Planar-Chiral Phosphine-Olefin Ligands Exploiting a (Cyclopentadienyl)manganese (I) Scaffold to Achieve High Robustness and High Enantioselectivity

Ken Kamikawa,^{*,+} Ya-Yi Tseng,⁺ Jia-Hong Jian,[‡] Tamotsu Takahashi,[‡] and Masamichi Ogasawara^{*,‡,§}

⁺ Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan

⁺ Institute for Catalysis, Hokkaido University, Kita-ku, Sapporo 001-0021, Japan

[§] Department of Natural Science, Graduate School of Science and Technology, Tokushima University, Tokushima 770-8506, Japan

Supporting Information

Table of Contents

Experimental Section.	S2
X-ray Structure of (<i>R*</i> , <i>R*</i>)-SI1	S 6
¹ H-, ¹³ C-, and ³¹ P-NMR Spectra of (η^5 - <i>o</i> -PhosphinoCp)(phosphine)Mn(CO) ₂ 2a-d	S8-S19
¹ H- and ¹³ C-NMR Spectra of $[\eta^5$ -1-Bromo-2- $[(2R,4R)$ -1,3-dioxanyl]Cp] Mn(CO) ₃ 4	S20-S21
¹ H- and ¹³ C-NMR Spectra of (S)-1-Bromo-2-formyl Cymantrene 5	S22-S23
¹ H-, ¹³ C-, and ³¹ P-NMR Spectra of (η^5 -o-PhosphinoCp)(phosphineselenide)Mn(CO) ₂ 2b-Se	S24-S26
¹ H-, ¹³ C-, and ³¹ P-NMR Spectra of (η^6 -o-Phosphinoarene)(phosphineselenide)Cr(CO) ₂ 1b-Se .	S27-S29
¹ H- NMR Spectra of Asymmetric Addition Products.	S30-S46
Chiral HPLC Chromatograms of 1-Bromo-2-formyl Cymantrene 8	S47
Chiral HPLC Chromatograms of 4-Phenylpentan-2-one.	S48
Chiral HPLC Chromatograms of 4-Phenylheptan-2-one	S49
Chiral HPLC Chromatograms of 4-Phenylnonan-2-one	S50
Chiral HPLC Chromatograms of 4-Phenyldecen-2-one	S51
Chiral HPLC Chromatograms of 3-phenylcyclopentanone	S52
Chiral HPLC Chromatograms of 3-(4-Methoxylphenyl)cyclohexanone	\$53
Chiral HPLC Chromatograms of 3-(4-Methylphenyl)cyclohexanone	S54
Chiral HPLC Chromatograms of 3-(2-Methylphenyl)cyclohexanone	S55
Chiral HPLC Chromatograms of 3-(4-Trifluoromethylphenyl)cyclohexanone	S56
Chiral HPLC Chromatograms of 3-(4-Fluoromethylphenyl)cyclohexanone	S57
Chiral HPLC Chromatograms of 3-phenylcycloheptanone.	S58
Chiral HPLC Chromatograms of N-[(4-Chlorophenyl)phenylmethyl]tosylamide	S59
Chiral HPLC Chromatograms of N-[(4-Methoxyphenyl)phenylmethyl]tosylamide	S60
Chiral HPLC Chromatograms of N-[(2-Methoxyphenyl)phenylmethyl]tosylamide	S61
Chiral HPLC Chromatograms of N -[(4-Trifluoromethylphenyl)phenylmethyl]tosylamide	S62
Chiral HPLC Chromatograms of N-(2-Furanylphenylmethyl)tosylamide	S63
Chiral HPLC Chromatograms of N-(2-thienylphenylmethyl)tosylamide	S64
Chiral HPLC Chromatograms of α -Phenyl-2-naphthalenemethanol	S65
References.	S66

Experimental Section.

General. All anaerobic and/or moisture sensitive manipulations were carried out with standard Schlenk techniques under predried nitrogen or with glovebox techniques under prepurified argon. ¹H NMR (at 400 MHz or 500 MHz) and ¹³C NMR (at 100 MHz or 125 MHz) chemical shifts are reported in ppm downfield of internal tetramethylsilane. ³¹P NMR (at 162 MHz or 202 MHz) chemical shifts are externally referenced to 85% H₃PO₄. Tetrahydrofuran, diethyl ether, and benzene were distilled from benzophenone-ketyl under nitrogen prior to use. Dichloromethane was distilled from CaH₂ under nitrogen prior to use. Ph₂P(methallyl)¹ were Grubbs II catalyst², MePPh₃· I^3 , Cymantrene carboxaldehyde⁴, Cymantrene carboxaldehyde dimethylacetal⁵ and $[\eta^{5}-1-(2R,4R)-4-(methoxymethyl)-1,3$ dioxanyl]cyclopentadienyl]manganese(I) tricarbonyl $(3)^5$ were prepared according to the reported methods. The full characterization data of the following compounds: $(\eta^{5}-1$ -Bromo-2tricarbonyl $(\eta^{5}-1$ -bromo-2-vinylcylopentadienyl) vinylcyclopentadienyl)manganese(I) (6), (diphenylmetallylphosphine)manganese (I) dicarbonyl (7), $[(\eta^5-1-bromo-2-(3-diphenylphosphino-2-(3-diphenylphosp$ methylpropenyl)cylopentadienyl-P]manganese (I) dicarbonyl (8) were reported previously.⁶ All the other chemicals were obtained from commercial sources and used as received unless otherwise noted.

