Supporting Information

Synthesis and Electron Spin Relaxation of Tetra-Carboxylate Pyrroline Nitroxides

Shengdian Huang, ${ }^{\dagger}$ \# Joseph T. Paletta, ${ }^{\dagger}{ }^{\#}$ Hanan Elajaili, ${ }^{\S}$ Kirby Huber, ${ }^{\S}$ Maren Pink, ${ }^{\ddagger}$ Suchada Rajca, ${ }^{\dagger}$ Gareth R. Eaton, ${ }^{\S}$ Sandra S. Eaton, ${ }^{*, s}$ Andrzej Rajca* ${ }^{\dagger}$

Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208-2436
IUMSC, Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102

E-mail address: arajca1@unl.edu
${ }^{\dagger}$ University of Nebraska
${ }^{\S}$ University of Denver
${ }^{\ddagger}$ Indiana University
"SH and JTP contributed equally to this work.

Table of Contents

1. Complete Reference 36 (p. S3).
2. General Procedures and Materials (p. S3).
3. X-ray Crystallography (Tables S1-S3 and Figures S1-S3; pp. S3-S10).
4. EPR Spectroscopy at DU (Figures S4-S6; pp. S11 - S14).
5. CW EPR Spectroscopy at UNL (Figs. S7 - S9, pp. S15-S17).
6. DFT Calculations at UNL (Tables S4-S7, Figure S10; pp. S18-S20).
7. Synthesis of Nitroxides (pp. S21-S26).
8. Spectra of Nitroxides (Paramagnetic ${ }^{1} \mathrm{H}$ NMR and IR), and Spectra of Diamagnetic Synthetic Intermediates and Hydroxylamines (Figures S11 - S39; pp. S27-S41).
9. Supporting References (p. S42).
10. Cartesian Coordinates for UB3LYP/6-311+G(d,p)+ZPVE Geometries for the Lowest Energy Conformations of Nitroxides 1 and 2 (pp. S43-end).

1. Complete Reference 36.

36. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A. 1 (Gaussian, Inc., Wallingford CT, 2009).

2. General Procedures and Materials.

Throughout the following paragraphs labels "JTP12-97f1C" and alike correspond to sample or experiment codes directly traceable to the laboratory notebooks or raw data.

3. X-ray Crystallography.

Data collection, structure solution, and refinement are briefly summarized below; more detailed descriptions may be found in the accompanying crystallographic information files (CIFs).

For nitroxides $\mathbf{1}$ and 2, the structures were determined using crystals obtained by slow evaporation of a DCM/heptane (1:1) solution (label: JTP12-97f1C) and vapor diffusion of pentane into a chloroform solution (label: HSD-1-1-26), respectively.

Nitroxide 1. A colorless crystal (approximate dimensions $0.25 \times 0.18 \times 0.10 \mathrm{~mm}^{3}$) was placed onto the tip of a 0.05 mm diameter glass capillary and mounted on a commercial diffractometer equipped with a detector at $150(2) \mathrm{K}$. The data collection was carried out using Mo $\mathrm{K} \alpha$ radiation (graphite monochromator) with a frame time of 30 seconds and a detector distance of 40 mm . The total exposure time was 18.12 hours. The frames were integrated with the SAINT software package ${ }^{\mathrm{S} 1}$ using
a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 23212 reflections to a maximum θ angle of 26.45° ($0.80 \AA$ resolution), of which 2949 were independent (average redundancy 7.871 , completeness $=99.6 \%, \mathrm{R}_{\text {int }}=3.33 \%, \mathrm{R}_{\text {sig }}=1.90 \%$) and 2524 (85.59%) were greater than $2 \sigma(\mathrm{~F} 2)$. The final cell constants of $\mathrm{a}=16.1787(15) \AA, \mathrm{b}=7.8957(7) \AA, \mathrm{c}$ $=11.6365(10) \AA, \beta=105.489(5)^{\circ}$, volume $=1432.5(2) \AA^{3}$, are based upon the refinement of the XYZ-centroids of 9945 reflections above $20 \sigma(\mathrm{I})$ with $5.225^{\circ}<2 \theta<52.71^{\circ}$. Data were corrected for absorption effects using the multi-scan method (SADABS). ${ }^{\mathrm{S} 2}$ The ratio of minimum to maximum apparent transmission was 0.890 . The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9690 and 0.9870 . Please refer to Table S1 for additional crystal and refinement information.

The space group $\mathrm{P} 21 / \mathrm{c}$ was determined based on intensity statistics and systematic absences. The structure was solved and refined using the SHELX suite of programs. ${ }^{\text {S3 }}$ An intrinsic-methods solution was calculated, which provided most non-hydrogen atoms from the E-map. Full-matrix least squares / difference Fourier cycles were performed, which located the remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters. The final anisotropic full-matrix least-squares refinement on F2 with 203 variables converged at R1 $=3.24 \%$, for the observed data and $w R 2=8.65 \%$ for all data. The goodness-of-fit was 1.028. The largest peak in the final difference electron density synthesis was $0.326 \mathrm{e}^{-} / \AA^{3}$ and the largest hole was $-0.204 \mathrm{e}^{-} / \AA^{3}$ with an RMS deviation of $0.040 \mathrm{e}^{-} / \AA^{3}$. On the basis of the final model, the calculated density was $1.466 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mathrm{F}(000), 660 \mathrm{e}^{-}$. The remaining electron density is minuscule and located on bonds.

Nitroxide 2 was studied with synchrotron radiation at the ChemMatCARS 15IDB beamline ${ }^{\mathrm{S} 4}$ at the Advanced Photon Source at Argonne National Lab, Chicago, utilizing the SCrAPS program. ${ }^{\text {S5 }}$

A yellow crystal (approximate dimensions $0.115 \times 0.061 \times 0.055 \mathrm{~mm} 3$) was placed onto the tip of an ultra-thin glass rod and mounted on a D8 platform goniometer and measured at 100(2) K. The data collection was carried out using synchrotron radiation $(\lambda=0.41328 \AA, \mathrm{E}=30 \mathrm{keV}$, silicon 111 and 113 monochromators, two mirrors to exclude higher harmonics) with a frame time 0.3 seconds and a detector distance of 60 mm . The total exposure time was 0.09 hours. The frames were integrated with
the SAINT software package ${ }^{\text {S1 }}$ using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 13679 reflections to a maximum θ angle of $16.92^{\circ}(0.71 \AA$ resolution), of which 2333 were independent (average redundancy 5.863, completeness $=97.9 \%, \mathrm{R}_{\text {int }}$ $\left.=6.05 \%, \mathrm{R}_{\text {sig }}=4.49 \%\right)$ and $1988(85.21 \%)$ were greater than $2 \sigma(\mathrm{~F} 2)$. The final cell constants of $\mathrm{a}=$ $16.3051(7) \AA, b=6.5192(3) \AA, c=15.4278(6) \AA, \beta=97.9090(10)^{\circ}$, volume $=1624.32(12) \AA^{3}$, are based upon the refinement of the XYZ-centroids of 5581 reflections above $20 \sigma(\mathrm{I})$ with $4.869^{\circ}<2 \theta$ $<33.70^{\circ}$. Data were corrected for absorption effects using the multi-scan method (SADABS). ${ }^{\mathrm{S} 2}$ The ratio of minimum to maximum apparent transmission was 0.841 . The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.6260 and 0.7441 . Please refer to Table S2 for additional crystal and refinement information.

The space group C2/c was determined based on intensity statistics and systematic absences. The structure was solved using and refined using the SHELX suite of programs. ${ }^{\text {S3 }}$ An intrinsic methods solution was calculated, which provided most non-hydrogen atoms from the E-map. Full-matrix least squares / difference Fourier cycles were performed, which located the remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters. The final anisotropic full-matrix least-squares refinement on F2 with 113 variables converged at $\mathrm{R} 1=4.94 \%$, for the observed data and $\mathrm{wR} 2=15.13 \%$ for all data. The goodness-of-fit was 1.230 . The largest peak in the final difference electron density synthesis was $0.531 \mathrm{e}^{-} / \AA^{3}$ and the largest hole was $-0.699 \mathrm{e}^{-} / \AA^{3}$ with an RMS deviation of $0.225 \mathrm{e}^{-} / \AA^{3}$. On the basis of the final model, the calculated density was $1.408 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mathrm{F}(000), 724 \mathrm{e}^{-}$. Nonclassical hydrogen bonds were observed (Figure S3 and Table S3).

