Supporting Information

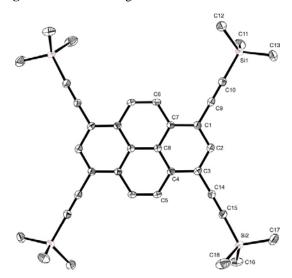
Trimethylsilyl Group-Assisted Stimuli-Response: Self-Assembly of 1,3,6,8-Tetra(trimethysilylethynyl)pyrene

Feng Xu,^a Takanori Nishida,^a Kenta Shinohara,^a Lifen Peng,^a Makoto Takezaki,^a Takahiro Kamada,^b Haruo Akashi,^b Hiromu Nakamura,^c Kouki Sugiyama,^c Kazuchika Ohta,^c Akihiro Orita^{*a} and Junzo Otera^a

^aDepartment of Applied Chemistry and Biotechnology, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700 0005 Japan, ^bResearch Institute of Natural Sciences, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700 0005 Japan, ^cSmart Material Science and Technology, Interdisciplinary Graduate School of Science and Technology, Shinshu University 1-15-1 Tokida, Ueda, 386 8567 Japan

Table of contents	
1. General consideration	S4
2. Structure of Y-form	S4
Figure S1. ORTEP diagram of Y-form	S4
Figure S2. Packing structures of Y-form	S5
Table S1. Crystal data and structure refinements for Y-form	n S6
3. XRD profiles of $O_{C^{-}}$, $O_{A^{-}}$ and $O_{K^{-}}$ forms	S10
Figure S3. XRD profile of Oc-form	S10
Table S2. X-ray diffraction data of O _C -form	S10
Figure S4. Lattice constants [Å] of O_C -form	S11
Figure S5. XRD profile of O _A -form	S11
Figure S6. XRD profile of O _K -form	S12
Table S3. X-ray diffraction data of O _K -form	S12
Figure S7. Lattice constants [Å] of O_K -form	S13
4. Recrystallization/reprecipitation of 1	S14
Table S4. Conditions and results in recrystallization/repreci	pitation of 1 S14
Figure S8. PL spectra of Y-forms and O_C -forms obtain	ned from recrystallization/reprecipitaion
	S14
5. DSC measurements of 1	S15
Figure S9. DSC profiles of Y-form	S15
Figure S10. DSC profiles of O _A -form	S16
6. Thermochromism of 1	S17
Scheme S1. Summary of thermochromism of 1	S17
6.1 Thermal phase transition of Y-form to O_C -form	S17

Figure S11. Pictures of Y- and O _C -forms in thermochromic	c phase transition	S17
Figure S12. PL spectrum of O _C -form which was obtained by heating Y-form		S17
6.2 Thermal phase transition of O_A -form to O_K -form	S18	
Figure S13. Pictures of $O_{C^{-}}$, $O_{K^{-}}$ and O_{A} -forms under sum	light and UV-light	S18
Figure S14. PL profiles of O _C -, O _K - and O _A -forms	S18	
7. Vapochromism	S19	
Scheme S2. Summary of vapochromism of 1	S19	
7.1 Acetone-promoted phase transition of O_C -, O_A - and O_K -fo	orms to Y-form S19)
Figure S15. Apparatus for vapochromic phase transition	S19	
Figure S16. PL profiles of Y-forms which were obtained	d by vapochromic ph	ase transition from
O _C -, O _A - and O _K -forms	S20	
7. 1.1 Vapochromic phase transition from O_C -form to Y-form	s21	
Figure S17. Pictures of O _C - and Y-forms in acetone-promo	oted vapochromism	S21
Figure S18. DSC profiles of Y-form obtained from O _C -for	rm by acetone-promo	ted phase transition
	S21	
7. 1.2 Vapochromic phase transition from O_A -form to Y-form	s22	
Figure S19. Pictures of O _A - and Y-forms in acetone-promo	oted vapochromism	S22
Figure S20. DSC profiles of Y-form obtained from O_A -for	rm by acetone-promo	ted phase transition
	S22	
7. 1.3 Vapochromic phase transition from O_K -form to Y-form	s23	
Figure S21. Pictures of O_{K} - and Y-forms in acetone-prome	oted vapochromism	S23
Figure S22. DSC profiles of Y-form obtained from O_K -form	rm by acetone-promo	ted phase transition
	S23	
7.2 Hexane-promoted phase transition of O_A - and O_K -forms	to O_C-form S24	
Figure S23. PL spectra of authentic O_C -form and O_C -form	n obtained from O _A -fo	orm S24
Figure S24. PL spectra of authentic O_C -form and O_C -form	n obtained from O _K -fo	orm S25
Figure S25. PL spectra of authentic Y-form and Y-form ex	posed to hexane vapo	or S25
8. Mechanochromism of 1	S26	
Scheme S3. Summary of mechanochromism of 1	S26	
Figure S26. Pictures of Y- and O_A -forms in grinding-prom	oted mechanochromis	sm S26
Figure S27. PL spectra of O_A -forms which were obtain	ed by mechanochrom	nic phase transition
from Y-, O _C - and O _K -forms	S27	
9. Fluorescence life time	S28	
Figure S28. Fluorescence decay profiles of 1	S28	
Table S5. Summary of emission lifetime, PL quantum yield	and rate constants	S29
10. Thermogravimetry analysis (TGA)	S 30	
Figure S29. TGA thermogram of O _C -form	S 30	
11. UV—Vis absorption and PL spectra of 1 in CH_2Cl_2	S30	
Figure S30 . UV—Vis absorption spectra of 1 in CH ₂ Cl ₂ (1		
		S 30
Figure S31. PL spectra of 1 in CH_2Cl_2 (10 ⁻² to 10 ⁻⁵ mol/L)	0 ⁻⁴ to 10 ⁻⁵ mol/L) S31	S30
		S30