 $[\eta^{5}$ -1-(Diarylphosphino)-2-(3-dipneylphosphino-2-methyl-propenyl)cyclopentadienyl-P]manganese(I) Dicarbonyl (2a-d).

To the THF (6 mL) solution of (*R*)- or (*S*)- $[\eta^{5}$ -1-bromo-2-(3-dipneylphosphino-2-methylpropenyl)cyclopentadienyl-*P*]manganese(I) dicarbonyl (8) (170 mg, 0.34 mmol), 'BuLi (1.2 eq, 1.60 M solution in pentane) was added dropwised at -78 °C under a nitrogen atmosphere. The resulting solution was stirred for 30 min at -78 °C and then R₂PCl (1.2 eq) was added. The resulting solution was gradually warmed up to room temperature in 1 h, and quenched with NH₄Cl_{aq}. The mixture was extracted with ethyl acetate and the organic layer was dried over anhydrous MgSO₄. After removing MgSO₄ by filtration, the solution was concentrated under reduced pressure. The crude product was purified by silica gel chromatography to give the title compound in pure form. The reaction conditions were not optimized. The yields of **2a-d** are given in Scheme 3 in a text. The characterization data of chromium complexes **2a-d** are given below.

(S)-(-)-[(η^{5} -1-Diphenylphosphino-2-(3-diphenylphosphino-2-

methylpropenyl)cyclopentadienyl-*P*)]manganese (I) Dicarbonyl (2a). ¹H NMR (CDCl₃): δ 1.44 Ph_2P , (s, 3H), 3.01 (t, *J* = 13.0 Hz, 1H), 3.60-3.65(m, 1H), 4.13 (s, 1H), 4.32 (s, 1H), 4.82 (s, 1H), 5.81 (s, 1H), 7.27-7.35 (m, 12H), 7.41-7.43 (m, 4H), 7.52-7.57 (m, 4H). ¹³C NMR (CDCl₃): δ 27.1 (d, *J*_{PC} = 3.5 Hz), 35.8 (m), 79.9 (s), 82.8 (d, *J*_{PC} = 26.1 Hz), 87.9 (d, *J*_{PC} = 10.7 Hz), 106.3 (d, *J*_{PC} = 23.8 Hz), 117.0 (d, *J*_{PC} = 10.7 Hz), 128.0 (s), 128.1 (s), 128.3 (s), 128.4 (d, *J*_{PC} = 6.0 Hz), 129.4 (s), 129.7 (s), 131.2 (d, *J*_{PC} = 9.5 Hz), 137.1 (s), 137.5 (s), 138.9 (s), 139.3 (s), 139.7 (d, *J*_{PC} = 10.7 Hz), 228.7 (d, *J*_{PC} = 19.0 Hz), 231.0 (d, *J*_{PC} = 22.5 Hz). ³¹P NMR (CDCl₃): δ -21.2, 106.2. IR (CHCl₃): v 1434, 1873, 1936 cm⁻¹. Anal. Calcd for C₃₅H₂₉MnO₂P₂: C, 70.24; H, 4.88. Found: C, 70.25; H, 4.98. [α]_D²⁴ -137.84 (*c* 0.5, CHCl₃)

(*R*)-(+)-[(η^{5} -1-Bis(3,5-dimethylphenyl)phosphino-2-(3-diphenylphosphino-2methylpropenyl)cyclopentadienyl-*P*)]manganese(I) Dicarbonyl (2b). ¹H NMR (CDCl₃): δ 1.42

(s, 3H), 2.18 (s, 6H), 2.28 (s, 6H), 2.98 (t, J = 13.2 Hz, 1H), 3.64-3.71 (m, 1H), 4.13 (s, 1H), 4.34 (s, 1H), 4.79 (s, 1H), 5.86 (s, 1H), 6.89 (d, *J* = 7.6 Hz, 2H), 6.92 (d, J = 4.8 Hz, 2H), 6.99 (d, J = 8.8 Hz, 2H), 7.26-7.35 (m, 4H), 7.39-7.46 (m, 2H), 7.50-7.62 (m, 4H). ¹³C NMR (CDCl₃): δ 21.4 (d, J_{PC} = 25 Hz), 27.1 (d, J_{PC} = 3.5

Hz), 36.2 (m), 77.4 (s), 79.9 (d, J_{PC} = 3.5 Hz), 82.0 (s), 83.6 (d, J_{PC} = 4.8 Hz), 88.3 (d, J_{PC} = 11.9 Hz), 106.6 (d, J_{PC} = 25.0 Hz), 117.2 (d, J_{PC} = 11.9 Hz), 128.0 (d, J_{PC} = 9.5 Hz), 128.3 (d, J_{PC} = 8.3 Hz), 129.3 (s), 129.6 (s), 130.0 (d, J_{PC} = 6.0 Hz), 130.1 (s), 131.1 (s), 131.3 (d, J_{PC} = 9.5 Hz), 132.6 (d, J_{PC} = 8.3 Hz), 132.8 (s), 135.9 (d, J_{PC} = 8.3 Hz), 137.2 (s), 137.4 (s), 137.7 (d, J_{PC} = 6.0 Hz), 137.8 (d, J_{PC} = 8.4 Hz), 139.1 (d, J_{PC} = 7.1 Hz), 139.3 (s), 139.5 (s), 228.6 (d, J_{PC} = 20.2 Hz), 231.2 (d, J_{PC} = 22.6 Hz). ³¹P NMR (CDCl₃): δ –21.7, 106.8. IR (CHCl₃): v 694, 750, 1434, 1873, 1938, 3402 cm⁻¹ Anal. Calcd for C₃₉H₃₇MnO₂P₂: C, 71.56; H, 5.70. Found: C, 71.55; H, 5.83. [α]_D²⁶ +135.1 (*c* 0.5, CHCl₃).