Table S1. Crystal data and structure refinement for nitroxide 1 (X-ray label: 15131, sample label: JTP12-97f1C)

Empirical formula
Formula weight
Crystal color, shape, size
Temperature
Wavelength
Crystal system, space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)

Data collection

Diffractometer
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Observed Reflections
Completeness to theta $=25.242^{\circ}$

Solution and Refinement

Absorption correction
Max. and min. transmission
Solution
Refinement method
Weighting scheme

Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole

C12 H14 N O9

316.24
colorless block, $0.25 \times 0.18 \times 0.10 \mathrm{~mm}^{3}$
150(2) K
0.71073 A

Monoclinic, $\mathrm{P} 2_{1} / \mathrm{c}$

$$
\begin{array}{ll}
\mathrm{a}=16.1787(15) \AA & \alpha=90^{\circ} . \\
\mathrm{b}=7.8957(7) \AA & \beta=105.489(5)^{\circ} . \\
\mathrm{c}=11.6365(10) \AA & \gamma=90^{\circ} .
\end{array}
$$

$$
1432.5(2) \AA^{3}
$$

4
$1.466 \mathrm{Mg} / \mathrm{m}^{3}$
$0.128 \mathrm{~mm}^{-1}$
660

APEX II Kappa Duo, Bruker

1.306 to 26.451°.
$-20<=\mathrm{h}<=20,-8<=\mathrm{k}<=9,-14<=1<=14$
23212
$2949[\mathrm{R}(\mathrm{int})=0.0333]$
2524
100.0 \%

Semi-empirical from equivalents
0.7454 and 0.6634

Intrinsic methods
Full-matrix least-squares on F^{2}
$\mathrm{w}=\left[\sigma^{2} \mathrm{Fo}^{2}+\mathrm{AP}^{2}+\mathrm{BP}\right]^{-1}$, with
$\mathrm{P}=\left(\mathrm{Fo}^{2}+2 \mathrm{Fc}^{2}\right) / 3, \mathrm{~A}=0.0412, \mathrm{~B}=0.6339$
2949 / 0 / 203
1.028
$\mathrm{R} 1=0.0324, \mathrm{wR} 2=0.0819$
$R 1=0.0395, w R 2=0.0865$
0.326 and $-0.204 \mathrm{e} . \AA^{-3}$

Goodness-of-fit $\left.=\left[\Sigma\left[w\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \mathrm{N}_{\mathrm{observns}}-\mathrm{N}_{\text {params }}\right)\right]^{1 / 2}$, all data.
$\mathrm{R} 1=\Sigma\left(\left|\mathrm{F}_{\mathrm{o}}\right|-\left|\mathrm{F}_{\mathrm{c}}\right|\right) / \Sigma\left|\mathrm{F}_{\mathrm{o}}\right| . \quad w \mathrm{R} 2=\left[\Sigma\left[w\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma\left[w\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)^{2}\right]\right]^{1 / 2}$.

Table S2. Crystal data and structure refinement for nitroxide 2 (X-ray labels: S16003 and CMC1051, sample label: HSD-1-1-26).

Empirical formula
Formula weight
Crystal color, shape, size
Temperature
Wavelength
Crystal system, space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)

Data collection

Diffractometer
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Observed Reflections
Completeness to theta $=14.357^{\circ}$

Solution and Refinement

Absorption correction
Max. and min. transmission
Solution
Refinement method
Weighting scheme

Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

C14 H18 N O9

344.29
yellow block, $0.115 \times 0.061 \times 0.055 \mathrm{~mm}^{3}$
100(2) K
$0.41328 \AA(30 \mathrm{keV})$
Monoclinic, $\mathrm{C} 2 / \mathrm{c}$
$\begin{array}{ll}\mathrm{a}=16.3051(7) \AA & \alpha=90^{\circ} . \\ \mathrm{b}=6.5192(3) \AA & \beta=97.909(1)^{\circ} . \\ \mathrm{c}=15.4278(6) \AA & \gamma=90^{\circ} .\end{array}$
1624.32(12) \AA^{3}

4
$1.408 \mathrm{Mg} / \mathrm{m}^{3}$
$0.072 \mathrm{~mm}^{-1}$
724

APS, ChemMatCARS, 15 IDB
1.550 to 16.916°.
$-20<=\mathrm{h}<=22,-9<=\mathrm{k}<=9,-18<=1<=21$
13679
$2333[\mathrm{R}(\mathrm{int})=0.0605]$
1988
97.8 \%

Semi-empirical from equivalents
0.7441 and 0.6260

Intrinsic methods
Full-matrix least-squares on F^{2}
$\mathrm{w}=\left[\sigma^{2} \mathrm{Fo}^{2}+\mathrm{AP}^{2}+\mathrm{BP}\right]^{-1}$, with
$\mathrm{P}=\left(\mathrm{Fo}^{2}+2 \mathrm{Fc}^{2}\right) / 3, \mathrm{~A}=0.0827, \mathrm{~B}=0.2655$
2333/0/113
1.230
$\mathrm{R} 1=0.0494, \mathrm{wR} 2=0.1273$
$\mathrm{R} 1=0.0645, \mathrm{wR} 2=0.1513$
0.35(3)
0.531 and $-0.699 \mathrm{e} . \AA^{-3}$

Goodness-of-fit $\left.=\left[\Sigma\left[w\left(\mathrm{~F}_{\mathrm{o}}^{2}-\mathrm{F}_{\mathrm{c}}^{2}\right)^{2}\right] / \mathrm{N}_{\text {observns }}-\mathrm{N}_{\text {params }}\right)\right]^{1 / 2}$, all data.
$\mathrm{R} 1=\Sigma\left(\left|\mathrm{F}_{\mathrm{o}}\right|-\left|\mathrm{F}_{\mathrm{c}}\right|\right) / \Sigma\left|\mathrm{F}_{\mathrm{o}}\right| . \quad w \mathrm{R} 2=\left[\Sigma\left[w\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma\left[w\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)^{2}\right]\right]^{1 / 2}$.

Figure S1. Nitroxide 1: formula unit obtained by Mo K α radiation (X-ray label: 15131, sample label: JTP12-97f1C). Carbon, nitrogen, and oxygen atoms are depicted with thermal ellipsoids set at the 50% probability level.

Figure S2. Nitroxide 2: selected specimen and formula unit obtained by synchrotron radiation (Xray labels: S16003 and CMC1051, sample label: HSD-1-1-26). Carbon, nitrogen, and oxygen atoms are depicted with thermal ellipsoids set at the 50% probability level.

Figure S3. Nitroxide 2: cell plots, views along a-axis (top plot) and c-axis (bottom plot), showing nonclassical H-bonding (Table S3).

Table S3. Hydrogen bonds for nitroxide 2 (X-ray labels: S16003 and CMC1051) [\AA and $\left.^{\circ}\right] .{ }^{\text {a }}$

D-H...A	d(D-H)	d(H...A)	d(D...A)	<(DHA)
C2-H2...O1\#2	0.95	2.56	$3.1251(16)$	118.5
C4-H4C...O3\#3	0.98	2.53	$3.4218(18)$	151.8

[^0]\#1-x,y,-z+1/2 \#2 $\mathrm{x}, \mathrm{y}-1, \mathrm{z} \quad$ \#3 -x+1/2,y-1/2,-z+1/2

4. EPR spectroscopy at DU.

X-band CW spectra were recorded on a commercial spectrometer with an SHQE resonator and 100 kHz modulation frequency. Variable temperature CW and pulse EPR experiments were obtained on a commercial spectrometer, which is equipped with an ER4118X-MS5 split ring resonator, a liquid helium cryostat, and a temperature controller for cryogenic temperatures. Q-band measurements were performed on a commercial instrument using an ER5107D2 resonator. Temperatures at the sample are accurate to within about 2 K . Spectra were simulated using the locally-written program Monmer, which is based on the equations in ref. S6. Parameters were adjusted to optimize agreement with spectra obtained at both X-band and Q-band. Relative g values were well defined in the Q -band spectra. The average g value was adjusted to agree with the values obtained for fluid solution spectra recorded with the dual mode resonator at the University of Nebraska (see below). A_{z} is well defined at both X -band and Q -band, but A_{x} and A_{y} are not resolved, so values of A_{x} and A_{y} were adjusted to make the average value agree with $\mathrm{A}_{\text {iso }}$ observed in fluid solution.