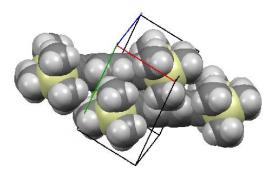

Figure S32. Microscopic observations of O_C -form on heating	S31	
13. XRD analyses and microscopic observations of O_K -form on heat	ting	S32
Figure S33. XRD profiles of O_K -form on heatingS32		
Figure S34. Microscopic observations of O_K -form on heating	S33	
14. References of Supporting Information and NMR charts of 1	S34	
Figure S35. NMR charts of 1 (CDCl3)S35		

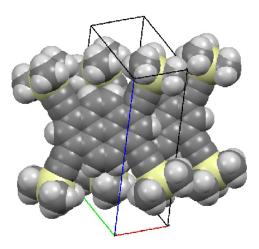
1. General Considerations: Unless otherwise stated, all reactions were carried out under an argon atmosphere. Anhydrous tetrahydrofuran (THF) was purchased and used without further purification. Toluene and i-Pr₂NH were distilled from CaH₂ prior to use. All NMR spectra were recorded at ambient temperature (ca. 20 °C) on JEOL LAMBDA 300 and LAMBDA 500 and ECS-400 NMR spectrometers, and referenced to an internal standard tetramethylsilane. MALDI-TOF MS was recorded on BRUKER autoflex speed. UV-vis absorption and emission spectra were measured in degassed solvents at 25 °C. Absolute photoluminescence quantum yield was measured by integrated sphere system. The phase transition sequences for **1** were revealed by using a polarizing optical microscope (Nikon ECLIPSE E600 POL) equipped with a heating plate (Mettler FP82HT hot stage, Mettler FP-90 Central Processor) and a differential scanning calorimeter (Shimadzu DSC-50). The decomposition temperatures were measured by a Rigaku Thermo plus TG 820 thermogravity analyser. The identification of the mesophases was performed by using a small angle X-ray diffractometer (Bruker Mac SAXS System: Cu-K α radiation) equipped with a heating plate (Mettler FP82HT hot stage, Mettler FP-90 Central Processor).

Compound 1 was prepared according to the reported procedure.^{S1} Y- and O_C -forms were obtained by recrystallization from acetone and reprecipitation from hexane, respectively. O_A -form was obtained by grinding Y- or O_C -form by mortar and pestle. O_K -form was obtained by heating O_A -form at 150 °C for 2 h.

2. Structure of Y-form

Figure S1. ORTEP diagram of Y-form




The crystallographically independent atoms are labeled.

Formula: C36 H42 Si4 Unit Cell Parameters: a 6.3160(18) b 10.023(3) c 15.378(5) P-1

CCDC 1490712

Figure S2. Packing structures of Y-form

Table S1. Crystal data and structure refinements for Y-form

A. Crystal Data

Empirical Formula	C ₃₆ H ₄₂ Si ₄
Formula Weight	587.07
Crystal Color, Habit	yellow, platelet
Crystal Dimensions	0.450 X 0.060 X 0.010 mm
Crystal System	triclinic
Lattice Type	Primitive
Lattice Parameters	a = 6.316(2) Å b = 10.023(3) Å c = 15.378(5) Å α = 70.431(9) ° β = 81.290(12) ° γ = 80.513(13) ° V = 899.9(5) Å ³
Space Group	P-1 (#2)
Z value	1
D _{calc}	1.083 g/cm ³
F000	314.00
μ(ΜοΚα)	1.865 cm ⁻¹

B. Intensity Measurements

Diffractometer	Saturn724
Radiation	MoK α ($\lambda = 0.71075$ Å) multi-layer mirror monochromated
Voltage, Current	50kV, 24mA
Temperature	-179.8°C
Detector Aperture	70 x 70 mm
Data Images	2520 exposures
ω oscillation Range	-110.0 - 70.0 ⁰
Exposure Rate	8.0 sec./ ⁰
Detector Swing Angle	-19.510
ω oscillation Range	-110.0 - 70.0 ⁰
Exposure Rate	8.0 sec./ ⁰
Detector Swing Angle	-19.510
ω oscillation Range	-110.0 - 70.0 ⁰
Exposure Rate	8.0 sec./ ^O
Detector Swing Angle	-19.510
ω oscillation Range	-110.0 - 70.0 ⁰
Exposure Rate	8.0 sec./ ⁰
Detector Swing Angle	-19.510

ω oscillation Range	-110.0 - 70.0 ⁰
Exposure Rate	8.0 sec./ ⁰
Detector Swing Angle	-19.51 ⁰
ω oscillation Range	-110.0 - 55.00
Exposure Rate	8.0 sec./ ^O
Detector Swing Angle	-19.51 ⁰
ω oscillation Range	-76.0 - 59.0 ⁰
Exposure Rate	8.0 sec./ ^O
Detector Swing Angle	-19.51 ⁰
ω oscillation Range	-110.050.00
Exposure Rate	8.0 sec./ ^O
Detector Swing Angle	-19.51 ⁰
Detector Position	45.04 mm
Pixel Size	0.141 mm
20 _{max}	60.1 ⁰
No. of Reflections Measured	Total: 24975 Unique: 4111 (R _{int} = 0.0476)
Corrections	Lorentz-polarization Absorption (trans. factors: 0.887 - 0.998)

