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1 Calculation of the kinetic partition sum

Via asymptotic analysis in the thermodynamic limit Ni→∞ and V → ∞ with constant

concentrations, one can derive an alternative formulation of the original reaction ensemble

acceptance transition probability as described in the main article which reads

pRE,ξ
k→l = min

(
1,

(
Ka,input

Ka, new state

)ξ
exp(−β∆Epot, k→ l)

)
, (1)

with Ka, new state representing the value of the equilibrium constant by the law of mass action

if the system is in the proposed reaction state. For numbers of titrable groups N0 ≈ 50, the

above shown expression is already in good agreement with the expression in the main article.

Thus, for an ideal gas without potential energy, the transition probability for a protonation
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reaction H+ + A− → HA with ξ = −1 in the Wang-Landau reaction ensemble reads

pn̄→n̄+∆n̄ = min

(
1,

(
Ka,input

Ka(n̄+ ∆n̄)

)−1
Zkin (n̄)

Zkin (n̄+ ∆n̄)

)
, (2)

with the values for the discrete degree of association ∆n̄. The apparent reaction constant is

known from the law of mass action and can be expressed by

Ka(n̄) =
1

V

NH+(n̄)NA−(n̄)

NHA(n̄)
= c0

(1− n̄)2

n̄
(3)

as a function of the degree of association n̄ and the number of titrable groups N0 resulting

in the concentration c0. In a simulation with a finite number of titrable units, the smallest

allowed change in the degree of association for a single reaction is given by ∆n̄ = 1/N0. We

assume that for a fully converged density of states calculation a random walk is performed

where every proposed reaction is accepted with probability pn̄→n̄+∆n̄ = 1. The resulting

expression (
Ka,input

Ka(n̄+ ∆n̄)

)−1
Zkin (n̄)

Zkin (n̄+ ∆n̄)
= 1 (4)

can be interpreted as a recursion formula for Zkin (n̄). Without loss of generality, we start

with the value Zkin (n̄ = 0) = 1 for the evaluation of Eqn. 4 and the next incremented value

gives

Zkin (∆n̄) =

(
Ka,input

Ka(1−∆n̄)

)−1

Zkin (n̄ = 0)︸ ︷︷ ︸
=1

(5)

which finally results in

Zkin(i∆n̄) =

p∏
i=1

Ka(i∆n̄)

Ka,input

(6)

for each discrete degree of association i∆n̄ with i integer values. A closed expression can be

derived by introducing the Riemann integral in the thermodynamic limit which yields

ln(Zkin (i∆n̄)) =
i∑
i=1

ln

(
Ka(i∆n̄)

Ka,input

)
= N0

∫ i∆n̄

∆n̄≈0+
ln

(
Ka(n̄)

Ka,input

)
dn̄ (7)
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and which can be further evaluated by using Mathematica1 to give

ln(Zkin (x)) = −N0

(
x+ lnx+ (x− 1) ln

(
Kx

c0(x− 1)2

)
+ ln

(
c0

Ka,input

))
x=i∆n̄

(8)

where the last term ln(c0/Ka,input) represents the lower boundary which finally results in

Eqn. (22) in the main article.. Due to the fact that we mostly consider a finite number of

titrable groups N0, we use the above expression instead of the general formula presented in

the main article.

One advantage of the analytical expression in Eqn. (19) in the main article is given by the fact

that the factor (βP 0V )νK
∏z

i=1

[
N0
i !

(N0
i +νi)!

]
which is also present in the transition probabilities

can be dropped due to the analytical expression for the kinetic partition sum. Hence, the

number of criteria that have to be met are reduced such that the acceptance probability for

trial moves is higher.

2 Calculation of the Poisson-Boltzmann heat capacity

Like Naji et al., we identify the configurational internal energy
∫
V
d3r ε

2
[∇Ψ(r, T )]2 from

the Poisson-Boltzmann excess free energy2. This expression represents the configurational

energy part of the internal potential energy Upot(T, V,N). One can numerically solve the

Poisson-Boltzmann potential Ψ as outlined in Ref. 3. Therefore, the configurational internal

energy for two different temperatures T and T + dT can be calculated where the Poisson-

Boltzmann equation is solved for these two temperatures independently. Here, it is important

to understand that the Manning-Parameter, the Bjerrum length and β = 1/(kBT ) are only

introduced for convenience, so that the partial derivative with respect to temperature also

acts on them. Finally, the numerical derivative CV,pot, PB = ∂Upot

∂T
≈ Upot(T+dT,V,N)−Upot(T,V,N)

dT

can be calculated. The final value of the heat capacity is obtained by adding 3/2NkB to the

the excess part of the heat capacity.
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2.1 Analytic Calculation of the Poisson-Boltzmann Heat Capacity

As an alternative to the above described numerical Ansatz to obtain ∂Upot

∂T
, one can use the

results by Naji et al.2 in order to obtain the excess heat capacity: First, the average potential

energy is identified with

〈Epot〉 := ẼPBNkBT, (9)

where Naji et al. define ẼPB in Eqn. (58)2:

ẼPB(βF ,∆, ξ) :=
1

4ξ

∫ D̃

R̃

r̃

(
dΨ

dr̃

)2

dr̃ =
1

ξ


(1 + β2

F )∆ + ln
[

(ξ−1)2−β2
F

1−β2
F

]
+ ξ for ξ ≤ ΛAF

(1− β2
F )∆ + ln

[
(ξ−1)2+β2

F

1+β2
F

]
+ ξ for ξ ≥ ΛAF ,

(10)

where ∆ = ln(D
R

) is the lateral extension parameter as described in Ref.2 and where ΛAF =

∆
1+∆

is the Alfrey-Fuoss parameter2. The parameter βF is given by the transcendental

equation2,4:

ξ =


1−β2

F

1−βF coth(−βF∆)
for ξ ≤ ΛAF

1+β2
F

1−βF cot(−βF∆)
for ξ ≥ ΛAF

. (11)

Therefore, the transcendental parameter βF depends on the temperature since it depends

on the Manning parameter. Moreover, βF is only introduced to be able to write down

an analytical solution4, its temperature dependence has to be taken into account in the

temperature derivative of the Poisson-Boltzmann configurational internal energy. Therefore,

the partial derivative with respect to temperature also acts on the Manning parameter ξ.