Figure S4. CW EPR (X-band, 9.862 GHz) spectra of tempol in trehalose at $20^{\circ} \mathrm{C}$.
A) magnetically dilute sample in well-formed glass obtained with 0.05 mT modulation amplitude at 100 kHz and 0.20 mW microwave power. B) Magnetically concentrated sample in a poorly-formed glass obtained with 0.1 mT modulation amplitude and 0.20 mW microwave power.

At room temperature the spectrum of tempol in a well-formed glassy matrix exhibits the anisotropic g and A-values that are characteristic of immobilized nitroxides (Figure S4A). However when there is not good glass formation and the solute is not magnetically dilute an exchange-narrowed spectrum is observed (Figure S4B). Samples may also be heterogenous resulting in spectra that are intermediate between those shown in Figure S4A and S4B. For small nitroxides such as tempol, it was difficult to reproducibly prepared well-formed glasses in trehalose. However, addition of 10% sucrose to the trehalose resulted in consistently well-formed glasses with magnetically dilute solute.

Figure S5. CW spectra of $\mathbf{1}$ in $9: 1$ trehalose:sucrose at $20^{\circ} \mathrm{C}$ (solid lines). A) X-band (9.857 GHz) spectrum obtained with 0.201 mW power and 0.1 mT modulation amplitude, and B) Q-band (33.84 GHz) spectrum obtained with 0.061 mW power and 0.1 mT modulation amplitude. The simulations (dashed red lines) were obtained with $\mathrm{g}_{\mathrm{x}}=2.0099, \mathrm{~g}_{\mathrm{y}}=2.0060, \mathrm{~g}_{\mathrm{z}}=2.0025, \mathrm{~A}_{\mathrm{x}}=9.6 \mathrm{MHz}, \mathrm{A}_{\mathrm{y}}=9.8$ $\mathrm{MHz}, \mathrm{A}_{\mathrm{z}}=83.2 \mathrm{MHz}$.

Figure S6. CW spectra of $\mathbf{2}$ in 9:1 trehalose:sucrose at $20^{\circ} \mathrm{C}$ (solid lines). A) X-band (9.857 GHz) spectrum obtained with 0.201 mW power and 0.1 mT modulation amplitude, and B) Q-band $(33.77 \mathrm{GHz})$ spectrum obtained with 0.061 mW power and 0.1 mT modulation amplitude. The simulations (dashed red lines) were obtained with $\mathrm{g}_{\mathrm{x}}=2.0099, \mathrm{~g}_{\mathrm{y}}=2.0061, \mathrm{~g}_{\mathrm{z}}=2.0026, \mathrm{~A}_{\mathrm{x}}=12.0$ $\mathrm{MHz}, \mathrm{A}_{\mathrm{y}}=12.0, \mathrm{MHz}, \mathrm{A}_{\mathrm{z}}=89.0 \mathrm{MHz}$

The broad underlying feature that is evident in the Q-band spectra of both $\mathbf{1}$ and $\mathbf{2}$, but not in the simulated spectra suggests the presence of a small amount of magnetically-concentrated radical. The relaxation times of the magnetically concentrated radicals are much shorter than for the magnetically dilute material, and do not contribute to the measured relaxation times reported in the main text.

5. CW EPR spectroscopy at UNL.

CW X-band EPR spectra for nitroxides in solution were acquired on a commercial EPR instrument, equipped with a frequency counter and nitrogen flow temperature control ($130-300 \mathrm{~K}$). The spectra were obtained using a dual mode cavity; all spectra were recorded using an oscillating magnetic field perpendicular (TE_{102}) to the swept magnetic field. DPPH powder $(g=2.0037)$ was used as a g-value reference. The spectra were simulated using Symphonia or EasySpin (Garlic).

Figure S7. EPR ($\mathrm{v}=9.6505 \mathrm{GHz}$) spectrum of nitroxide $\mathbf{1}$ (sample label: JTP13-21f1; 0.1 mM in CHCl_{3}; EPR label: HD174r1). Experimental spectrum: power, $20 \mathrm{~dB}, 2.046 \mathrm{~mW}$; modulation amplitude 0.1 G ; conversion time 40.96 ms ; time constant 10.24 ms ; resolution in $\mathrm{X}, 4 \mathrm{k}$ points. Simulation (EasySpin, Garlic): $g=2.0061, A\left({ }^{14} \mathrm{~N}\right)=34.223 \mathrm{MHz}(\mathrm{n}=1), A\left({ }^{1} \mathrm{H}\right)=1.096 \mathrm{MHz}(\mathrm{n}=$ 2), $\mathrm{LW}=0.0105 \mathrm{mT}$ (Gaussian) and 0.0132 mT (Lorenzian).

Figure S8. EPR ($\mathrm{v}=9.6505 \mathrm{GHz}$) spectrum of nitroxide $\mathbf{1}$ (sample label: JTP13-21f1; 0.1 mM in CHCl_{3}; EPR label: HD174r1). Experimental spectrum: power, $20 \mathrm{~dB}, 2.046 \mathrm{~mW}$; modulation amplitude 0.1 G ; conversion time 40.96 ms ; time constant 10.24 ms ; resolution in $\mathrm{X}, 4 \mathrm{k}$ points. Simulation (Symphonia): $g=2.0062, A\left({ }^{14} \mathrm{~N}\right)=34.24 \mathrm{MHz}(\mathrm{n}=1), A\left({ }^{1} \mathrm{H}\right)=1.096 \mathrm{MHz}(\mathrm{n}=2), A\left({ }^{15} \mathrm{~N}\right)$ $=48.09 \mathrm{MHz}(\mathrm{n}=1), A\left({ }^{13} \mathrm{C}\right)=25.30 \mathrm{MHz}(\mathrm{n}=4), A\left({ }^{13} \mathrm{C}\right)=15.50 \mathrm{MHz}(\mathrm{n}=2), \mathrm{L} / \mathrm{G}=0.4, \quad \mathrm{LW}=$ 0.020 mT . (All nuclei are at natural abundance.)

Figure S9. EPR ($\mathrm{v}=9.6499 \mathrm{GHz}$) spectrum of nitroxide 2 (sample label: HSD1-1-26; 0.1 mM in CHCl_{3}; EPR label: HD174r2). Experimental spectrum: power, $20 \mathrm{~dB}, 2.046 \mathrm{~mW}$; modulation amplitude 0.1 G ; conversion time 40.96 ms ; time constant 10.24 ms ; resolution in $\mathrm{X}, 4 \mathrm{k}$ points. Simulation (EasySpin, Garlic): $g=2.0060, A\left({ }^{14} \mathrm{~N}\right)=37.648 \mathrm{MHz}(\mathrm{n}=1), \quad A\left({ }^{1} \mathrm{H}\right)=1.864 \mathrm{MHz}(\mathrm{n}=$ 2), $A\left({ }^{1} \mathrm{H}\right)=1.430 \mathrm{MHz}(\mathrm{n}=2), A\left({ }^{1} \mathrm{H}\right)=1.087 \mathrm{MHz}(\mathrm{n}=2)$, LW $($ Lorentzian $)=0.0147 \mathrm{mT}$.

6. DFT Calculations.

Geometry optimizations and frequency calculations were performed using the Gaussian 09 program package ${ }^{\text {S7 }}$ running on a workstation under Linux operating system.

Ground-state geometries of nitroxides were optimized at the UB3LYP/6-311G(d,p) level. Starting geometry for $\mathbf{2}$ was the C_{2}-symmetric conformation in the X-ray structure; this led to the lowest energy conformation for nitroxide 2. The geometry optimizations were followed by vibrational analyses to confirm that all reported structures are the minima on the potential energy surface (Tables S4 and S5). These geometries were used for single point calculations of EPR spectral parameters at the UB3LYP/EPR-III level of theory (Table S6).

Stick and space-filling plots for the lowest energy conformations of $\mathbf{1}$ and $\mathbf{2}$ the UB3LYP/6$311 \mathrm{G}(\mathrm{d}, \mathrm{p})+$ ZPVE level are presented in Figure S10.

Table S4. The B3LYP/6-311G(d,p)+ZPVE calculations for tetraester nitroxide 1: energies (E°, hartree), zero point vibrational energies (ZPVE, hartree), ${ }^{\text {a }}$ lowest vibrational frequencies (cm^{-1}), RMS gradient norms (a.u.), ${ }^{\text {b }}$ dipole moments (μ, D), and relative energy ($\mathrm{kcal} \mathrm{mol}^{-1}$) of nitroxide.