(S)-(-)- $[\eta^{5}$ -1-Bis(3,5-di(trifluormethylphenyl)phosphino-2-(3-diphenylphosphino-2methylpropenyl)cyclopentadienyl-*P*)manganese(I) Dicarbonyl (2c). ¹H NMR (CDCl₃): δ 1.53

(s, 3H), 3.09 (t, *J* = 13.8 Hz, 1H), 3.48-3.54 (m, 1H), 4.04 (s, 1H), 4.50 (s, 1H), 4.96 (s, 1H), 5.90 (s, 1H), 7.37-7.53 (m, 10 H), 7.66 (d, J = 5.6 Hz, 2H), 7.80 (d, J = 7.2 Hz, 2H), 7.87 (d, J = 7.6 Hz, 2H). ¹³C NMR (CDCl₃): δ 27.3 (d, $J_{PC} =$ 4.1 Hz), 36.2 (m), 77.4 (s), 81.2 (s), 81.9 (s), 83.9 (s), 107.4 (d, J_{PC} = 25.4 Hz), 115.8 (d, J_{PC} = 10.8 Hz), 121.8 (d, J_{PC} = 16.1 Hz), 122.8 (s), 124.5 (d, J_{PC} = 16.1 Hz), 128.2 (d, J_{PC} = 9.4 Hz), 128.7 (d, J_{PC} = 9.4 Hz), 129.7 (s), 130.2 (s), 131.1 (d, J_{PC} = 8.0 Hz), 131.5 (d, J_{PC} = 16.1 Hz), 132.8 (d, J_{PC} = 10.7 Hz), 135.1 (d,

 J_{PC} = 22.8 Hz), 138.2 (d, J_{PC} = 13.4 Hz), 139.1 (d, J_{PC} = 13.4 Hz), 142.6 (d, J_{PC} = 18.8 Hz), 227.9 (d, $J_{\rm PC}$ = 17.4 Hz), 229.9 (d, $J_{\rm PC}$ = 22.8 Hz). ³¹P NMR (CDCl₃): δ –18.7, 103.4. IR (CHCl₃): v 899, 1135, 1279, 1354, 1885, 1944 cm⁻¹. Anal. Calcd for C₃₉H₂₅F₁₂MnO₂P₂: C, 53.81; H, 2.89. Found: C, 53.81; H, 2.93. $[\alpha]_{D}^{25}$ –40.9 (*c* 0.66, CHCl₃).

(S)-(-)-[n⁵-1-Bis(3,5-di(*tert*-butyl-4-methoxyphenyl)phosphino-2-(3-diphenylphosphino-2-

methylpropenyl)cylopentadienyl-*P*] manganese(I) Dicarbonyl (2d).¹H NMR (CDCl₃): δ 1.29 (s, 18H), 1.36 (s, 18H), 1.45 (s, 3H), 3.03 (t, J = 13.2 Hz, 1H), 3.60 (s, 3H), 3.65 (s, 4H), 4.10 (s, 1H), 4.31 (s, 1H), 4.82 (t, J = 2.4 Hz, 1H), 5.81 (s, 1H), 7.17–7.22 (m, 4H), 7.34-7.43 (m, 6H), 7.51-7.59 (m, 4H). ¹³C NMR (CDCl₃): δ 27.0 (d, J_{PC} = 3.8 Hz), 32.1 (d, J_{PC} = 21.5 Hz), 35.8 (d, J_{PC} = 13.0 Hz), 64.3 (s), 79.7 (s), 82.2 (s), 82.9 (s), 89.9 (d, J_{PC} = 12.3 Hz), 106.0 (d, J_{PC} = 22.9 Hz), 117.3 (d, J_{PC} = 12.2 Hz), 127.9 (d, J_{PC} = 9.2 Hz), 128.3 (d, J_{PC} = 9.1 Hz), 129.2 (s), 129.4 (d, J_{PC} = 5.4 Hz), 129.6 (s), 130.9 (s), 131.1 (d, J_{PC} = 9.2 Hz), 132.8 (d, J_{PC} = 10.0 Hz), 133.6 (d, J_{PC} = 22.3 Hz), 137.1 (d, J_{PC} =

6.9 Hz), 137.5 (s), 139.2 (s), 139.6 (s), 143.1 (t, J_{PC} = 8.4 Hz) 159.8 (s), 160.9 (s), 228.5 (d, J_{PC} = 19.9 Hz), 231.2 (d, J_{PC} = 22.9 Hz). ³¹P NMR (CDCl₃): δ –22.1, 106.7. IR (CHCl₃): v 758, 1010, 1224, 1878, 1940, 2961 cm⁻¹. Anal. Calcd for C₅₃H₆₅MnO₄P₂: C, 72.09; H, 7.42. Found: C, 72.09; H, 7.50. $[\alpha]_{D}^{23}$ –294.8 (*c* 0.4, CHCl₃).