C. Structure Solution and Refinement

Structure Solution	Direct Methods
Refinement	Full-matrix least-squares on F^2
Function Minimized	$\Sigma \le (Fo^2 - Fc^2)^2$
Least Squares Weights	$w = 1/ [\sigma^{2}(Fo^{2}) + (0.0394 \cdot P)^{2} + 0.9802 \cdot P]$ where P = (Max(Fo^{2},0) + 2Fc^{2})/3
2θ _{max} cutoff	55.00
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	4111
No. Variables	181
Reflection/Parameter Ratio	22.71
Residuals: R1 (I>2.00σ(I))	0.0545
Residuals: R (All reflections)	0.0621
Residuals: wR2 (All reflections)	0.1218
Goodness of Fit Indicator	1.098
Max Shift/Error in Final Cycle	0.001
Maximum peak in Final Diff. Map	0.45 e⁻/Å ³
Minimum peak in Final Diff. Map	-0.25 e ⁻ /Å ³

3. XRD profiles of $O_{C^{\text{--}}}, O_{A^{\text{--}}}$ and $O_{K^{\text{-}}}$ forms

Figure S3. XRD profile of Oc-form

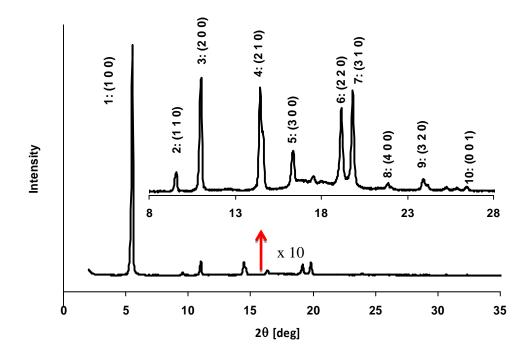


Table S2. X-ray diffraction data of $O_C\mbox{-form}$

Peak		Spacing		Miller indices
no.	20 [deg]	Obsd [Å]	calcd [Å]	(h k l)
1	5.52	16.0	16.0	(1 0 0)
2	9.59	9.21	9.26	(1 1 0)
3	11.02	8.20	8.02	(2 0 0)
4	14.46	6.12	6.06	(2 1 0)
5	16.37	5.41	5.35	(3 0 0)
6	19.17	4.63	4.63	(2 2 0)
7	19.82	4.47	4.45	(3 1 0)
8	21.88	4.08	4.01	(4 0 0)
9	23.92	3.72	3.68	(3 2 0)
10	26.45	3.37		(0 0 1)

Figure S4. Lattice constants [Å] of O_C -form

a	h	Ζ
18.5	3.37	1.0 for
		(p = 1.0)

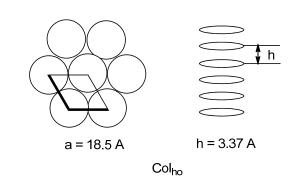


Figure S5. XRD profile of O_A -form

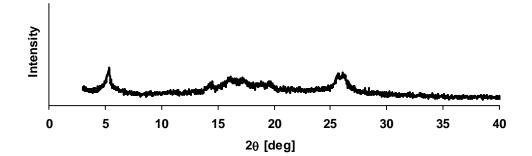


Figure S6. XRD profile of O_K-form

 $O_K\text{-}\text{form}$ was prepared by heating $O_A\text{-}\text{form}$ at 265 °C and subjected to XRD analysis.

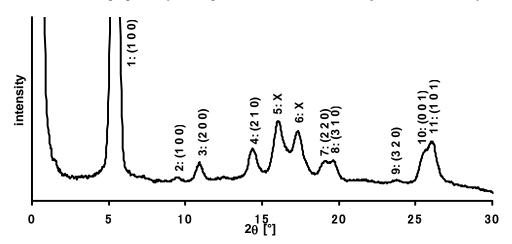
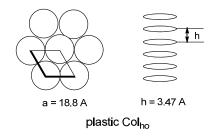


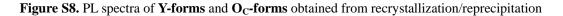
Table S3. X-ray diffraction data of O_K -form

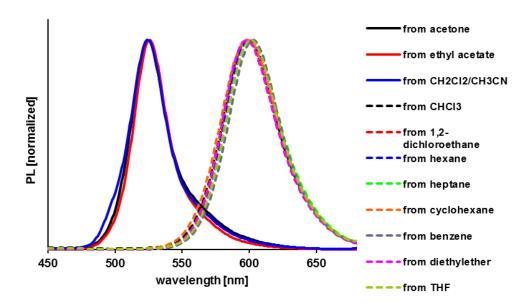

Peak		Spacing		Miller indices
no.	20 [deg]	Obsd [Å]	calcd [Å]	(h k I)
1	5.42	16.34	16.31	(1 0 0)
2	9.50	9.35	9.42	(1 1 0)
3	10.92	8.11	8.16	(2 0 0)
4	14.36	6.16	6.16	(2 1 0)
5	16.06	5.51		Х
6	17.34	5.11		Х
7	19.14	4.65	4.71	(2 2 0)
8	19.64	4.52	4.52	(3 1 0)
9	23.74	3.74	3.74	(3 2 0)
10	25.70	3.47		(0 0 1)
11	26.06	3.42		(1 0 1)

$$\frac{1}{d_{101}^2} = \frac{1^2}{a^2} + \frac{1^2}{c^2}, (a = 18.8 \text{ Å}, c = 3.47 \text{ Å})$$