	Point group	O14-C9-C1-N7 O15-C11-C4-N7 O13-C10-C1-N7 O16-C12-C4-N7	$<S^{2}>$	E°	ZPVE	$E^{\circ}+\mathrm{ZPVE}$	Rel. energy	RMS gradient norm $\left(\times 10^{-6}\right)$	Lowest vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$	$\begin{gathered} \hline \mu \\ \text { (D) } \end{gathered}$
$\begin{gathered} \hline \text { Con7 } \\ \text { Of7 } \\ \text { Of11 } \\ \hline \end{gathered}$	C_{2}	$\begin{aligned} & \hline 170.91,99.65 \\ & 99.65,170.91 \end{aligned}$	0.7537	-1197.70468172	0.265110	-1197.439572	0.00	0.28	$\begin{aligned} & \hline 21.3,27.8 \\ & 29.9,49.1 \end{aligned}$	2.10
Of8	C_{2}	$\begin{aligned} & -8.78,102.56 \\ & 102.56,-8.78, \end{aligned}$	0.7537	-1197.70442342	0.264969	-1197.439454	0.07	0.58	$\begin{aligned} & \hline 16.1,35.1 \\ & 44.1,54.6 \end{aligned}$	1.33
$\begin{gathered} \text { Rot7 } \\ \text { Of7 } \\ \text { Of9 } \end{gathered}$	C_{2}	$\begin{aligned} & \hline 105.76,-4.23, \\ & -4.23,105.76 \end{aligned}$	0.7537	-1197.70306057	0.264837	1197.438224	0.85	1.19	$\begin{aligned} & \hline 18.9,23.7 \\ & 30.1,55.0 \end{aligned}$	6.28
$\begin{gathered} \text { IRC\# } \\ 1 \text { and } \\ \# 3 \end{gathered}$	C_{1}	$\begin{aligned} & \hline 174.90,-96.06 \\ & 96.31,-175.97 \end{aligned}$	0.7538	-1197.70293553	0.265031	-1197.437905	1.05	1.65	$\begin{aligned} & \text { 19.8, 22.5, } \\ & 25.8,39.9 \end{aligned}$	2.40
$\begin{aligned} & \hline \text { Of1- } \\ & \text { Xray } \\ & \hline \end{aligned}$	C_{1}	$\begin{gathered} \hline-165.33,-107.96 \\ 4.66,-106.47 \\ \hline \end{gathered}$	0.7538	-1197.70251344	0.264994	-1197.437519	1.28	1.71	$\begin{aligned} & \hline 20.6,23.8, \\ & 30.1,44.3 \\ & \hline \end{aligned}$	4.25
Of10	C_{2}	$\begin{aligned} & -160.99,-112.21 \\ & -112.21,-160.99 \end{aligned}$	0.7538	-1197.70171489	0.265169	-1197.436546	1.90	1.53	$\begin{aligned} & 11.6,22.7 \\ & 30.2,43.5 \\ & \hline \end{aligned}$	0.60
$\begin{gathered} \hline \mathrm{Ofl2} \\ \text { _Xra } \\ \mathrm{yC} 2 \\ \hline \end{gathered}$	C_{2}	$\begin{gathered} \hline-168.69,-104.62 \\ -104.62,-168.69 \end{gathered}$	0.7538	-1197.70165525	0.265174	-1197.436482	1.94	1.11	$\begin{aligned} & \hline 20.0,21.4, \\ & 26.3,42.5 \end{aligned}$	1.26
Of2	$C_{2 v}$	$\begin{aligned} & \hline 12.56,-12.56, \\ & -12.56,12.56 \\ & \hline \end{aligned}$	0.7534	-1197.69001163	0.264570	-1197.425442	8.87	0.57	$\begin{gathered} \hline \text { i51.5, i46.2, } \\ 20.7,26.8 \\ \hline \end{gathered}$	7.77
Of3	$C_{2 v}$	$\begin{array}{r} -131.83,131.83 \\ 131.83,-131.83 \\ \hline \end{array}$	0.7538	-1197.69150284	0.264332	-1197.427171	7.78	0.05	$\begin{gathered} \hline \mathbf{i 5 9 . 6}, \boldsymbol{i} 54.5, \\ 21.2,24.5 \\ \hline \end{gathered}$	4.64
Of4	$C_{\text {s }}$	$\begin{aligned} & \text { 111.94, -111.94, } \\ & 155.92 \text { - } 155.92 \end{aligned}$	0.7538	-1197.70184716	0.265008	-1197.436839	1.71	1.17	$\begin{array}{r} \text { i13.7, 25.0, } \\ 35.6,37.6 \\ \hline \end{array}$	1.61
Of5	$C_{\text {s }}$	$\begin{gathered} \hline 0.54,-0.54 \\ 93.62,-93.62 \\ \hline \end{gathered}$	0.7538	-1197.70147001	0.264694	-1197.436776	1.75	1.52	$\begin{aligned} & 23.5,24.5, \\ & 40.3,47.4 \\ & \hline \end{aligned}$	2.06
Of6	$C_{\text {s }}$	$\begin{aligned} & 19.20,-161.64 \\ & -19.20,161.64 \end{aligned}$	0.7535	-1197.69274219	0.264729	-1197.428013	7.25	0.79	$\begin{gathered} \hline \text { i58.0, i39.1, } \\ 20.1,36.6 \end{gathered}$	6.45

${ }^{\mathrm{a}} 1$ Hartree $=627.51 \mathrm{kcal} \mathrm{mol}^{-1} . \quad{ }^{\mathrm{b}}$ In Cartesian coordinates.

Table S5. The UB3LYP/6-311G(d,p)+ZPVE calculations for nitroxide 2: energies (E°, hartree), zero point vibrational energies (ZPVE, hartree), ${ }^{\text {a }}$ lowest vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$, RMS gradient norms (a.u.), ${ }^{\mathrm{b}}$ and dipole moments (D).

Structure	Point group	$\begin{aligned} & \hline \text { O14-C11-C4-N7 } \\ & \text { C30-C9-C1-N7 } \\ & \text { O31-C30-C9-C1 } \\ & \text { O13-C10-C1-N7 } \\ & \text { C29-C12-C4-N7 } \\ & \text { O32-C29-C12-C4 } \end{aligned}$	$\left\langle S^{2}\right\rangle$	E°	ZPVE	$E^{\circ}+\mathrm{ZPVE}$	Rel. energy (kcal mol^{-1})	RMS gradient norm $\left(\times 10^{-6}\right)$	Lowest vibrational frequencies (cm^{-1})	$\begin{gathered} \mu \\ (\mathrm{D}) \end{gathered}$
Rot8/Xray	C_{2}	$\begin{aligned} & -118.39,-178.42,23.74 \\ & -118.39,-178.42,23.74 \\ & \hline \end{aligned}$	0.7541	-1276.37925199	0.322612	-1276.056640	0.00	1.25	$\begin{aligned} & 17.3,25.0, \\ & 32.7,35.6 \\ & \hline \end{aligned}$	1.35
Rot9	C_{2}	$\begin{array}{r} 69.01,-178.54,10.73 \\ 69.01,-178.54,10.73 \\ \hline \end{array}$	0.7541	-1276.37760243	0.322552	-1276.055051	1.00	2.27	$\begin{aligned} & 14.6,25.1, \\ & 32.2,32.6 \\ & \hline \end{aligned}$	0.90
Rot11/12	C_{2}	$\begin{aligned} & -122.65,175.51,-155.06 \\ & -122.65,175.51,-155.06 \\ & \hline \end{aligned}$	0.7541	-1276.37350109	0.322627	-1276.050874	3.62	1.29	$\begin{aligned} & 27.5,28.2, \\ & 28.6,41.3 \\ & \hline \end{aligned}$	5.90
Rot10	C_{2}	$\begin{aligned} & 73.90,174.14,-162.51 \\ & 73.90,174.14,-162.51 \\ & \hline \end{aligned}$	0.7542	-1276.37200636	0.322317	-1276.049690	4.36	3.24	$\begin{gathered} \hline \mathbf{i 1 5 . 7}, 22.1, \\ 26.7,40.1 \\ \hline \end{gathered}$	2.88
Rot4/6/7	C_{2}	$\begin{array}{r} -179.11,66.48,47.52 \\ -179.11,66.48,47.52 \\ \hline \end{array}$	0.7538	-1276.37132281	0.322711	-1276.048612	5.03	1.48	$\begin{aligned} & 14.0,23.8, \\ & 33.7,36.6 \end{aligned}$	0.12
Rot2/5	C_{2}	$\begin{aligned} & \hline-172.13,53.74,-127.64 \\ & -172.13,53.74,-127.64 \\ & \hline \end{aligned}$	0.7539	-1276.37082435	0.322700	-1276.048124	5.34	0.27	$\begin{array}{r} 9.3,29.8 \\ 35.7,42.1 \\ \hline \end{array}$	1.07
Rot1	C_{2}	$\begin{aligned} & 8.03,-66.40,-57.51 \\ & 8.03,-66.40,-57.51 \\ & \hline \end{aligned}$	0.7537	-1276.37067335	0.322979	-1276.047694	5.61	1.89	$\begin{aligned} & 26.1,32.7 \\ & 41.5,53.8 \\ & \hline \end{aligned}$	1.50
Start	C_{2}	$\begin{aligned} & -155.07,-86.60,-46.43 \\ & -155.07,-86.60,-46.43 \\ & \hline \end{aligned}$	0.7538	-1276.36990687	0.322673	-1276.047234	5.90	2.93	$\begin{aligned} & 20.6,24.6 \\ & 38.2,39.0 \\ & \hline \end{aligned}$	0.66
Rot3	C_{2}	$\begin{aligned} & 11.65,61.85,-136.20 \\ & 11.65,61.85,-136.20 \end{aligned}$	0.7538	-1276.36870924	0.322459	-1276.046250	6.52	0.64	$\begin{aligned} & 28.9,39.6 \\ & 43.6,52.1 \end{aligned}$	4.57

