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Scheme S1. Numbering scheme for intermediates and ligands L1-L3. 
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Figure S1. Synthesis of FeL1-MEPE by conductometric titration of a solution of ligand (L1) 

in 75% acetic acid (c = 9 mM) with Fe(II) acetate solution (c = 18 mM) in 75% acetic acid at 25 

°C, under argon atmosphere and (inset) conductivity minimum at stoichiometry, y = 

[M]/[L].  
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Figure S2. Linear correlation between the concentration and the characteristic peaks of 

FeL1-MEPE (a) in water, FeL2-MEPE (b) in ethanol, CoL2-MEPE (c) in water and FL3-MC 

(d) in water. 
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Figure S3. Normalized absorption (solid line) and fluorescence (dotted line) spectrum of 

FeL2-MEPE in MeOH (λexc = 420 nm).  

 

 

 

 

 

 

 

Figure S4. A photographic image of a solution of FeL1-MEPE in water (c = 8 mM) at t = 0 h, 

and its formation of viscous gel at ca. t = 24 h, upon incubation at 20 °C. Upon turning 

upside down the viscous gel starts flowing slowly after few minutes (~ 2 – 3 min). 
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Figure S5. (a) Dynamic and kinematic viscosity of FeL1-MEPE in 75% acetic acid as a 

function of concentration. (b) The effect of water soluble Polyox™ WSR N-80 on the 

viscosity of FeL1-MEPE in 75% acetic acid. The viscosity of 75% acetic acid, and 75% acetic 

acid with 1% Polyox™ WSR N-80 is shown in grey. The viscosity data points are an average 

of three independent measurements performed at 20 °C.   
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Figure S6. (a) Dynamic and kinematic viscosity of FeL1-MEPE in ethanol as a function of 

concentration. The data on Y-axis at c = 0 mM represents the viscosity of ethanol. 
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Figure S7. Dynamic and kinematic viscosity of FeL2-MEPE in 75% acetic acid as a function 

of concentration. The viscosity of 75% acetic acid is shown in grey. The viscosity data points 

are an average of three independent measurements performed at 20 °C. 
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Figure S8. Absorbance and transmittance spectra of FeL1-MEPE film on ITO-coated glass 

(dimension: 1 cm x 2.5 cm) prepared by dip coating using a solution concentration of 30 mM 

in water, at a withdrawing speed of 100 mm min-1. The molar absorptivity, ε of FeL1-MEPE 

amounts to 12,300 M-1·cm-1. 

 

 

 

 

 

 

 

 

Figure S9. Absorbance and transmittance spectra of FeL2-MEPE film on ITO-coated glass 

(dimension: 1 cm x 2.5 cm) prepared by dip coating using a solution concentration of 14 mM 

in ethanol, at a withdrawing speed of 100 mm min-1. The molar absorptivity, ε of FeL2-

MEPE amounts to 25,700 M-1·cm-1. 
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Figure S10. Absorbance and transmittance spectra of CoL2-MEPE film on ITO-coated glass 

(dimension: 1 cm x 2.5 cm) prepared by dip coating using a solution concentration of 14 mM 

in water, at a withdrawing speed of 100 mm min-1. The molar absorptivity, ε of CoL2-MEPE 

amounts to 40,700 M-1·cm-1. 
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Figure S11. Energy-dispersive X-ray (EDX) spectrum of FeL2-MEPE film on ITO-coated 

glass with calculated mass percentages of the detected elements.   
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Figure S12. Guinier-Zimm plot of FeL2-MEPE in ethanol at 23 °C. The Rayleigh ratio, Rθ, is 

measured with respect to five solution concentrations (1 – 5 g L-1) and from 16 different 

angle positions of the detectors, in the range from 20° and 144°. The scaling factor k of the 

Zimm plot is set to 8.58 L g-1 µm-2. The ln(kcRθ
−1) values are extrapolated to θ  → 0, that is q2 

→ 0, and c → 0.    

Theory: In the static light scattering (SLS), Fe-MEPE solutions at different concentrations (c 

= 1 – 5 g L-1) were prepared in order to calculate the weight average molar mass, ��w, and the 

radius of gyration, Rg. The intensity of the scattered light depends on the concentration, c, 

and the scattering angle, θ, which results in different Rayleigh ratios, Rθ. The Rθ is plotted 

via a Zimm plot according to the equation 1:1-3 

���� 	= 1��
	 �1 −	13������ 	+ 2���																	(1) 
     

where, A2 is the second virial coefficient. The static light scattering measurements were 

evaluated by extrapolating the KcRθ
−1

 values to an interference-free condition, which is θ → 

0, and leads to the extrapolation of the scattering vector, q2 → 0. Also, on the other hand the 

values are extrapolated to an interaction-free condition, which is c → 0. As a result, the 
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Zimm plot is carried out considering the Guinier’s method.4, 5 Moreover, Guinier and 

Fournet4, 6 showed that the scattering vector can be approximated over a wide range of q2 

values by equation 2: 

1 −	13����� = 	��������� 																																		(2) 
With this approximation, Wesslau4, 7 proposed the Guinier-Zimm plot based on the 

equation 3:  

� !����" = � # 1��
	 !���������" + 2���$																				(3) 
                   

where, ln(KcRθ
−1) is plotted vs. (q2 + kc), as shown in Figure S10 for FeL2-MEPE. k is an 

arbitrary constant, a scaling factor which is freely selectable. 