 $d_{101} = 3.39$ Å (calcd), 3.42 Å (observed)

Figure S7. Lattice constants [Å] of O_K -form

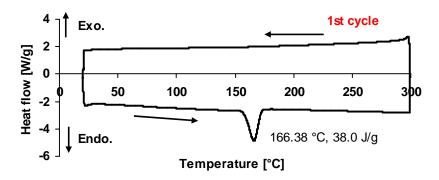

a	h	Ζ
18.8	3.47	1.1 for
		$(\rho = 1.0)$

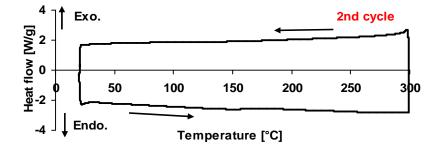


4. Recrystallization/reprecipitation of 1

Solvent used for	Form
recrystallization/reprecipitation	
Acetone ^a	Y-form
ethyl acetate ^a	Y-form
CH ₂ Cl ₂ /CH ₃ CN ^c	Y-form
CHCl ₃ ^b	O _C -form
1,2-dichloroethane ^b	O _C -form
Hexane ^a	O _C -form
Heptane ^a	O _C -form
c-hexane ^a	O _C -form
Benzene ^b	O _C -form
Et ₂ O ^b	O _C -form
THF ^b	O _C -form
^a Saturated solution was kept in a sea	led flask at room
temperature. ^b Saturated solution v	as kept at room
temperature, and the solvent	was gradually
evaporated. ^c A small amount of C	H ₃ CN was added
to a saturated CH ₂ Cl ₂ solution.	

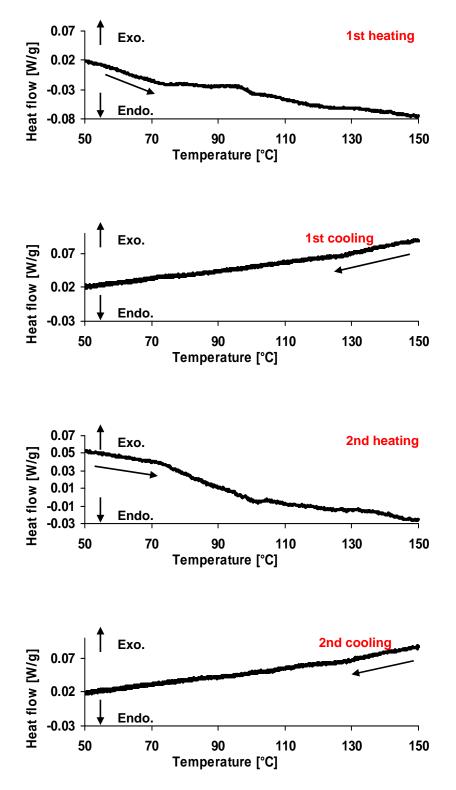
Table S4. Conditions and results in recrystallization/reprecipitation of 1




5. DSC measurements of 1

DSC thermograms were recorded using the virgin samples of 1 at 10 °C/min on heating and -10 °C/min on cooling rates.

Figure S9. DSC profiles of Y-form



At 166 °C in the first cycle, **Y-form** underwent the phase transition to O_C -from.

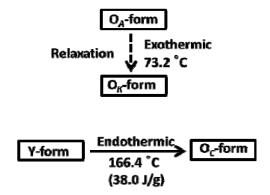
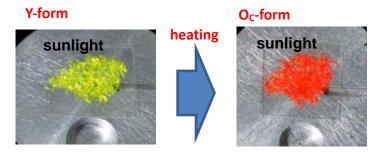
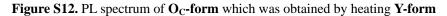
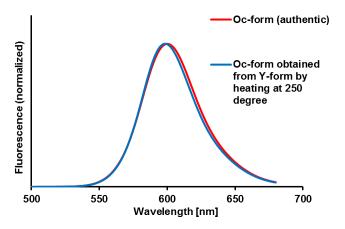

In the second cycle, neither exothermic nor endothermic profile was recorded diagnostic of no phase transition of **O_C-form**.

Figure S10. DSC profiles of O_A-form

6. Thermochromism of 1


Scheme S1. Summary of thermochromism of 1




6.1 Thermal phase transition of Y-form to O_C -form

Y-form 1 was placed on a thin glass plate and heated by a hot plate until the color changed to orange ($\sim 250 \,^{\circ}$ C). Phase transitions were confirmed by color and PL profile.

Figure S11. Pictures of Y- and O_C-forms in thermochromic phase transition

6.2 Thermal phase transition of O_A-form to O_K-form

 O_A -form was placed on a thin glass plate and heated by a hot plate at 270 °C for 12 h. Phase transition was confirmed by comparison of PL profiles because **O**-forms showed similar orange colors.