1 Hartree $=627.51 \mathrm{kcal} \mathrm{mol}^{-1} . \quad{ }^{\mathrm{b}}$ In Cartesian coordinates.
Table S6. Single point energies and ${ }^{14} \mathrm{~N},{ }^{1} \mathrm{H}$, and ${ }^{13} \mathrm{C}$ hyperfine couplings (MHz) for the lowest energy conformations of $\mathbf{1}$ and $\mathbf{2}$ at the UB3LYP/EPR-III//UB3LYP/6-311G(d,p) level of theory vs. experimental values. ${ }^{\text {a }}$

	E° (UB3LYP/EPR-III)	< $\left.S^{2}\right\rangle$	$A\left({ }^{14} \mathrm{~N}\right)(\mathrm{MHz})$		$A\left({ }^{1} \mathrm{H}\right)(\mathrm{MHz})$							
			$\mathrm{N}-\mathrm{O}$		vinylic CH			OCH_{3}		CH_{2}		
			DFT	EPR ${ }^{\text {a }}$	DFT	EPR	NMR	DFT	NMR	DFT	EPR	NMR
1	-1197.91835553	0.7544	21.60	34.24	-1.68	1.10	-1.08	x	+0.034	x	x	x
2	-1276.60180954	0.7548	25.03	37.65	-1.80	1.43	-1.26	x	+0.058	1.37 -1.94	$\begin{aligned} & 1.09 \\ & 1.86 \end{aligned}$	$-1.6^{\text {b }}$

${ }^{\text {a }}$ Experimental values were obtained in chloroform or chloroform- d at room temperature. For experimental and simulated EPR spectra of $\mathbf{1}$ and $\mathbf{2}$, see: Figures $\mathrm{S} 7-\mathrm{S} 9$; for paramagnetic ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1}$ and $\mathbf{2}$ see: Figures S15, S16, S24 and S25. In DFT computations, no conformational analysis of the methyl groups was carried out, thus computed values of $A\left({ }^{1} \mathrm{H}\right)$ for the methyl groups are not reported. For C_{2}-symmetric conformation of $\mathbf{1}$, computed $A\left({ }^{13} \mathrm{C}\right)$ (in MHz) hyperfine coupling constants were as follows: -16.9 for C 1 and C 4 (quaternary carbons), +30.5 and +22.2 (avg. $=+26.4$) for $\mathrm{C} 9-\mathrm{C} 13$ (carbonyl carbons), 0.23 and -0.11 (avg. $=+0.06$) for C21, C25, C29 and C33 (methyl carbons), and -0.50 for C 2 and C 3 (vinylic carbons); for a simulation of EPR spectrum of $\mathbf{1}$, including ${ }^{15} \mathrm{~N}$ and ${ }^{13} \mathrm{C}$ nuclei at natural abundance, see: Figures S 7 and S 8 .
${ }^{\mathrm{b}}$ In ${ }^{1} \mathrm{H}$ NMR spectrum of 2, a very broad peak at $\delta=-40 \mathrm{ppm}$ was tentatively assigned to diastereotopic CH_{2} protons (Figures S24 and S25).

Figure S10. Stick and space-filling plots for the lowest energy conformations of nitroxides $\mathbf{1}$ (top) and 2 (bottom) computed at the UB3LYP/6-311G(d,p)+ZPVE level of theory.

7. Synthesis of Nitroxides.

Synthetic scheme for preparation of nitroxides $\mathbf{1}$ and $\mathbf{2}$ is summarized below.

Label	SM Label	SM 3 $(\mathrm{g} / \mathrm{mmol})$	THF (mL)	Li $(\mathrm{g} / \mathrm{mmol})$	DBB $(\mathrm{g} / \mathrm{mmol})$	$\mathrm{ClCO}_{2} \mathrm{Me}$ $(\mathrm{mL} / \mathrm{mmol})$	Yield $(\mathrm{g} / \%)$	Product label
JTP-9-31	JTP-9-27-f1	$0.067 / 0.253$	6.2	$0.039 / 5.06$	$0.068 / 0.25$	$0.15 / 1.94$	$0.075 /$	JTP-9-31-f1
JTP-9-40	JTP-9-27-f1	$1.089 / 3.84$	49	$0.440 / 63.4$	$0.512 / 1.92$	$1.2 / 15.5$	$0.515 / 33$	JTP-9-40-f1
JTP-9-46	JTP-9-27-f1	$5.633 / 19.9$	240	$2.23 / 321$	$2.631 / 9.88$	$6.2 / 80.2$	$4.667 / 58$	JTP-9-46f1
JTP10-63	JTP10-56f1	$4.190 / 14.78$	220	$1.95 / 281$	$1.872 / 7.03$	$4.6 / 59.53$	$1.167 / 20$	JTP10-63f1
HSD-1-6	HSD-1-4	$0.11 / 0.39$	4.8	$0.0435 / 6.22$	$0.0517 / 0.19$	$0.075 / 0.98$	$0.097 / 62$	HSD-1-6
HSD-1-20	HSD-1-16	$1.0 / 3.53$	15	$0.4 / 56.5$	$0.47 / 1.77$	$0.68 / 8.8$	$0.48 / 34$	HSD-1-20
HSD-1-37	HSD-1-29	$0.7 / 2.47$	10.5	$0.28 / 39.6$	$0.33 / 1.24$	$0.48 / 6.18$	$0.36 / 40$	HSD-1-37
HSD-1-52	HSD-1-51	$1.0 / 3.53$	48	$0.4 / 56.5$	$0.47 / 1.77$	$0.68 / 8.8$	$0.81 / 57$	HSD-1-52
HSD-1-56	HSD-1-51	$2.0 / 7.1$	96	$0.8 / 113$	$0.94 / 3.5$	$1.36 / 17.6$	$1.86 / 66$	HSD-1-56

HSD-1-56: Lithium ($0.80 \mathrm{~g}, 0.113 \mathrm{~mol}$, surface was refreshed with razor) was washed with heptane, dried under vacuum, charged with argon, and cut into small pieces immediately before using. Tetrahydrofuran (16 mL , freshly distilled from sodium and benzophenone) was added to lithium and cooled to $0^{\circ} \mathrm{C}$. A solution of 4,4'-di-tert-butylbiphenyl ($0.94 \mathrm{~g}, 3.5 \mathrm{mmol}$) in tetrahydrofuran (40 mL) was added to lithium dropwise; a blue color appeared immediately. After stirring for 3 h , the mixture was cooled to $-78^{\circ} \mathrm{C}$ and a solution of SM $\mathbf{3}(2.0 \mathrm{~g}, 7.1 \mathrm{mmol})$ in tetrahydrofuran (40 mL) was added dropwise; the reaction mixture became red shortly after the
addition, and then slowly became dark brown, to produce dianion of $3 .{ }^{\text {S }}$ After 16 h , the liquid was cannulated to mostly frozen methyl chloroformate $(1.36 \mathrm{~mL}, 17.6 \mathrm{mmol})$ and stirred for 1 day at $78^{\circ} \mathrm{C}$. The reaction was quenched with saturated aqueous ammonium chloride $(100 \mathrm{~mL})$ and allowed to warm to rt. The mixture was diluted with ethyl ether $(100 \mathrm{~mL} * 3)$ and washed with brine ($100 \mathrm{~mL} * 3$), dried over sodium sulfate and concentrated in rotatory evaporator. The crude was purified by column chromatography (silica gel, pentane/ethyl acetate, $1: 1, \mathrm{R}_{\mathrm{f}} 0.32$) to afford a light yellow solid ($1.86 \mathrm{~g}, 66 \%$).

