obtained with the fitting parameter of $A/\alpha=6.3\sim7.8\times10^8~K^{-1}s^{-1}$, which is very close to the reported rate coefficient for the suspended graphene $(A/\alpha=5.5\times10^8~K^{-1}s^{-1})^{[3]}$ and chemical reduced graphene oxide ($A/\alpha=2.6\times10^8~K^{-1}s^{-1}$) [1]. We find A/α is independent on the annealing temperature. Predicted by the SC model, $\tau=[(A/\alpha)T_0]^{-1}(T_0)$ is the initial electron temperature),

the cooling time (τ) is independent on the annealing temperature in the case of similar electron temperature (T_0), as shown in Fig.S3.

Figure S3 The SC rate coefficient with the RGO samples at four annealing temperatures

References:

- (1) Kar, S.; Jayanthi, S.; Freysz, E.; Sood, A. K. Time Resolved Terahertz Spectroscopy of Low Frequency Electronic Resonances and Optical Pump-Induced Terahertz Photoconductivity in Reduced Graphene Oxide Membrane. *Carbon* **2014**, *80*, 762-770.
- (2) Song, J. C. W.; Reizer, M. Y.; Levitov, L. S. Disorder-Assisted Electron-Phonon Scattering and Cooling Pathways in Graphene. *Phys. Rev. Lett.* **2012**, *109*, 106602.
 - (3) Graham, M. W.; Shi, S.-F.; Ralph, D. C.; Park, J.; McEuen, P. L.

Photocurrent Measurements of Supercollision Cooling in Graphene. *Nat. Phys.* **2013**, *9*, 103-108.