Figure S13. Pictures of $O_{C^{-}}$, $O_{K^{-}}$ and O_{A} -forms under sunlight and UV-light

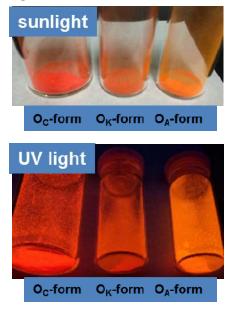
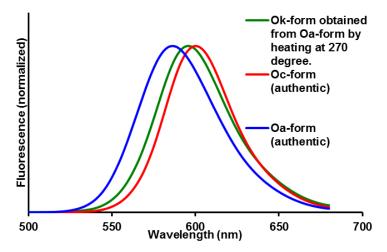
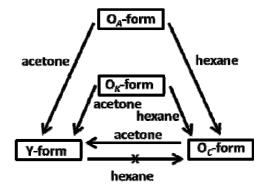
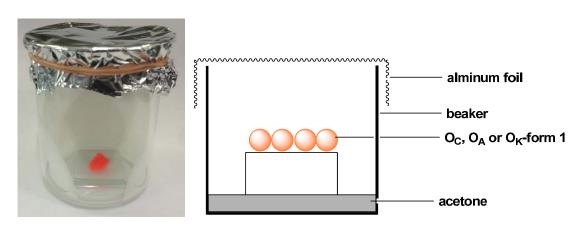




Figure S14. PL profiles of O_{C} -, O_{K} - and O_{A} -forms


7. Vapochromism of 1

Scheme S2. Summary of vapochromism of 1

7.1 Acetone-promoted phase transition of O_{C} -, O_{A} - and O_{K} -forms to Y-form

In a glass beaker was placed O_{C} -, O_{A} - or O_{K} -form, and a small amount of acetone was added. The beaker was put a lid on by aluminum foil, and kept at rt overnight. Phase transitions were confirmed by color, PL profiles and DSC.

Figure S15. Apparatus for vapochromic phase transition

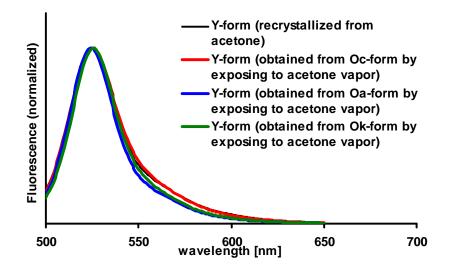


Figure S16. PL profiles of Y-forms which were obtained by vapochromic phase transition from O_{C} -, O_{A} - and O_{K} -forms.

7. 1.1 Vapochromic phase transition from O_C -form to Y-form

Figure S17. Pictures of O_{C} - and Y-forms in acetone-promoted vapochromism

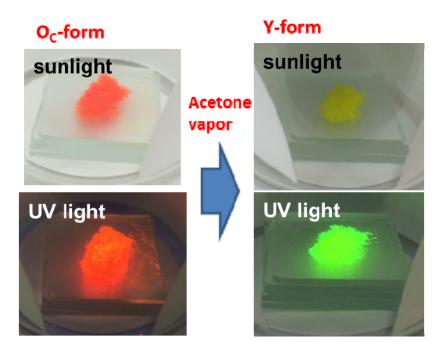
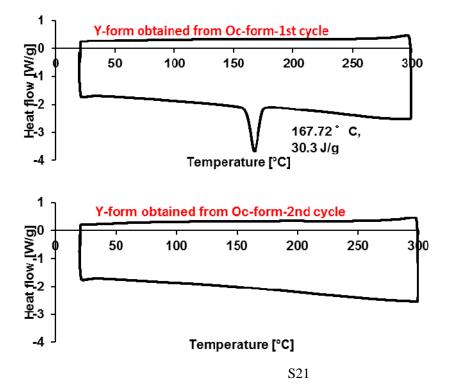



Figure S18. DSC profiles of Y-form obtained from O_C-form by acetone-promoted phase transition

7. 1.2 Vapochromic phase transition from O_A-form to Y-form

Figure S19. Pictures of O_A - and Y-forms in acetone-promoted vapochromism

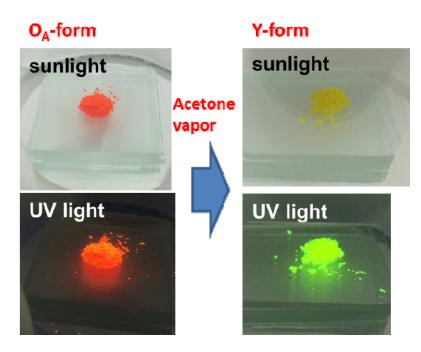
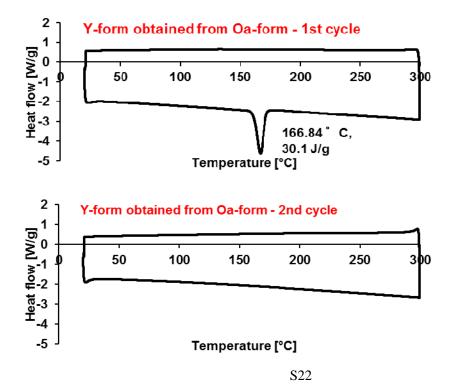



Figure S20. DSC profiles of Y-form obtained from OA-form by acetone-promoted phase transition

7. 1.3 Vapochromic phase transition from O_K-form to Y-form

Figure S21. Pictures of O_K- and Y-forms in acetone-promoted vapochromism

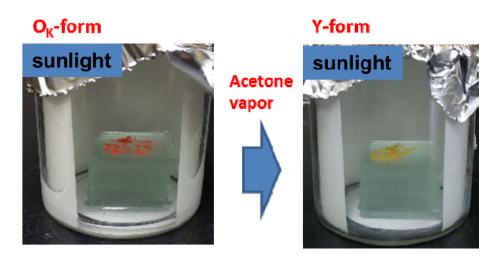
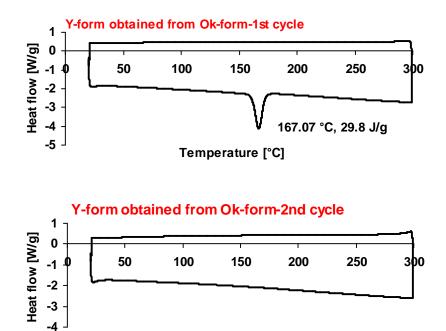
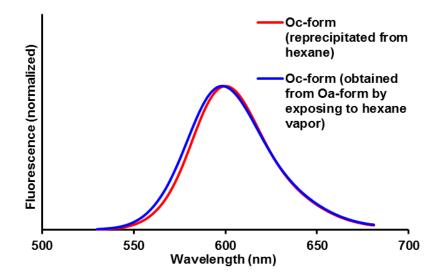
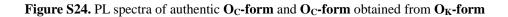



Figure S22. DSC profiles of Y-form obtained from OK-form by acetone-promoted phase transition

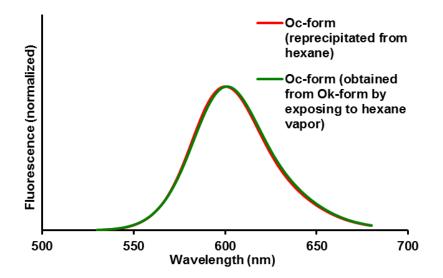
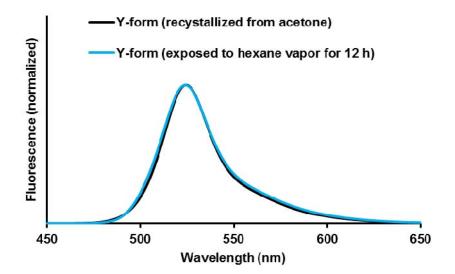


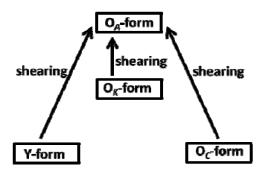

Temperature [°C]

7.2 Hexane-promoted phase transition of $O_{A}\mbox{-}$ and $O_{K}\mbox{-} forms$ to $O_{C}\mbox{-} form$

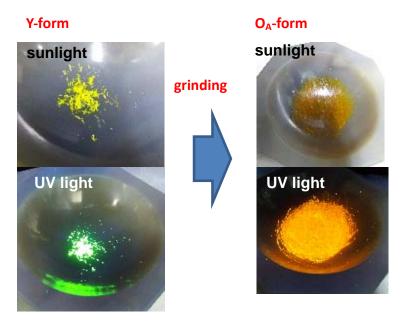
In a glass beaker was placed O_A - or O_K -form, and a small amount of hexane was added. The beaker was put a lid on by aluminum foil, and kept at rt overnight. Phase conversions were confirmed by comparison of PL profiles.

Figure S23. PL spectra of authentic O_C -form and O_C -form obtained from O_A -form


Figure S25. PL spectra of authentic Y-form and Y-form exposed to hexane vapor

When Y-form was exposed to hexane vapor, no color change was observed.


8. Mechanochromism of 1

Scheme S3. Summary of mechanochromism of 1

On a mortar was placed **Y-**, O_{C} - or O_{K} -form 1, and 1 was ground by a pestle. Phase transitions were confirmed by color change and comparison of PL profiles.

Figure S26. Pictures of Y- and O_A -forms in grinding-promoted mechanochromism

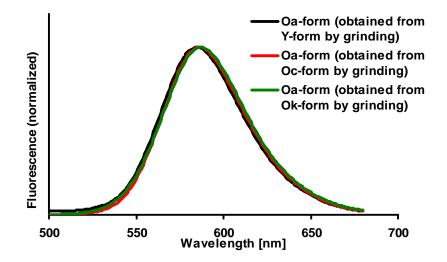
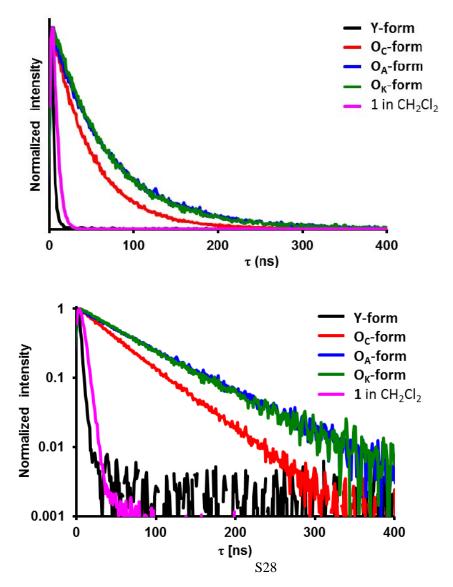



Figure S27. PL spectra of O_A -forms which were obtained by mechanochromic phase transition from Y-, O_C - and O_K -forms

9. Fluorescence life time

Fluorescence decays were measured using an apparatus including a femtosecond laser system and a streak camera.^{S2} The tetra(trimethylsilylethynyl)pyrene (1) was excited using by the SHG light of a femtosecond Ti:Sapphire laser (Spectra-Physics, Tsunami 3960, the wavelength of pulse ~ 800 nm, the full width at half maximum of the pulse ~80 fs) pumped by the SHG output of a Nd:YVO₄ laser (Spectra-Physics, Millennia-V). The detected fluorescence was dispersed by a monochromator and measured using a streak scope (Hamamatsu, C4334). The fluorescence signals were averaged using a PC. Fluorescence decay measurements were performed at 22 °C for 1. The fluorescence decay curve for each form of 1 can be represented by a single exponential decay function, $I(t)=I_0 \exp(-t/\tau)$ where τ is the fluorescence lifetime.

Figure S28. Fluorescence decay profiles of 1

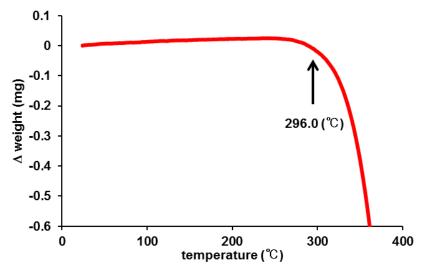
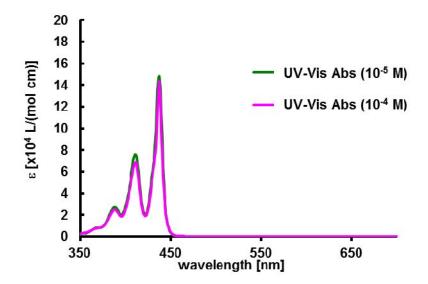
	Y-form	O _A -form	O _C -form	Ο _κ -form	In CH ₂ Cl ₂
τ (ns)	2.24	70.8	48.6	66.8	3.56
Φ_{F}	0.66	0.57	0.49	0.17	
k _r /k _{nr} (x 10 ⁶ s ⁻¹)	300/155	8.1/6.1	10.1/10.5	2.6/12.4	

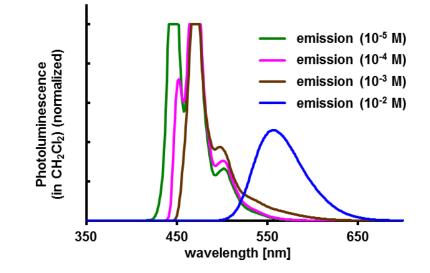
Table S5. Summary of emission lifetime, PL quantum yield and rate constants

The rate constants $k_{r} \mbox{ and } k_{nr}$ were calculated by using the following equations.

$$k_r = \Phi_F / \tau$$
, $k_{nr} = (1 - \Phi_F) / \tau$

10. Thermogravimetry analysis (TGA)


Figure S29. TGA thermogram of O_C-form

11. UV—Vis and PL spectra of 1 in CH₂Cl₂

Figure S30. UV—Vis absorption spectra of 1 in CH_2Cl_2 (10⁻⁴ to 10⁻⁵ mol/L)

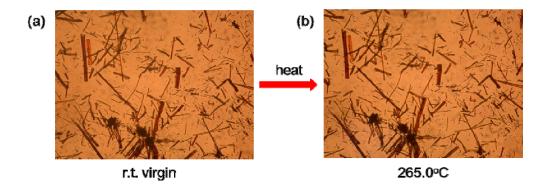
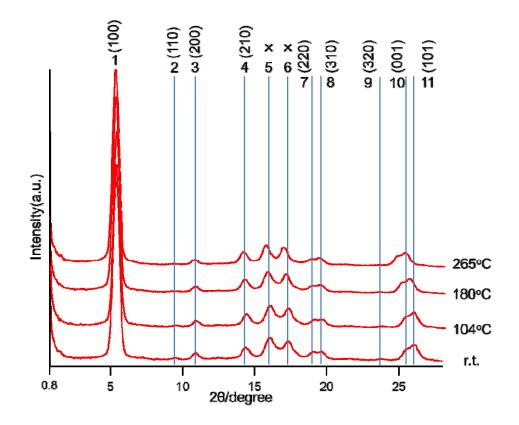


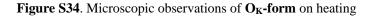
Figure S31. PL spectra of **1** in CH_2Cl_2 (10⁻² to 10⁻⁵ mol/L)

12. Microscopic observations of O_C-form on heating

Figure S32. Microscopic observations of O_C-form on heating



- (a) orange needles of $\mathbf{O}_{C}\text{-}\mathbf{form}$ which were obtained by reprecipitation from hexane
- (b) orange needles of $O_C\mbox{-form}$ which were heated at 265 $^\circ C$


The microscopic observations showed no change of orange needles of the O_C -form on heating up to 265 °C.