Label	SM Label	SM 4 $(\mathrm{g} / \mathrm{mmol})$	TFA (mL)	DCM (mL)	Yield $(\mathrm{g} / \%)$	Product label
JTP10-92	JTP10-63rc	$0.157 / 0.391$	10	25	$0.086 / 73$	JTP10-92ppt1
JTP12-1	JTP10-63rc	$0.486 / 1.211$	31	78	0.420	crude
JTP12-61	JTP12-7f2	$2.637 / 6.570$	145	350	$1.720 / 87$	JTP12-61f2

JTP 12-61: SM $4(2.64 \mathrm{~g}, 6.57 \mathrm{mmol})$ and dichloromethane $(350 \mathrm{~mL})$ were charged to a round bottom flask and cooled in an ice water bath. Trifluoroacetic acid ($145 \mathrm{~mL}, 1.95 \mathrm{~mol}$) was added dropwise and stirred for five minutes before removing the ice water bath. The solution was stirred for one hour until starting material could not be observed by thin layer chromatography, then the dichloromethane and trifluoroacetic acid were evaporated in a rotary evaporator. The resulting brown oil was dissolved in methanol $(50 \mathrm{~mL})$ and evaporated three times to yield the crude as a brown solid. The crude was washed over silica (silica gel, hexanes/ethyl acetate, 3:2) then eluted (methanol/dichloromethane, 3:97, $\mathrm{R}_{\mathrm{f}} 0.48$) to yield $\mathbf{5}$ as a sand colored solid ($1.720 \mathrm{~g}, 87 \%$).

Label	SM Label	SM 5 $(\mathrm{g} / \mathrm{mmol})$	DCM (mL)	m-CPBA $(\mathrm{g} / \mathrm{mmol})$	Yield $(\mathrm{g} / \%)$	Product label	Spin conc. $(\%)$
JTP12-90	JTP12-61f2	$0.017 / 0.057$	0.8	$0.027 / 0.156$	$0.005 / 27$	JTP12-90f1	75
JTP12-91	JTP12-61f2	$0.006 / 0.020$	$0.7, \mathrm{Et}_{2} \mathrm{O}$	$0.008 / 0.046$		Very low conversion	
JTP12-93	JTP12-61f2	$0.022 / 0.073$	$0.8, \mathrm{Et}_{2} \mathrm{O}$	$0.031 / 0.180$		Very low conversion	
JTP12-97	JTP12-61f2	$0.194 / 0.644$	7.5	$0.405 / 2.346$	$0.039 / 19$	JTP12-97f1	85
JTP12-98	JTP12-61f2	$0.038 / 0.126$	3, benzene	$0.086 / 0.498$	Crude	Broad nmr, not isolated	
JTP13-13	JTP12-61f2	$0.849 / 2.817$	33	$1.826 / 10.58$	$0.145 / 16$	JTP13-13f1	100
JTP13-21	JTP12-61f2	$0.436 / 1.448$	18	$0.950 / 5.504$	$0.079 / 17$	JTP13-21f1	99

JTP 13-13: $5(0.849 \mathrm{~g}, 2.82 \mathrm{mmol})$ was charged to a round bottom flask and evacuated for one hour then filled with nitrogen before being dissolved in dichloromethane $(8.5 \mathrm{~mL})$. The resulting solution was cooled in an ice water bath and purified $m-$ CPBA $^{59}(1.83 \mathrm{~g}, 10.6 \mathrm{mmol})$ in dichloromethane (24 mL) was added dropwise. The resulting solution was stirred for five minutes, then the ice bath was removed. After three hours the solution was evaporated and dissolved in ethyl ether $(70 \mathrm{~mL})$, washed with saturated aqueous sodium bicarbonate until the aqueous layer was no longer yellow, washed with brine ($2 \times 15 \mathrm{~mL}$), dried over sodium sulfate, and evaporated to give white powdery crude. The crude was purified with column chromatography (silica gel, chloroform/ethyl acetate, $2: 1, \mathrm{R}_{\mathrm{f}} 0.45$) to afford nitroxide $\mathbf{1}$ contaminated with m-CPBA as a slightly orange powder. The m-CPBA was removed by washing with ethyl ether $(\sim 20 \times 1 \mathrm{~mL})$ to afford $\mathbf{1}$ as an orange powder ($145 \mathrm{mg}, 16 \%$). LRMS (ESI, 0.1% formic acid in methanol, label: JTP13-21f1): m/z ion type (\%RA = percent relative amplitude for m/z 150-1000) $339[\mathrm{M}+\mathrm{Na}]^{+}$ $(60 \%), 655[2 \mathrm{M}+\mathrm{Na}]^{+}(100 \%), 671[2 \mathrm{M}+\mathrm{K}]^{+}(5 \%)$. A crystal suitable for X-ray crystallography was obtained by slow evaporation from a 1:1 DCM:heptane solution (label: JTP12-97f1C).

Reduction of nitroxide 1 to the corresponding hydroxylamine 1-H using ascorbate.

Nitroxide $1(5.1 \mathrm{mg})$ was dissolved in ascorbate solution ($2 \mathrm{~mL}, 20 \mathrm{mM}$ ascorbate, 125 mM phosphate, 20 mM glutathione, pH 7.4) and allowed to react for 15 minutes. The solution was then saturated with sodium chloride, extracted with ethyl acetate ($3 \times 1 \mathrm{~mL}$), dried over sodium sulfate, and evaporated yielding 1-H. LRMS (ESI, 0.1\% formic acid in methanol, label: JTP13-23-2): m/z ion type (\%RA = percent relative amplitude for $\mathrm{m} / \mathrm{z} 150-1000) 318[\mathrm{M}+\mathrm{H}]^{+}(10 \%), 340[\mathrm{M}+\mathrm{Na}]^{+}$ (30\%), $657[2 \mathrm{M}+\mathrm{Na}]^{+}(100 \%)$.

3 - 6
Summary for preparation of compound 6

Label	$\begin{gathered} \text { SM } \\ \text { Label } \end{gathered}$	$\begin{gathered} \mathrm{SM} \\ (\mathrm{~g} / \mathrm{mmol}) \end{gathered}$	$\begin{aligned} & \text { THF } \\ & (\mathrm{mL}) \end{aligned}$	$\begin{gathered} \mathrm{Li} \\ (\mathrm{~g} / \mathrm{mmol}) \end{gathered}$	DBB ($\mathrm{g} / \mathrm{mmol}$)	$\mathrm{BrCH}_{2} \mathrm{CO}_{2} \mathrm{Me}$ ($\mathrm{mL} / \mathrm{mmol}$)	Yield (g/\%)
HSD-1-1-10	HSD-1-1-4	0.11/0.389	2.4	0.04/6.224	0.052/0.2	0.143/1.56	0.077/46
HSD-1-1-12	HSD-1-1-5	1.0/3.532	24	0.4/56.5	0.47/1.77	1.30/14.13	0.71/47
HSD-1-1-24	HSD-1-1-5	0.45/1.590	12	0.18/25.44	0.212/0.8	0.59/6.36	0.38/57

6 (label: HSD-1-1-12): Lithium ($0.4 \mathrm{~g}, 56.5 \mathrm{mmol}$, surface was refreshed with razor) was washed with heptane, dried under vacuum, charged with argon, and cut into small pieces immediately before using. Tetrahydrofuran (4 mL , distilled from sodium and benzophenone) was added to lithium and cooled to $0^{\circ} \mathrm{C}$. A solution of 4,4'-di-tert-butylbiphenyl $(0.47 \mathrm{~g}, 1.77 \mathrm{mmol})$ in tetrahydrofuran $(10 \mathrm{~mL})$ was added to lithium dropwise, a blue color appeared immediately. After stirring for 3 h , the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and a solution of $\operatorname{SM} \mathbf{3}(1.0 \mathrm{~g}, 3.532 \mathrm{mmol})$ in tetrahydrofuran $(10 \mathrm{~mL})$ was added dropwise. Following the addition, the reaction mixture became red, and then slowly turn to dark brown. ${ }^{\text {S8 }}$ After 16 h , the liquid was cannulated to mostly frozen methyl bromoacetate ($1.30 \mathrm{~mL}, 14.13$ mmol) and stirred for 1 day at $-78^{\circ} \mathrm{C}$. The reaction was quenched with saturated aqueous ammonium chloride (30 mL) and allowed to warm to rt . The mixture was diluted with ethyl ether $(30 \mathrm{~mL} * 3)$ and washed with brine ($30 \mathrm{~mL} * 3$), dried over sodium sulfate and concentrated in rotatory evaporator. The crude was purified by column chromatography (silica gel, pentane/ethyl acetate, $1: 1, \mathrm{R}_{\mathrm{f}} 0.52$) to afford a light yellow oil ($710 \mathrm{mg}, 47 \%$). LRMS-ESI ($0.1 \% \mathrm{HCOOH}$ in MeOH, label: HSD-1-1-12) , m / z (ion-type, \% RA for $\mathrm{m} / \mathrm{z}, 150-2000$) at $[\mathrm{M}+\mathrm{Na}]^{+}: 452.2$.