$(S)-(+)-\eta^{5}-1$ -Bromo-2-[(2R,4R)-4-(methoxymethyl)-1,3-

dioxanyl]cyclopentadienyl]manganese(I) tricarbonyl (4). To an ethereal solution (4 mL) of 3 (240 mg, 0.72 mmol), 'BuLi (1.0 eq, 1.6 M solution in pentane) was added dropwised at -78 °C under argon atmosphere. The resulting solution was stirred for 10 min at -78 °C and then warmed up to room temperature. After 45 min, pale yellow precipitate formed while stirring

at room temperature. The solution of 1, 2-dibromotetrachloroethane (350 mg, 1.1 mmol) in THF (2 mL) was added dropwise to the reaction mixture at -78 °C under nitrogen. After stirring for 10 min, cooling bath was removed and stirred at room temperature for 2 h. The resulting reaction mixture was quenched with NH₄Cl_{aq} and extracted with ethyl acetate. The organic layer was dried over anhydrous MgSO₄. After removing MgSO₄ by filtration, the solution was concentrated under reduced pressure. The crude product was purified by silica gel chromatography via eluting with hexane/EtOAc (5/1) to give the title product **4** as yellow oil (254 mg, 0.617 mmol, 86%). ¹H NMR (CDCl₃): δ 1.49 (d, *J* = 13.6 Hz, 1H), 1.53 (dq, *J* = 4.4, 12.2 Hz, 1H), 3.4–3.44(m, 4H), 3.49–3.57 (m, 1H), 3.93 (t, *J* = 11.2 Hz, 1H), 4.02 (t, *J* = 5.4, 1H), 4.25 (dd, *J* = 4.8, 11.2 Hz, 1H), 4.62 (s, 1H), 4.84 (s, 1H), 5.00 (s, 1H), 5.28 (s, 1H). ¹³C NMR (CDCl₃): δ 27.6, 59.5, 66.9, 75.3, 76.6, 80.1, 81.0, 83.3, 86.0, 96.3, 100.3, 223.9. IR (CHCl₃): v 1106, 1934, 2025, 2866 cm⁻¹. [α]_D²⁶ +7.67 (*c* 0.5, CHCl₃). HRMS Calcd for C₁₄H₁₄BrMnO₆: 411.9354. Found: 411.9349.

(S)-(+)-bromocymantrenecarboxaldehyde (5). The complex 4 (254 mg, 0.617 mmol) was

dissolved in THF (10 mL) and HCl_{aq} (10% in water, 10 mL) was added. The mixture was stirred for 2 h at 50 °C and then K_2CO_3 was added to neutralize the acid. The resulting mixture was extracted with ether and the organic layer was washed with brine, dried over anhydrous MgSO₄. The mixture was filtrated and concentrated under reduced pressure. The residue was purified by a silica gel chromatography

(hexane/EtOAc = 5/1) and desired product (*S*)-**5** was obtained as brown crystals (83%, >99% ee). ¹H NMR (CDCl₃): δ 4.96 (s, 1H), 5.09 (s, 1H), 5.41 (s, 1H), 9.78 (s, 1H). ¹³C NMR (CDCl₃): δ 83.3, 83.4, 85.5, 88.3, 91.6, 186.6, 221.6. IR (CHCl₃): ν 628, 1686, 1847, 1945, 2032 cm⁻¹. HRMS Calcd for C₉H₄BrMnO₄: 309.8673. Found: 309.8674. [α]_D²³ +316.0 (*c* 0.2, CHCl₃). HPLC condition: Chiralpak AS, Hexane/¹PrOH = 9/1, 1.0 mL/min, 30 °C, 7.58 min (*S* enationmer). 16.83 min (*R* enantiomer), 99.8% ee.

$\label{eq:rac-loss} \begin{array}{l} rac\ensuremath{-}[(\eta^{5}\ensuremath{-}1\ensuremath{-}Bis(3,5\ensuremath{-}dimethylphenyl)phosphinoseleno\ensuremath{-}2\ensuremath{-}(3\ensuremath{-}dimethylphosphino\ensuremath{-}2\ensuremath{-}(3\ensuremath{-}dimethylphosphino\ensuremath{-}2\ensuremath{-}(3\ensuremath{-}dimethylphosphino\ensuremath{-}2\ensuremath{-}(3\ensuremath{-}dimethylphosphino\ensuremath{-}2\ensuremath{-}(3\ensuremath{-}dimethylphosphino\ensuremath{-}2\ensuremath{-}(3\ensuremath{-}dimethylphosphino\ensuremath{-}2\ensuremath{-}(3\ensuremath{-}dimethylphosphino\ensuremath{-}2\ensuremath{-}(3\ensuremath{-}dimethylphosphino\ensuremath{-}2\ensuremath{-}(3\ensuremath{-}dimethylphosphino\ensuremath{-}2\ensuremath{-}(3\ensuremath{-}dimethylphosphino\ensuremath{-}2\ensuremath{-}(3\ensuremath{-}dimethylphosphino\ensuremath{-}2\ensuremath{-}(3\ensuremath{-}dimethylphosphino\ensuremath{-}2\ensuremath{-}(3\ensuremath{-}dimethylphosphino\ensuremath{-}2\ensuremath{-}(3\ensuremath{-}dimethylphosphino\ensuremath{-}2\ensuremath{-}(3\ensuremath{-}dimethylphosphino\ensuremath{-}2\ensuremath{-}dimethylphosphino\ensuremath{-}2\ensuremath{-}(3\ensuremath{-}dimethylphosphino\ensuremath{-}2\ensuremath{-}(3\ensuremath{-}dimethylphosphino\ensuremath{-}2\ensuremath{-}1\ensuremath{-}2\ensuremath{-}3\ensuremath{-}2\ensuremath{-}1\ensuremath{-}2\ensu$