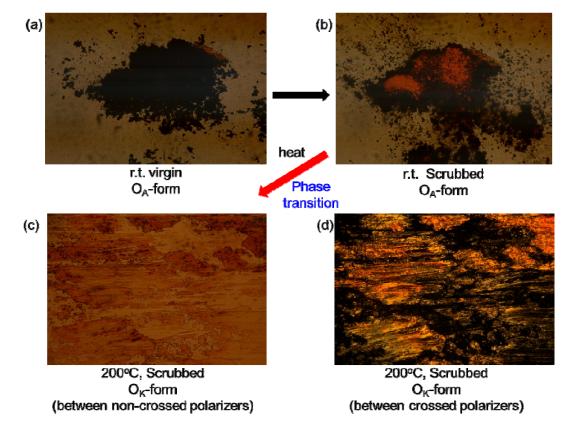

13. XRD analyses and microscopic observations of OK-form on heating

Figure S33. XRD profiles of O_K -form on heating

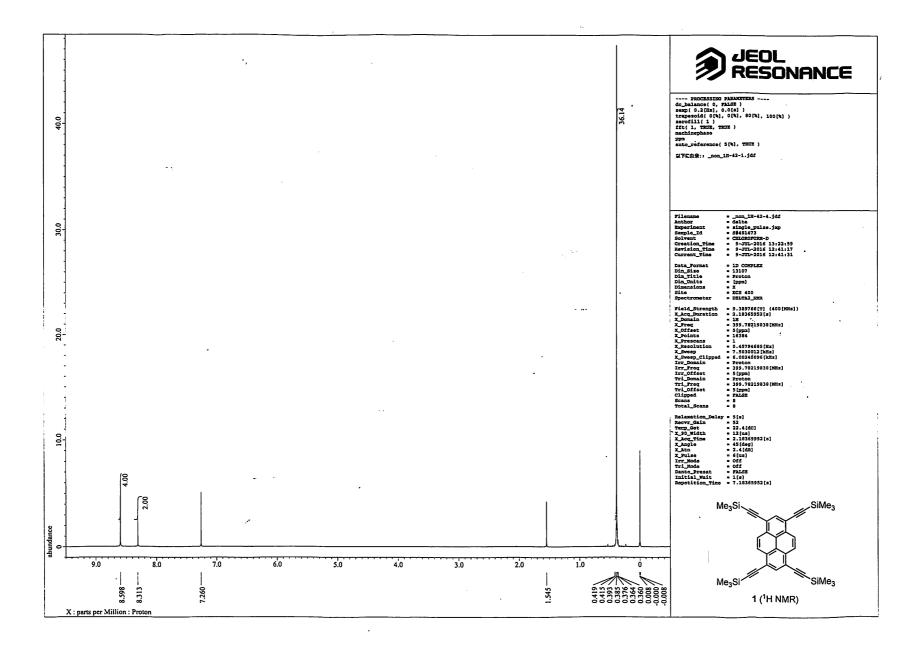
When the **OK-form** was heated, XRD analyses demonstrated that the peaks no. 5,6,10 and 11 were shifted to the lower angle region.

(a) O_A -form at rt

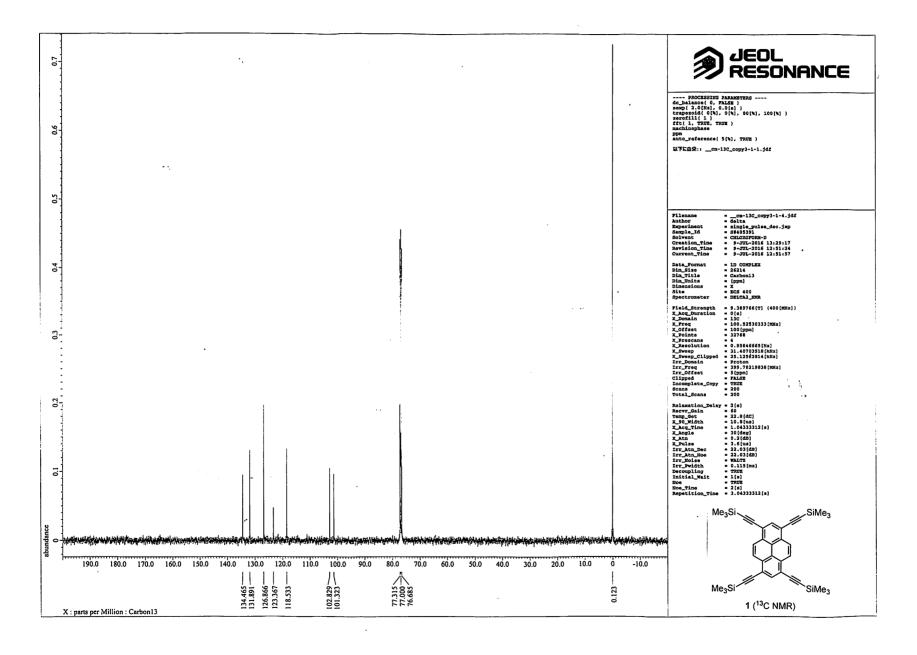
(b) O_A -form scrubbed between the cover glasses at rt

On heating, the O_A -form underwent a phase transition to O_K -form.

- (c) **O_K-form** scrubbed between the cover glasses at 200 °C (between non-crossed polarizers)
- (d) O_{K} -form scrubbed between the cover glasses at 200 °C (between crossed polarizers)


 O_K -form was softer than O_A -form, and O_K -form was expanded between the glasses by scrubbing.

14. References of Supporting Information and NMR charts of 1


S1) H. Maeda, T. Maeda, K. Mizuno, K. Fujimoto, H. Shimizu, M. Inouye, Chem. Eur. J. 2006, 12, 824.

S2) M. Takezaki, T. Tominaga, J. Photochem. Photobiol. A, 2005, 174, 113.

Figure S35. NMR charts of 1 (CDCl3)

Figure S35. NMR charts of 1 (CDCl3)