Summary for preparation of compound 7

Label	SM Label	SM $(\mathrm{g} / \mathrm{mmol})$	TFA $(\mathrm{mL} / \mathrm{mmol})$	DCM (mL)	Yield $(\mathrm{g} / \%)$
HSD-1-1-14	HSD-1-1-12	$0.4 / 0.932$	$2.4 / 31.7$	12	$0.127 / 42$
HSD-1-1-25	HSD-1-1-12, 24	$0.6 / 1.40$	$3.6 / 47.6$	18	$0.25 / 54$

7 (label: HSD-1-1-14): SM $6(400 \mathrm{mg}, 0.932 \mathrm{mmol})$ and dichloromethane $(12 \mathrm{~mL})$ were charged to a round bottom flask and cooled in an ice water bath. Trifluoroacetic acid ($2.4 \mathrm{~mL}, 31.7 \mathrm{mmol}$) was added dropwise and stirred for five minutes before removing the ice water bath. The solution was stirred for two hours until starting material could not be observed by thin layer chromatography, then the dichloromethane and trifluoroacetic acid were evaporated in a rotary evaporator. The resulting brown oil was dissolved in methanol (5 mL) and evaporated (the dissolution and evaporation repeated three times), to yield the crude as a brown solid. The crude was purified by column chromatography (silica gel, pentane/ethyl acetate, $3: 1, \mathrm{R}_{\mathrm{f}} 0.15$) to afford a brown solid ($127 \mathrm{mg}, 42 \%$). LRMS-ESI
($0.1 \% \mathrm{HCOOH}$ in MeOH , label: HSD-1-1-14), m / z (ion-type, $\%$ RA for $\mathrm{m} / \mathrm{z}, 150-2000$) at $[\mathrm{M}+\mathrm{Na}]^{+}$: 352.2.

Summary for preparation of compound 2

Label	SM Label	SM $(\mathrm{g} / \mathrm{mmol})$	DCM (mL)	mCPBA $(\mathrm{g} / \mathrm{mmol})$	Yield $(\mathrm{g} / \%)$	Spin conc. $(\%)$
HSD-1-1-15	HSD-1-1-14	$0.02 / 0.061$	1.0	$0.04 / 0.231$	$0.008 / 38$	--
HSD-1-1-17	HSD-1-1-14	$0.098 / 0.3$	4.9	$0.196 / 1.135$	$0.0353 / 35$	~ 100
HSD-1-1-26	HSD-1-1-25	$0.25 / 0.76$	12.5	$0.498 / 2.89$	$0.19 / 73$	91

2 (label: HSD-1-1-26): SM 7 ($250 \mathrm{mg}, 0.76 \mathrm{mmol}$) was charged to a round bottom flask and evacuated for one hour then filled with nitrogen before being dissolved in dichloromethane (5.0 mL). The resulting solution was cooled in an ice water bath and purified $m-\mathrm{CPBA}^{\mathrm{S} 9}(498 \mathrm{mg}, 2.89 \mathrm{mmol})$ in dichloromethane (7.5 mL) was added dropwise. The resulting solution was stirred for 5 min , then the ice bath was removed. After 2 h , the solvents were evaporated and the residue was dissolved in ethyl ether (15 mL), washed with saturated aqueous sodium bicarbonate until the aqueous layer was no longer yellow, washed with brine ($3 \times 15 \mathrm{~mL}$), dried over sodium sulfate, and evaporated to give pale yellow powdery crude. The crude was purified with column chromatography (silica gel, pentane/ethyl acetate, 3:1, $\mathrm{R}_{\mathrm{f}} 0.31$) to afford a light yellow solid (190 mg , 73\%). LRMS-ESI (0.1% HCOOH in MeOH , label: HSD-1-1-26), m / z (ion-type, \% RA for $\mathrm{m} / \mathrm{z}, 150-2000$) at $[\mathrm{M}+\mathrm{Na}]^{+}: 367.6$. Single crystal growth for X-ray crystallography: 20 mg of nitroxide $\mathbf{2}$ was dissolved in 1 ml of chloroform, and then was filtered to a small vial. This small vial was placed into a big vial containing 2 ml of pentane, and then after sealing the big vial, the assembly was left at room temperature for overnight. The crystal formation was observed next day.

Summary for preparation of compound 2-H
2-H (label: HSD-1-1-36): Nitroxide 2 (label: HSD-1-1-26, $10.6 \mathrm{mg}, 0.031 \mathrm{mmol}, 1.0$ equiv.) was dissolved into 2.5 ml of phosphate buffered saline (PBS; 12.4 mM) to give a homogenous solution. To this solution, L-ascorbic acid (ACS; $27.13 \mathrm{mg}, 0.154 \mathrm{mmol}, 5.0$ equiv.) was added. The mixture
was stirred at ambient temperature with the protection from light for 3 hours. After 3 hours, the solutions was extracted with ethyl acetate ($3 \mathrm{~mL} * 3$), and the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under the reduced pressure, and then evacuated under high vacuum to afford the residue of the reaction of 7 mg (label: HSD-1-1-36). The residue was dissolved in CDCl_{3} and characterized by NMR, IR and MS. LRMS-ESI ($0.1 \% \mathrm{HCOOH}$ in MeOH, HSD-1-1-36), m/z (iontype, $\%$ RA for $\mathrm{m} / \mathrm{z}, 150-2000)$ at $[\mathrm{M}+\mathrm{Na}]^{+}: 368.1$.
8. Spectra of Nitroxides (Paramagnetic ${ }^{1} \mathrm{H}$ NMR and IR), and Spectra of Diamagnetic Synthetic Intermediates and Hydroxylamines.

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4}$ (label: JTP10-63rc).

Figure S12. ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4}$ (label: JTP10-63rc).

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5 (label: JTP12-61f2).

Figure S14. ${ }^{13} \mathrm{C}$ NMR spectrum ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5 (label: JTP12-61f2).

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, 0.9 \mathrm{M}$ in CDCl_{3}) of nitroxide $\mathbf{1}$ (label: JTP13-31f1).

Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ca. 0.9 M) of nitroxide $\mathbf{1}$ with one drop of CHCl_{3} (label: JTP13-13f1).

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of hydroxylamine 1-H (label: JTP13-23-2).

Figure S18. ${ }^{13} \mathrm{C}$ NMR spectrum ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of hydroxylamine $\mathbf{1 - H}$ (label: JTP13-23-2).

Figure S19. ${ }^{1} \mathrm{H}$ NMR spectrum ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of hydroxylamine $\mathbf{1 - H}$ after overnight in freezer (label: JTP13-23-2).

Figure S20. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{6}$ (Label: HSD-1-1-12).

Figure S21. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 6 (Label: HSD-1-1-12).

Figure S22. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 7 (Label: HSD-1-1-14).

Figure S23. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 7 (Label: HSD-1-1-14).

Figure S24. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ca. 0.9 M) of nitroxide 2 (label: JTP13-13f1).

Figure S25. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ca. 0.9 M$)$ of nitroxide $\mathbf{2}$ with one drop of TMS (label: JTP13-13f1).

Figure S26. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2-H (Label: HSD-1-1-36).

Figure S27. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2-H (Label: HSD-1-1-36).