The heat capacity for the rod-like system can be written as:

CV,pot =
∂〈Epot〉
∂T

=
∂(ẼPBNkBT )

∂T
= NkB

[
ẼPB(βF ,∆, ξ) + T

∂(ẼPB(βF ,∆, ξ))

∂T

]
(12)

for which βF and ξ depend on the temperature T and are only introduced for convenience.

In fact, both need to be derived with respect to the temperature (∆ is independent of T due
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to the fact it is a structural parameter):

CV,pot = NkB

ẼPB(βF ,∆, ξ) + T
∂(ẼPB(βF ,∆, ξ))

∂βF

∂βF
∂T

+ T
∂(ẼPB(βF ,∆, ξ))

∂ξ

∂ξ

∂T︸ ︷︷ ︸
−ξ ∂Ẽ

∂ξ

 . (13)

Further, it has to be mentioned that the second term of the formula can be easily calculated

since Eqns. (58, 59) by Naji et al.2 provide an expression for ẼPB(βF ,∆, ξ)) and ∂βF
∂T

can be

calculated via implicit derivation of the transcendental equation (11):

∂βF
∂T

=


∂ξ
∂T
/
[

∂
∂βF

(
1−β2

F

1−βF coth(−βF∆)

)]
for ξ ≤ ΛAF

∂ξ
∂T
/
[

∂
∂βF

(
1+β2

F

1−βF cot−βF∆

)]
for ξ ≥ ΛAF

. (14)

Note that Naji et al.2 do not explicitly mention the second term in the above formula

(compare Eqn. (81) in Ref. 2)) since they do not make use of the standard partial derivative.

In addition, the partial derivative with respect to ξ is also intended to act on βF (private

communication with A. Naji). Therefore, the above presented expression is formally equal

to Eqn. (81) in Ref. 2. All expressions can be evaluated analytically (apart from the

determination of βF ) and yield exactly the same heat capacity as in the numerical approach to

calculate the Poisson-Boltzmann heat capacity. As a test case, we compared MC simulation

results for an electrostatic coupling parameter of around Ξ = 0.72 (for the same system, but

a different Bjerrum length with λB = 0.9σ). In this case, the heat capacity CV which was

obtained from simulations and the Poisson-Boltzmann (PB) prediction are identical with 2%

deviation. For higher electrostatic coupling parameters Ξ, the discrepancy between MC/MD

simulations and PB increases, however this is anticipated since PB is only strictly valid in

the limit Ξ→ 0.
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3 Counterion Probability Densities

In order to verify the simulations, we also determined the integrated counterion probability

density around the rod. For a strongly charged polyelectrolyte the integrated counterion

probability density f was previously investigated analytically, for example by Deserno et

al.3. In the Wang-Landau simulations with sampling scheme according to Eqn. (12) in

the main article, we checked the integrated counterion probability density for a system

with n̄ = 0. Additionally we performed a canonical simulation for a strongly charged rod

and performed the Poisson-Boltzmann calculation for the integrated counterion probability

density presented in Ref. 3. The results are shown in Fig. 1 for the system presented in

the paper (Bjerrum length λB = 2σ). The same system with a smaller Bjerrum length (full
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Figure 1: Integrated counterion probability density obtained from PB-Theory, a canonical
simulation for the fully dissociated case and from snapshots of the Wang-Landau simulations
for n̄ =0. It is visible that the canonical simulation and the Wang-Landau simulation yield
the same counterion distribution.

dissociation, λB = 0.9σ and therefore an electrostatic coupling parameter Ξ ≈ 0.72) was

used to check for the agreement of the PB theory with the canonical simulation. In Fig. 2

the PB integrated counterion probability density and the integrated counterion probability

density from the simulations are presented. As one can see there is only very little difference
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between the curves. Also the heat capacities CV differ only by 2% (MC: CV /kB = 36.49+75,

PB: CV /kB = 33.60+75). Any difference between PB and simulation is expected to decrease

further for lower electrostatic coupling parameters.
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Figure 2: Integrated counterion probability density from PB theory and the results of a
canonical simulation for the fully dissociated case at Bjerrum length λB = 0.9σ. Simulation
data and PB theory are almost indistinguishable.

References

(1) Wolfram, S. Mathematica: a system for doing mathematics by computer ; Addison Wesley

Longman Publishing Co., Inc., 1991.

(2) Naji, A.; Netz, R. R. Scaling and universality in the counterion-condensation transition

at charged cylinders. Phys. Rev. E 2006, 73, 056105.

(3) Deserno, M.; Holm, C.; May, S. Fraction of condensed counterions around a charged rod:

Comparison of Poisson-Boltzmann theory and computer simulations. Macromolecules

2000, 33, 199–206.

7



(4) Fuoss, R. M.; Katchalsky, A.; Lifson, S. The potential of an infinite rod-like molecule

and the distribution of the counter ions. Proc. Natl. Acad. Sci. USA 1951, 37, 579–589.

8


	Calculation of the kinetic partition sum
	Calculation of the Poisson-Boltzmann heat capacity
	Analytic Calculation of the Poisson-Boltzmann Heat Capacity

	Counterion Probability Densities
	References