Using the intercept of the extrapolation curve, q2 → 0, the weight average molar mass,	��w, 

can be estimated by equation 4: 

lim��	→	)*	→	) !� !
���+"" = 	� ! 1��
"																								(4) 

The radius of gyration, Rg, is defined as the squared distance between a point of a polymer 

and the center of mass, ri, and is given by equation 5: 

〈���〉	/ = 	 101|34|�5
46� 																																							(5) 

Rg, can also be obtained from the slope of the extrapolated curve of ln(KcRθ
−1) to c → 0: 

8 � lim9	→	) �� ����+���8(��) = 	 3��3 																												(6) 
Also, the second virial coefficient, A2, can be estimated from the slope of the extrapolated 

curve, q2 → 0:1, 2, 4 
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8 ! lim��	→	) ����+�"8� 	 · < = 2��																											(7) 
 

Determination of hydrodynamic radii. 

A dynamic Zimm plot is generated by measuring the diffusion coefficients, D, and 

extrapolating the values in the same way as the KcRθ
−1 values, as shown in the Guinier-

Zimm plot (Figure S11), to an interference-free condition, that is θ  → 0, which leads to an 

extrapolation of the scattering vector, q2  → 0, and to an interaction-free condition, that is c 

→ 0. The extrapolation leads to the diffusion coefficient, D0. Using this D0, the 

hydrodynamic radii, Rh, is calculated.1  
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Figure S13. Cyclic voltammogram of FeL1-MEPE film on ITO-coated glass (dimension: 0.7 

cm x 2.5 cm) at different scan rates (5 to 100 mV·s-1) in an electrolyte solution of TBAH (0.2 

M) in anhydrous dichloromethane using a platinum wire as counter electrode (CE), and 

Ag/AgCl as reference electrode (RE). 
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Figure S14. (a) Linear increase of the anodic (ϕa) and cathodic (ϕc) peak currents of FeL1-

MEPE film on ITO-coated glass as a function of scan rate. (b) Anodic and cathodic peak 

currents of FeL1-MEPE film as a function of square root of the scan rate. 
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Figure S15. Redox stability of FeL1-MEPE on ITO-coated glass examined by cyclic 

voltammetry after 1 (black) and 50 (blue) redox cycles at a scan rate of 20 mV·s-1 at room 

temperature. 
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Figure S16. 1H NMR spectrum of compound 4 in CDCl3. 

 

 

 

Figure S17. 13C NMR spectrum of compound 4 in CDCl3. 
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Figure S18. 1H NMR spectrum of compound 7 in DMSO-d6. 

 

 

 

 

Figure S19. 13C NMR spectrum of compound 7 in DMSO-d6. 
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Figure S20. 1H NMR spectrum of compound 8 in CDCl3. 

 

 

 

 

 

 

Figure S21. 13C NMR spectrum of compound 8 in CDCl3. 
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Figure S22. 1H NMR spectrum of compound 11 in CDCl3. 

 

 

 

 

 

Figure S23. 13C NMR spectrum of compound 11 in CDCl3. 
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Figure S24. 1H NMR spectrum of ligand L1 in CDCl3. 

 

 

 

 

Figure S25. 13C NMR spectrum of ligand L1 in CDCl3. 
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Figure S26. 1H – 1H COSY NMR spectrum of ligand L1 in CDCl3. 

Figure S27. 1H – 13C HSQC NMR spectrum of ligand L1 in CDCl3. 
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Figure S28. 1H NMR spectrum of ligand L2 in CDCl3. 

 

 

 

 

 

 

Figure S29. 13C NMR spectrum of ligand L2 in CDCl3. 
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Figure S30. 1H – 1H COSY NMR spectrum of ligand L2 in CDCl3. 

Figure S31. 1H – 13C HSQC NMR spectrum of ligand L2 in CDCl3. 
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Figure S32. 1H NMR spectrum of ligand L3 in CDCl3. 

 

 

 

 

 

Figure S33. 13C NMR spectrum of ligand L3 in CDCl3. 
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Figure S34. 1H NMR spectrum of FeL3-MC in CD3OD. 

 

 

 

 

 

 

Figure S35. 13C NMR spectrum of FeL3-MC in CD3OD. 
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