Gate- and Light-Tunable pn Heterojunction Microwire Arrays Fabricated via Evaporative Assembly Jae Hoon Park, ¹ Jong Su Kim, ¹ Young Jin Choi, ¹ Wi Hyoung Lee, ³ Dong Yun Lee, ⁴ Jeong Ho Cho^{1,2}* ¹SKKU Advanced Institute of Nanotechnology (SAINT), ²School of Chemical Engineering, Sungkyunkwan University, Suwon 440–746, Korea. ³Department of Organic and Nano System Engineering, Konkuk University, Seoul 05029, Korea. ⁴Department of Polymer Science and Engineering, Kyungpook National University, Daegu, 41566, Korea. ^{*}Corresponding author: jhcho94@skku.edu Figure S1. Photographic images of flow-coating setup. **Figure S2.** Optical microscopy image of the TIPS-PEN microwire fabricated using only TIPS-PEN solution without PMMA. **Figure S3.** Current–voltage characteristics of the IGZO microwire, the TIPS–PEN microwire, and the IGZO/TIPS–PEN heterojunction. **Figure S4**. Illumination power–dependent current–voltage characteristics of the cross–stacked pn heterojunction diodes at various gate voltages ($V_G = -10, -5, +5, +10, +15,$ and +20 V) under light illumination with a fixed wavelength of 650 nm.