Me P^{...}Mn CO Ph₂ CO To the CHCl₃ (4 mL) solution of **2b** (65 mg, 0.1 mmol), the selenium powder (27 mg, 3.3 mmol) was added under nitrogen atmosphere and the resulting suspension was stirred for 2 h at room temperature. The reaction mixture was filtered through Celite, and the filtrate was concentrated under reduced pressure. The residue was purified by silice gel abrometography (beyong/EtOA a = 10/1) to

^{Ph₂CO} The residue was purified by silica gel chromatography (hexane/EtOAc = 10/1) to give the tile compound **2b-Se** as yellow crystals (52 mg, 71%). ¹H NMR (CDCl₃): δ 1.48 (s, 3H), 2.28 (s, 6H), 2.34 (s, 6H), 2.84 (t, *J* = 15.2 Hz, 1H), 3.62-3.67 (m, 1H), 4.0 (s, 1H), 4.34 (s, 1H), 4.96 (s, 1H), 5.64 (s, 1H), 7.05 (s, 1H), 7.11 (s, 1H), 7.36-7.44 (m, 12H), 7.58-7.60 (m, 2H). ¹³C NMR (CDCl₃): δ 21.5 (d, *J*_{PC} = 7.6 Hz), 27.3 (s), 34.2 (d, *J*_{PC} = 20.6 Hz), 80.7 (d, *J*_{PC} = 8.4 Hz), 84.1 (d, *J*_{PC} = 11.4 Hz), 84.5(d, *J*_{PC} = 9.2 Hz), 90.0 (s), 90.8 (s), 104.7 (d, *J*_{PC} = 9.2 Hz), 115.1 (d, *J*_{PC} = 10.7 Hz), 128.1 (d, *J*_{PC} = 8.4 Hz), 128.3 (d, *J*_{PC} = 8.4 Hz), 129.2 (s), 129.9 (s), 130.3 (d, *J*_{PC} = 10.0 Hz), 130.7 (s), 132.0 (s), 132.4 (s), 132.9 (d, *J*_{PC} = 9.1 Hz), 133.1 (s), 133.3 (s), 136.8 (s), 137.2 (s), 137.7 (s), 137.8 (d, *J*_{PC} = 5.4 Hz), 138.0 (s), 138.6 (s), 138.8 (s), 139.3 (s), 228.8 (d, *J*_{PC} = 18.4 Hz),

231.2 (d, J_{PC} = 24.4 Hz). ³¹P NMR (CDCl₃): δ 27.9 (J_{PSe} = 739.5 Hz), 93.5. IR (CHCl₃): v 1434, 1878, 1940 cm⁻¹. FAB-HRMS Calcd for C₃₉H₃₇MnO₂P₂Se: 734.0814. Found: 734.0808.

rac-[(η^{6} -1-Bis(3,5-dimethylphenyl)phosphinoseleno-2-(3-diphenylphosphino-2-methylpropenyl)benzene-*P*)]chromium(0) Dicarbonyl (1b-Se).

The corresponding phosphinoseleno chromium complex **1b** was also prepared the by the same procedure in complex **2b-Se**. Orange crystals (73%).

Me P Cr CO Ph₂ CO

¹H NMR (CDCl₃): δ 1.86 (s, 3H), 2.29 (s, 6H), 2.33 (s, 6H), 2.94 (t, *J* = 15.8 Hz, 1H), 3.52-3.58 (m, 1H), 3.90 (s, 1H), 4.78 (s, 1H), 4.93 (s, 1H), 5.18 (s, 1H), 5.68 (s, 1H), 7.09 (d, *J* = 15.2 Hz, 2H), 7.26-7.34 (m, 8H), 7.51-7.7.57 (m, 6H). ¹³C NMR (CDCl₃): δ 21.5 (s), 25.7 (s), 27.5 (s), 34.5 (d, *J*_{PC} = 16.0 Hz), 68.1 (s), 79.0

(s), 89.3, 90.6 (s), 90.9 (d, $J_{PC} = 12.6 \text{ Hz}$), 94.3 (s), 95.1 (s), 105.1 (d, $J_{PC} = 6.9 \text{ Hz}$), 120.4 (d, $J_{PC} = 8.0 \text{ Hz}$), 128.1 (s), 128.8 (s), 129.4 (s), 130.8 (s), 131.7 (s), 131.9 (s), 132.5 (d, $J_{PC} = 9.1 \text{ Hz}$), 133.4 (s), 137.8 (s), 137.9 (s), 138.1 (s), 138.2 (s), 139.5 (s), 139.8 (s), 139.9 (s), 140.1 (s), 236.7 (d, $J_{PC} = 20.2 \text{ Hz}$), 239.6 (d, $J_{PC} = 21.8 \text{ Hz}$). ³¹P NMR (CDCl₃): δ 35.57 ($J_{PSe} = 739.0 \text{ Hz}$), 81.87. IR (CHCl₃): v 1433, 1852, 1904 cm⁻¹. FAB-HRMS Calcd for C₄₅H₃₈CrO₂P₂Se: 744.0917 Found: 744.0923.

Rhodium-Catalyzed Asymmetric 1,4-Addition Reaction of Arylboronic Acid to Enones. A solution of $[RhCl(\eta^2-C_2H_4)_2]_2$ (2.4 mg, 6.3 mmol) and (*R*)- or (*S*)-2 (13 mmol) in dioxane (1 mL) was stirred at room temperature for 1 h under nitrogen. To this was added aqueous KOH (1.25 M, 0.1 mL, 0.13 mmol) and the solution was stirred for 5 min. Arylboronic acid (0.75 mmol) and enone (0.25 mmol) was added to the solution. After stirring for 7 h at 50 °C, the reaction mixture was concentrated under reduced pressure. The residue was purified by silica gel chromatography via eluting with hexane and EtOAc to give an optically active addition product.

Rhodium-catalyzed asymmetric 1,4-addition reactions of phenylboronic acid to 3-penten-2-one⁷, 3-Hepten-2-one⁸, 3-Nonen-2-one⁷, 3-Decen-2-one⁹ and Cyclohexanone^{10, 11, 12}: These reactions were performed as above, and the enantiomeric purity and the absolute configuration of the products were determined as reported.

Rhodium-Catalyzed Asymmetric Addition of Phenylboroxine to Arylaldehyde *N*-sulfonyl imines. A solution of $[RhCl(\eta^2-C_2H_4)_2]_2$ (2.0 mg, 5 µmol) and (*R*)- or (*S*)-2 (11 µmol) in dioxane (1.0 mL) was stirred at room temperature for 1 h under nitrogen. To this were added *N*-tosylimine (0.100 mmol), phenylboroxine (32 mg, 0.100 mmol), and aqueous KOH (1.0 M, 20 mL, 20 µmol) successively. After stirring for 7 h at 40 °C, then the reaction mixture was concentrated under reduced pressure. The residue was purified by silica gel chromatography (hexane/EtOAc) to give an optically active product as colorless crystals. The enantiomeric purity and the absolute configuration of the product were determined as reported.^{10, 13, 14}

Rhodium-Catalyzed Asymmetric Arylation of 1-Naphthylaldehyde with Phenylboronic Acid

To a Schlenk tube charge with $[RhCl(\eta^2-C_2H_4)_2]_2$ (1.46 mg, 3.8 µmol) and (*S*)-**2d** (7.4 mg, 8.3 µmol) in CH₂Cl₂ (0.5 mL) was stirred at room temperature for 1 h under nitrogen. After removing solvent via vacuum pump, to this were added phenylbronic acid (61mg, 0.500 mmol), powdered KOH (1.46 mg, 0.38 mmol, assay; 85%, pellets) and PrOH(1 mL), the reaction mixture was stirred at room temperature for additional 2 min, subsequently1-naphthaldehyde (39 mg, 0.25 mmol) was added into the Schlenk tube. After stirring for 9 h at 40 °C, the mixture was extracted with EtOAc,

then the reaction mixture was concentrated under reduced pressure. The residue was purified by silica gel chromatography (hexane/EtOAc = 9/1) to give an optically active product as pale yellow oil. The enantiomeric purity and the absolute configuration of the product were determined as reported.¹⁵

X-ray Crystallography of (*S**, *S**)-12 and (*R**, *R**)-SI1.

The single crystals of (S^* , S^*)-12 and (R^* , R^*)-SI1 were recrystallized from dichloromethane/hexane in vapor diffusion method. A crystal was mounted on a grass fiber with Paratone-N hydrocarbon oil and transferred to a Rigaku Saturn CCD with VariMax. The frame data were processed using CrystalClear. The structures were solved by a direct method (SHELXS 97) and refinement on F^2 by full-matrix least-squares method by using SHELXL.

Figure S1. Ball & stick drawings of (S^*, S^*) -12. Two xylyl groups on P(3) atom were disordered over two positions.

Figure S2. Ball & stick drawings of (a): $[RhCl/rac-1b]_2$ ((R^*, R^*)-SI1 and (b): monomeric substructure of ((R^*, R^*)-SI1 with selected atom numbering. All hydrogen atoms and cocrystallized solvent molecules are omitted for clarity

S21

S22

Chiral HPLC Analysis of (S)-1-Bromo-2-formyl Cymantrene

chiral column: Chiralpak AS; eluent: hexane/ⁱPrOH = 9/1; flow rate: 1.0 mL/min. 30 °C.

#	peak name	СН	tR[min]	area [μV·sec]	height [μV]	area %	height %	NTP	resolu- tion	symmetry coefficient
1	(S)-isomer	1	7.583	8330851	395877	99.907	99.907	4375	13.353	2.071
2	(R)-isomer	1	16.833	7750	220	0.056	0.093	5235	N/A	1.357

Chiral HPLC Analysis of (S)-4-Phenylpentan-2-one.⁷ chiral column: Chiralcel OJ-H; eluent: hexane/ⁱPrOH = 99.5/0.5; flow rate: 0.5 mL/min. 26 °C.

#	peak name	СН	tR[min]	area [μV·sec]	height [μV]	area %	height %	NTP	resolu- tion	symmetry coefficient
1	(S)-isomer	1	17.942	3022600	46989	99.071	97.726	1960	2.940	6.015
2	(R)-isomer	1	21.342	28343	1093	0.929	2.274	14960	N/A	1.043

Chiral HPLC Analysis of (S)-4-Phenylheptan-2-one.⁸

chiral column: Chiralcel OJ-H; eluent: hexane/^{*i*}PrOH = 99/1; flow rate: 0.5 mL/min. 26 °C.

#	peak name	СН	tR[min]	area [μV·sec]	height [μV]	area %	height %	NTP	resolu- tion	symmetry coefficient
1	(R)-isomer	1	8.808	70939	6568	0.568	0.891	13149	2.299	1.216
2	(S)-isomer	1	9.667	12421609	730285	99.432	99.109	7674	N/A	1.439

Chiral HPLC Analysis of (S)-4-Phenylnonan-2-one.⁷

chiral column: Chiralcel OJ-H; eluent: hexane/ⁱPrOH = 99/1; flow rate: 0.25 mL/min. 26 °C.

#	peak name	СН	tR[min]	area [µV·sec]	height [μV]	area %	height %	NTP	resolu- tion	symmetry coefficient
1	(S)-isomer	1	23.558	1389340	42984	99.886	99.918	12029	2.030	1.281
2	(R)-isomer	1	25.692	1589	35	0.114	0.082	6776	N/A	0.817

Chiral HPLC Analysis of (S)-4-Phenyldecen-2-one.⁹

chiral column: Chiralcel OJ-H; eluent: hexane/^{*i*}PrOH = 99/1; flow rate: 0.4 mL/min. 26 °C.

#	peak name	СН	tR[min]	area [μV·sec]	height [μV]	area %	height %	NTP	resolu- tion	symmetry coefficient
1	(S)-isomer	1	19.025	414764	53814	99.872	99.973	153499	1.876	1.138
2	(R)-isomer	1	20.542	531	15	0.128	0.027	3315	N/A	0.850

Chiral HPLC Analysis of (R)-3-Phenylcyclopentanone.

chiral column: Chiralcel OB-H; eluent: hexane/ⁱPrOH = 99/1; flow rate: 0.7 mL/min; 27 °C.

#	peak name	СН	tR[min]	area [μV·sec]	height [μV]	area %	height %	NTP	resolu- tion	symmetry coefficient
1	(S)-isomer	1	35.625	4206171	30893	99.808	99.405	1643	2.553	2.795
2	(R)-isomer	1	41.625	8103	185	0.192	0.595	19339	N/A	2.051

Chiral HPLC Analysis of (R)-3-(4-Methoxylphenyl)cyclohexanone.¹⁰

chiral column: Chiralcel OJ-H; eluent: hexane/PrOH = 9/1; flow rate: 1.0 mL/min; 40 °C.

#	peak name	СН	tR[min]	area [µV·sec]	height [μV]	area %	height %	NTP	resolu- tion	symmetry coefficient
1	(S)-isomer	1	11.958	3797	445	0.103	0.331	38074	3.066	0.776
2	(R)-isomer	1	13.467	3698560	133944	99.897	99.669	5280	N/A	2.869

Chiral HPLC Analysis of (*R*)-3-(4-Methylphenyl)cyclohexanone.¹⁰

chiral column: Chiralcel OJ-H; eluent: hexane/ⁱPrOH = 99.5/0.5; flow rate: 1.0 mL/min; 27 °C.

#	peak name	СН	tR[min]	area [μV·sec]	height [μV]	area %	height %	NTP	resolu- tion	symmetry coefficient
1	(S)-isomer	1	22.858	17	3	0.001	0.014	11233	1.847	15.276
2	(R)-isomer	1	25.408	1769174	25233	99.999	99.986	2969	N/A	2.652

Chiral HPLC Analysis of (S)-3-(2-Methylphenyl)cyclohexanone.¹¹

chiral column: Chiralpak AD-H; eluent: hexane/ⁱPrOH = 19/1; flow rate: 0.5 mL/min.

#	peak name	СН	tR[min]	area [μV·sec]	height [μV]	area %	height %	NTP	resolu- tion	symmetry coefficient
1	(S)-isomer	1	11.683	1822378	68297	99.968	99.996	4483	1.847	1.837
2	(R)-isomer	1	13.983	589	3	0.032	0.004	967	N/A	0.508

Chiral HPLC Analysis of (S)-3-(4-Trifluoromethylphenyl)cyclohexanone.¹² chiral column: Chiralpak AS; eluent: hexane/ⁱPrOH = 9/1; flow rate: 1.0 mL/min; 40 °C.

#	peak name	СН	tR[min]	area [μV·sec]	height [μV]	area %	height %	NTP	resolu- tion	symmetry coefficient
1	(R)-isomer	1	7.100	7560	711	0.387	0.758	9752	2.321	1.229
2	(S)-isomer	1	8.075	1945817	93117	99.613	99.242	3388	N/A	2.140

Chiral HPLC Analysis of (S)-3-(4-Fluoromethylphenyl)cyclohexanone.

chiral column: Chiralpak AD; eluent: hexane/ i PrOH = 9/1; flow rate: 1.0 mL/min; 26 °C.

#	peak name	СН	tR[min]	area [μV·sec]	height [μV]	area %	height %	NTP	resolu- tion	symmetry coefficient
1	(S)-isomer	1	6.458	279963	21128	99.807	99.869	6219	2.475	1.532
2	(R)-isomer	1	7.500	542	28	0.193	0.131	3373	N/A	2.494

Chiral HPLC Analysis of (S)-3-Phenylcycloheptanone.¹³ chiral column: Chiralcel OD-H; eluent: hexane/^{*i*}PrOH = 99/1; flow rate: 0.5 mL/min; 26 °C.

#	peak name	СН	tR[min]	area [µV·sec]	height [μV]	area %	height %	NTP	resolu- tion	symmetry coefficient
1	(S)-isomer	1	30.125	3914636	46307	99.933	99.920	2827	1.881	1.347
2	(R)-isomer	1	34.283	2635	37	0.067	0.080	4001	N/A	0.785

Chiral HPLC Analysis of N-[(S)-(4-Chlorophenyl)phenylmethyl]-4-methyl benzenesulfonamide.¹⁴

chiral column: Chiralpak IA; eluent: hexane/ⁱPrOH = 4/1; flow rate: 0.5 mL/min; 40 °C.

Chiral HPLC Analysis of *N*-[(*S*)-(4-Methoxyphenyl)phenylmethyl]tosylamide.¹⁴ chiral column: Chiralcel OD-H; eluent: hexane/^{*i*}PrOH = 4/1; flow rate: 0.75 mL/min; 29 °C.

Chiral HPLC Analysis of *N*-[(*S*)-(2-Methoxyphenyl)phenylmethyl]tosylamide.¹⁰ chiral column: Chiralcel OD-H; eluent: hexane/^{*i*}PrOH = 4/1; flow rate: 0.5 mL/min; 30 °C.

#	peak name	СН	tR[min]	area [µV·sec]	height [μV]	area %	height %	NTP	resolu- tion	symmetry coefficient
1	(R)-isomer	1	13.358	10405	426	0.498	0.751	5768	1.998	0.898
2	(S)-isomer	1	15.042	2079561	56256	99.502	99.249	3726	N/A	1.291

Chiral HPLC Analysis of *N*-[(*S*)-(4-Trifluoromethylphenyl)phenylmethyl]tosylamide.¹⁰ chiral column: Chiralcel OD-H; eluent: hexane/ⁱPrOH = 4/1; flow rate: 0.5 mL/min; 30 °C.

Chiral HPLC Analysis of *N*-[(*S*)-2-Furanylphenylmethyl] tosylamide.¹⁰

chiral column: Chiralcel OD-H; eluent: hexane/PrOH = 19/1; flow rate: 0.5 mL/min; 30 °C.

Chiral HPLC Analysis of *N*-[(*S*)- 2-thienylphenylmethyl]tosylamide.¹⁵

chiral column: Chiralcel OD-H; eluent: hexane/ i PrOH = 4/1; flow rate: 0.5 mL/min; 30 °C.

Chiral HPLC Analysis of α -Phenyl-2-naphthalenemethanol.¹⁶

chiral column: Chiralcel OD-H; eluent: hexane/ⁱPrOH = 4/1; flow rate: 1.0 mL/min; 26 °C.

#	peak name	СН	tR[min]	area [μV·sec]	height [μV]	area %	height %	NTP	resolu- tion	symmetry coefficient
1	(S)-isomer	1	8.858	3552699	94602	99.640	99.785	1345	7.005	1.424
2	(R)-isomer	1	18.650	12853	204	0.360	0.215	1649	N/A	0.929

References.

- (1) Ogasawara, M.; Wu, W.-Y.; Arae, S.; Morita, T.; Takahashi, T.; Kamikawa, K. Angew. Chem. Int. Ed. 2012, 51, 2951
- (2) (a) Trnka, T. M.; Morgan, J. P.; Sanford, M. S.; Wilhelm, T. E.; Scholl, M.; Choi, T.-L.; Ding, S.; Day, M. D.; Grubbs, R. H. J. Am. Chem. Soc. 2003, 125, 2546. (b) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 8168.
- (3) Maercker, A. Org. React. **1965**, 14, 270.
- (4) Loim, N. M.; Kondrat'ev, P. V.; Solov'eva, N. P.; Antonovich, V. A.; Petrovskii, P. V.; Parnes, Z. N.; Kursanov, D. N. *J. Organomet. Chem.* **1981**, *209*, 233.
- (5) Ferber, B.; Top, S.; Jaouen, G. J. Organomet. Chem. 2004, 689, 4872.
- (6) Tseng, Y.-Y.; Kamikawa, K.; Wu, Q.; Takahashi, T.; Ogasawara, M. Adv. Synth. Catal. 2015, 357, 2255.
- (7) Drinkel, E.; Briceño, A.; Dorta, R.; Dorta, R. Organometallics, 2010, 29, 2503.
- (8) Feng, C.-G.; Wang, Z.-Q.; Shao, C.; Xu, M.-H. Org. Lett. 2008, 10, 4104.
- (9) (a) Pucheault, M.; Darses, S.; Genêt, J.-P. *Eur. J. Org. Chem.* 2002, 3552, (b) Roth, P. M. C.; Fletcher, S. P. *Org. Lett.* 2015, *17*, 912.
- (10) Yuan, W.-C.; Cun, L.-F.; Mi, A.-Q.; Jiang, Y.-Z.; Gong, L.-Z. *Tetrahedron*, **2009**, 65, 4130.
- (11) Trost, B. M.; Burns, A. C.; Tautz, T. Org. Lett. 2011, 13, 4566.
- (12) Chen, Q.-A.; Dong, X.; Chen, M.-W.; Wang, D.-S.; Zhou, Y.-G.; Li, Y.-X. Org. Lett. 2010, 12, 1928
- (13) Liu, C.-C.; Janmanchi, D.; Chen, C.-C. Wu, H.-L. Eur. J. Org. Chem. 2012, 2503.
- (14) Tokunaga, N.; Otomaru, Y.; Okamoto, K.; Ueyama, K.; Shintani, R. Hayashi. T. J. Am. Chem. Soc. 2004, 126, 13584.
- (15) Wang, Z.-Q.; Feng, C.-G.; Xu, M.-H.; Lin, G.-Q. J. Am. Chem. Soc. 2007, 129, 5336.
- (16) Nishimura, T.; Kumamoto, H.; Nagaosa, M.; Hayashi, T. Chem. Commun. 2009, 5713.