Figure S28. IR spectrum (ATR, diamond) of 4 (label: JTP10-53f3).

Figure S29. IR spectrum (ATR, diamond) of 5 (label: JTP12-61f2)

Figure S30. IR spectrum (ATR, diamond) of nitroxide 1 (label: JTP13-13f1)

Figure S31. IR spectrum (ATR, diamond) of hydroxylamine 1-H (label: JTP13-23-2).

Figure 32. IR spectrum (ATR, ZnSe) of compound 6 (label: HSD-1-1-12).

Page 1

Figure S33. HRMS-ESI $\left(1 \% \mathrm{CH}_{3} \mathrm{COONa}\right.$ in $\left.3: 1(\mathrm{v} / \mathrm{v}) \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}\right)$ of compound 6 (Label: HSD-1-1-12).

Collection time: Thu Oct 27 17:59:46 2016 (GMT-05

Figure S34. IR spectrum (ATR, ZnSe) of compound 7 (Label: HSD-1-1-14).

Elemental Composition Report

Multiple Mass Analysis: 2 mass(es) processed

Tolerance $=50.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Isotope cluster parameters: Separation $=1.0 \quad$ Abundance $=1.0 \%$
Monoisotopic Mass, Odd and Even Electron Ions
137 formula(e) evaluated with 15 results within limits (all results (up to 1000) for each mass)

Figure S35. HRMS-EI ($1 \% \mathrm{CH}_{3} \mathrm{COONa}$ in 3:1 (v/v) $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$) of compound 7 (Label: HSD-1-1-14).
(

Collection time: Tue Mar 22 20:10:58 2016 (GMT-05

Figure S36. IR spectrum (ATR, ZnSe) of nitroxide 2 (label: HSD-1-26).

Multiple Mass Analysis: 3 mass(es) processed
Tolerance $=15.0 \mathrm{PPM} / \mathrm{DBE}:$ min $=-1.5, \max =25.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Vonoisotopic Mass, Odd and Even Electron Ions
156193 formula(e) evaluated with 13 resulta within imita (all resulta (up to 1000) for each masa)
Eementa Used:
$12 \mathrm{C}: 0-40 \quad 13 \mathrm{C}: 0-1 \quad 1 \mathrm{H}: 0.60 \quad 14 \mathrm{~N}: 0.1 \quad 16 \mathrm{O}: 0-11 \quad 23 \mathrm{Na}: 1-1$
Huana/ Raica HSD-1-1-15 ESI in Nassatse solufian23-Feb-2016 $\quad 6.00000000$
6031328 (0.502) AM (Cen ,3, 80.00, H: 5000.0,0.00, 1.00); Sm (SG, 1x3.00); Cm (10:27)

Minimun: Maximun:	$\begin{aligned} & 10.00 \\ & 100.00 \end{aligned}$		5.0	15.0	$\begin{aligned} & -1.5 \\ & 25.0 \end{aligned}$						
Mass	RA	Cale. Mass	mba	PPM	dee	i-FIT	Fornula				
367.0870	100.00	367.0879	-0.9	-2.5	6.0	0.1	12014	1818	14.	1609	23 Na
		367.0902	-3.2	-8. 7	15.0	1.0	12021	13 C	1815	1604	23 Na
		367.0935	3.5	9.5	6.5	1.3	12013	136	$1: 17$	14 N	1609
							23 Ma				
		367.0921	4.9	13.3	15.0	2.6	12021	$1: 144$	14.3	1604	23 Na
369.0916	16.10	368.0913	0.3	0.8	6.0	0.0	12013	130	1 E 18	14 n	1609
							2 mma				
		368.0899	1.7	4.6	14.5	0.1	12021	1 E 15	14 n	1604	23 Na
		368.0958	-4.2	-11.4	5.5	0.3	12014	$1: 19$	14 n	1609	23 Ma
		368.0872	4.4	12.0	10.0	0.3	12018	$1: 177$	1607	23 Na	
371.2209	17.65	371.2198	1.1	3.0	5.5	0.0	$12 \mathrm{C21}$	1:32	1604	23 Na	
		371.2225	-1.6	-4.3	10.0	0.0	12024	1:30	14 n	160	23 ma
		371.2180	2.9	7.8	10.5	0.2	12023	130	$1: 29$	14 N	160
							23 Ma				
		371.2239	-3.0	-8.1	1.5	0.2	12016	13 C	1833	14 N	1606
							23 Ma				

Figure S37. HRMS-ESI $\left(1 \% \mathrm{CH}_{3} \mathrm{COONa}\right.$ in $\left.3: 1(\mathrm{v} / \mathrm{v}) \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}\right)$ of nitroxide 2 (Label: HSD-1-1-15).
(
Collection time: Mon Jul 18 18:52:41 2016 (GMT-05:
Mon Jul 18 19:53:36 2016 (GMT-05:00)
FIND PEAKS:
Spectrum:
"HSD-1-1-36

Figure S38. IR spectrum (ATR, ZnSe) of compound 2-H (label: HSD-1-1-36).

Multiple Mass Analysis: 3 mass(es) processed
Tolerance $=50.0 \mathrm{PPM} / \mathrm{DBE}$: $\mathrm{min}=-1.5$, $\mathrm{max}=50.0$
Isotope cluster parameters: Separation =1.0 Abundance $=1.0 \%$
Monoisotopic Mass, Odd and Even Electron Ions
259 formula(e) evaluated with 20 results with in limts (all results (up to 1000) for each mass)

$\begin{array}{lllll}\text { Minimum: } & 5.00 & 200.0 & 50.0 & 50.5\end{array}$
リam =
343.1069 100.
$345.3514 \quad 5.93$
$346.1134 \quad 15.78$

Cala. Mass	mba
345.1060	0.9
34,	
343.1154	${ }_{-9.5}$
343.0974	9.5
345.1196	-11.7
345.1212	-14.3
345.0916	15.3
343.3521	-0.7
345.3607	-9.3
345.3396	11.8
345.3369	14.5
346.1138	$\mathrm{Bi}_{5}{ }^{4}$
346.1079	${ }^{5}, 5$
346.1205	-7.1
346.1053	9.1
346.1232	-9.9
346.1264	-13.0

Figure S39. HRMS-EI ($1 \% \mathrm{CH}_{3} \mathrm{COONa}$ in $\left.3: 1(\mathrm{v} / \mathrm{v}) \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}\right)$ of compound 2-H (Label: HSD-1-1-36).

9. Supporting References.

S1. SAINT, Bruker Analytical X-Ray Systems, Madison, WI, current version.
S2. SADABS, Bruker Analytical X-Ray Systems, Madison, WI, current version; empirical correction for absorption anisotropy: Blessing, R. Acta Cryst. 1995, A51, 33-38.

S3. SHELX: Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122.
S4. http://chemmatcars.uchicago.edu/
S5. http://www.iumsc.indiana.edu/projects/SCrAPS/index.html
S6. Toy, A. D., Chaston, S. H. H., Pilbrow, J. R., Smith, T.D. Electron spin resonance study of the copper(II) chelates of certain monothio- β-diketones and diethyldithiocarbamate. Inorg. Chem. 1971, 10, 2219-2225.

S7. Frisch, M. J., et al. Gaussian 09, Revision A.01; Gaussian, Inc.: Wallingford, CT, 2009.
S8. (a) Donohoe, T. J.; Headley, C. E.; Cousins, R. P. C.; Cowley, A. Flexibility in the Partial Reduction of 2,5-Disubstituted Pyrroles: Application to the Synthesis of DMDP. Org. Lett. 2003, 5, 999-1002. (b) Donohoe, T. J.; Thomas, R. E.; Cheeseman, M. D.; Rigby, C. L.; Bhalay, G.; Linney, I. D. Flexible Strategy for the Synthesis of Pyrrolizidine Alkaloids. Org. Lett. 2008, 10, 3615-3618.

S9. Rajca, A.; Shiraishi, K.; Rajca, S. Stable Diarylnitroxide Diradical with Triplet Ground State. Chem. Comтип. 2009, 4372-4374.

10. Cartesian Coordinates for UB3LYP/6-311G(d,p)+ZPVE Geometries of the Lowest Enegry

Conformations of Nitroxides 1 and 2.

Nitroxide $1 C_{2}$, Of11 (Table S4):

Nitroxide $2 C_{2}$, Rot8 (Table S5): geometry optimization starting from X-ray structure geometry

[^0]: ${ }^{\text {a }}$ Symmetry transformations used to generate equivalent atoms:

