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A Calculation of exciton states in linear J aggregates with heavy tail states 

We consider the single TDBC molecules as two-level systems. Our J aggregate is formed by linearly 

aligning N of such molecules such that in a Cartesian coordinate system, the position of the nth 

molecule is [xn; 0; 0]. In the basis of the molecular states |0⟩and |𝑛⟩(all molecules in electronic 

ground state and nth molecule in excited state, respectively), the Frenkel Hamiltonian reads as 

𝐻 = ∑ ϵ𝑛𝐵𝑛
†𝐵𝑛

𝑁
𝑛 + ∑ 𝐽𝑛𝑚𝐵𝑚

†𝐵𝑛
𝑁
𝑛,𝑚=1;𝑛≠𝑚       (S1) 

Here, 𝐵𝑛
†is the creation operator acting on molecule n such that 𝐵𝑛

†|0⟩ = |𝑛⟩and 𝐵𝑛
†|𝑛⟩ = |0⟩, 

because it is a two-level molecule, where excitations behave as bosons. Conversely, 𝐵𝑛 is the 

annihilation operator for molecule n acting as 𝐵𝑛|0⟩ = |0⟩and 𝐵𝑛|𝑛⟩ = |0⟩. The parameter ϵ𝑛 

denotes the monomer transition energy between |0⟩and |𝑛⟩, while Jnm denotes the coupling 

between the molecular transitions at sites n and m, causing excitonic interaction. Note that we 



explicitly consider non-nearest neighbor couplings, which is important to correctly calculate 

transitions between the one-and two-exciton bands that cause the induced absorption contribution 

to the two-dimensional spectra (see Fig.1 of main text). Note also that we neglect biexciton 

stabilization, i.e. we only consider the coupling between singly excited states on the aggregate.1 

Diagonal disorder is induced into the Hamiltonian in the following way: for a given aggregate of N 

monomers, we pick the site energies εn from a set of normally distributed random numbers. The 

coupling parameters Jnm are calculated from the distance Rn,m of monomers n and m using the point-

dipole approximation: 

𝐽𝑛𝑚 = 𝑘𝑒[
(μ𝑛⋅μ𝑚)

|𝑅𝑛,𝑚|3
− 3

(𝑅𝑛,𝑚⋅μ𝑛)⋅(𝑅𝑛,𝑚⋅μ𝑚)

|𝑅𝑛,𝑚|5
]      (S2) 

with 𝑘𝑒 = (4πϵ𝑟ϵ0)
−1, where ϵ0 = 8.854×10−21F/nm is the dielectric constant in vacuum, and 

ϵ𝑟 = 3 has been assumed for the relative permittivity. The molecular transition dipole moments  

μ𝑖 = μ𝑗 = [1.869×10−20𝐶𝑚; 0; 0] are given as vectors in Cartesian coordinates. For pure diagonal 

Gaussian disorder, the position of the aggregate in space is given by {R1= [0,0,0]; Rn,n+1 = [1.0 nm; 0; 

0] for 𝑛 ∈ {1; . . ; 𝑁 − 1}}. These numbers were chosen such as to reproduce the experimental red 

shift of the J aggregate band against the monomer transition. 

Off-diagonal disorder is introduced in the following way: We randomly picked a set of Ntr trap 

positions 𝑡𝑗; 𝑗 ∈ {1; 2; . . . ; 𝑁𝑡𝑟}; 𝑡𝑗 ∈ {1; 2; . . ; 𝑁} along the chain and increased the nearest-neighbor 

distance at these positions to 𝑅𝑡𝑗,𝑡𝑗±1 = [±1.2𝑛𝑚; 0; 0]. Example: a choice of 𝑡𝑗 = {3; 8} on a 10-

mer (corresponding to Ntr=2; N=10) would cause the x coordinates of the monomers to be at xn = {0; 

1.0; 2.2; 3.4; 4.4; 5.4; 6.4; 7.6; 8.8; 9.8}.  Our two traps have thus increased the total length of the 

10-mer by 0.8 nm, because the extra distance of 0.2 nm has been applied to the left and to the right 

at both trap positions. As eq. (S2) is a sharp function of distance, applying an extra distance of only 

0.2 nm causes a substantial drop of the intermolecular couplings, leading to an effective 

segmentation of the aggregate chain. A typical realization of diagonal and off-diagonal disorder can 

be found in Fig. 1b and c, respectively. Within our model the nearest neighbor couplings Jn, n∓1 can 

adopt two different values, the “ideal one” and a largely reduced one in the vicinity of the defects. 

This is an extreme representation of a “heavy tailed” distribution in the sense that the reduced 

values of Jn, n∓1 in the neighborhood of a trap constitute the “tail” of the (delta-like) distribution of 

the majority of ideal coupling strengths. 

For ensemble averaging, we calculated 500 realizations of such aggregates and diagonalized the 

resulting Hamiltonians using the QuTIP package,2 restricting the solution space to singly (for 

simulation of linear absorption spectra) and up to doubly (for simulation of 2DES maps) excited 

aggregates using excitation number restricted operators. The resulting eigenstate coefficents cem for 

the singly excited excitonic states e, in the basis of the molecular eigenstates, define the one- exciton 

wavefunctions: 

Ψ𝑒 = ∑ 𝑐𝑒𝑚𝐵𝑚
† |0⟩𝑚         (S3) 

while the two-exciton wavefunctions are defined as: 



Φ𝑓 = ∑ 𝐶𝑓,𝑘𝑙𝐵𝑘
†𝐵𝑙

†|0⟩𝑘>𝑙
𝑘𝑙        (S4) 

Note that although the two-exciton coefficients in eq. (S4) carry three indices f, k, and l, they still 

address elements of the 2D matrix of eigenstate coefficients from the diagonalization of the 

Hamiltonian, only that in the case of two-excitons, the corresponding doubly excited states (a single 

column in the C matrix) carry two indices, indicating which molecular excitations are involved. 

 

Figure S1. a) . (a) Ground state absorption spectrum (dots) and best fit (solid and dashed line for 

70-mer and 35-mer, respectively). b) b) squared error (in a logarithmic color scale) between 

simulated and experimental GSA spectra as function of the width of the Gaussian distribution of 

site energies and the number of defects on a 70-mer. C) disorder model deployed for the 

simulations. Note that for the sake of clarity, only the nearest neighbor coupling Jn, n∓1 is shown 

while in the calculations also non-nearest neighbor interactions are included. 

 

B Calculation of linear absorption and 2DES maps 

For the calculation of the linear and third order nonlinear spectra, we calculated the linear and third 

order nonlinear polarization in the impulsive limit, considering all Liouville pathways that survive the 

rotating wave approximation. However, for the calculation of induced absorption, we found it 

sufficient to calculate only the 200 lowest energetic two-excitons for each one-exciton state.3 

The experimental 2DES maps are three-dimensional matrices, depending on excitation energy, 

detection energy, and waiting time. In reference [1], the waiting time dependence of the third order 

response function has been calculated by considering also Liouville pathways that involve population 

relaxation (energy transfer) between the second and the third interaction, whereby the probability 

to find exciton population in state f after time t2 after it has been created in state i at time t1, is given 

by the two-particle Green’s function G(i,f,t2). The Green’s function was found by modified Redfield 

theory, an approximative perturbative treatment of exciton relaxation. If one were to perform non-

linear optimization using this approach, one would have to (i) calculate the Green’s function via 

modified Redfield and (ii) run the complete calculation of all Liouville pathways - including all 

combinations of energy transfer - over and over again for hundreds of combinations of the fitting 

parameters, which is prohibitive even on a supercomputer. 



For this reason, here we pursue a different approach. For each exciton state e, we calculate only 

those Liouville pathways that do not involve energy transfer. This avoids the time consuming 

calculation of the Green’s function. What we get is a basis set of pump-probe spectra σ(ω3,ω𝑓)along 

ω3 for all f exciton states with energy ωf in the system. The spectral lineshape for the contribution of 

each Liouville pathway has been calculated using a phenomenological dephasing parameter of Λ=8 

meV, which resulted from nonlinear optimization and gave best agreement of the tails of 

experimental and fitted GSA towards low detection energies ω3 (see Fig. S1a). The Beer-Lambert law 

for a continuous basis set of absorbing species reads as 

Δ𝑇 𝑇⁄ (ω1, 𝑡2, ω3) = −Δ𝐴(ω1, 𝑡2, ω3) = 𝑑𝑠 ∫ σ(ω3, ω𝑓) ⋅ 𝐷(ω1, 𝑡2, ω𝑓)𝑑ω𝑓ω𝑓
   (S5) 

where the differential transmission ΔT/T equals the negative of the differential absorption ΔA in the 

low signal limit, D (ω1, t2, ω3), in units of [cm-3 eV-1], is the exciton distribution function for energies 

in the range {ωf, ωf +d ωf } at time t2 after excitation with energy ω1 at time t2=0. and the film 

thickness is given by ds. As we know the pump-probe spectrum σ(ω3,ω𝑓), in units of [cm2], for all 

one-excitons, we can find 𝐷(ω1,𝑡2,ω𝑓)𝑑ω𝑓 by a simple non-negative least squares fitting using the 

scipy Python package. In order to keep the number of parameters manageable for a nonlinear 

optimization, we discretized the active space of one-excitons in the range from 2.09 – 2.135 eV into 

9 energy bins. This discretization converts the differential density 𝐷(ω1,𝑡2,ω𝑓)𝑑ω𝑓into the exciton 

concentration C [in units of cm-3] in the energy bin with mean energy ω𝑓̅̅ ̅̅ : 

𝐶(ω1,𝑡2,ω𝑓̅̅ ̅̅ ) = ∫ 𝐷(ω1,𝑡2,ω𝑓)𝑑ω𝑓
ω=ω𝑓+𝑏 2⁄

ω=ω𝑓−𝑏 2⁄
      (S6) 

where b is the width of the energy bins. The concentration-time matrix, finally, is related to the two 

particle Green’s function by 

𝐷(ω1, 𝑡2,ω𝑓) = ∑ (𝐷(ω1, 𝑡2 = 0,ω𝑓) ⋅ 𝐺(𝑖, 𝑓, 𝑡2))𝑖      (S7) 

The initial concentrations 𝐷(ω1, 𝑖, 𝑡2 = 0) of the exciton states can in principle be obtained from the 

fit of the linear absorption spectrum and the ω1 spectral distribution. 

In a final step, we calculated the transfer matrix (which in the approach of ref. [1] is obtained by 

modified Redfield theory) by solving a system of ordinary differential equations, as implemented in 

the scipy package, as described in the main text (eq.2). 

Here, we highlight the limitations of this approach, introduced by treating exciton dynamics only in 

a subsequent step. Our approach treats the excited spectrum σ(ω3,ω𝑓) of excitons at energy ωf, as 

independent of time. In doing so, dephasing effects are not rendered. This might lead to artifacts in 

the exciton density for very early times (<< 100fs). Moreover, in the calculation of σ(ω3,ω𝑓), the 

Lorentzian linewidths of all exciton states are all the same, namely the Λ fitting parameter from Table 

1 in the main manuscript; while they should differ when their lifetimes are different. This lifetime 

dependence is however expected to be smoothed out due to the binning procedure that we apply 

in the above derivation. These limitations are counterbalanced by the high speed of our simulations, 

reducing the calculation times to just a few hours on a standard laptop computer, thus allowing the 

study of a multitude of samples in which parameters have been systematically varied. 



 

C Comparison of models 

In Figure 1 a of the main text, we show that using our model of non-Gaussian off-diagonal disorder, 

the best agreement between experimental absorption spectrum and simulation is obtained 

assuming about 7 defects on a 70-mer. Here, we present a more detailed comparison of 

experimental and simulated spectra using the first four moments. We normalize the integral of the 

probe spectrum S(E) to unity, 𝑆𝑛(𝐸) = 𝑆 (𝐸) ∫ 𝑆𝑛(𝐸)𝑑𝐸
𝐸𝑚𝑎𝑥−0.2𝑒𝑉

𝐸𝑚𝑎𝑥−0.2𝑒𝑉
⁄ , E being the probe energy, and 

Emax being the probe energy of maximum absorption. To limit contributions from an incorrect 

baseline and higher (vibronic or electronic) transitions in the experimental absorption spectrum, we 

consider only the spectral region close to the absorption maximum in the evaluation of the 

moments. As the latter depend on these limits, we use the same limits for the moments of the 

simulated spectra, too. The first moment4 is the mean μ: 

μ = ∫ 𝐸 ⋅ 𝑆𝑛(𝐸)𝑑𝐸
𝐸𝑚𝑎𝑥+0.2𝑒𝑉

𝐸𝑚𝑎𝑥−0.2𝑒𝑉
        (S8) 

As shown in Fig. S2, the mean µ increases with the number of defects in a roughly linear fashion, 

while higher amounts of diagonal disorder decrease µ. Note that in Figure S1, the dependence of 

the mean energy µ on the model parameters has been eliminated by shifting the spectra accordingly 

to match the simulated µsim with the experimental one, µexp = 2.109 eV. 

The second centralized moment is the variance. In Figure S1 b, we show the standard deviation σ, 

which is the positive square root of the variance: 

σ = (∫ (𝐸 − μ)2 ⋅ 𝑆𝑛(𝐸)𝑑𝐸
𝐸𝑚𝑎𝑥+0.2𝑒𝑉

𝐸𝑚𝑎𝑥−0.2𝑒𝑉
)1 2⁄       (S9) 

The standard deviation is a measure of the width of the band. As Fig. S2b shows, the width rises with 

increasing number of defects as well as with increasing diagonal disorder. The experimental value, 

σexp = 0.049 eV, can actually be obtained for any assumed value of defect concentrations or diagonal 

disorder by adjusting the other one. So, the discussion on whether non-Gaussian off-diagonal 

disorder is needed to reproduce the experimental absorption spectrum, cannot be based on 

considering only the width of the band. The important figures of merit are the skewness and “tailed-

ness” (kurtosis) of the band, which are the third and fourth moments, respectively. 

The Pearson’s moment coefficient of skewness is defined as the third standardized moment: 

γ = ∫ (𝐸 − μ)3 ⋅ 𝑆𝑛(𝐸)𝑑𝐸
𝐸𝑚𝑎𝑥+0.2𝑒𝑉

𝐸𝑚𝑎𝑥−0.2𝑒𝑉
σ3⁄       (S10) 

The skewness of the experimental absorption spectrum is γexp = 1.0. In Fig. S2c, we show that none 

of the simulations reach this high experimental skewness, but the ones with lowest diagonal disorder 

get closest, attaining skewness values up to 0.85. The reason for the high skewness in the absence 

of diagonal disorder is the “built-in” skewness of the absorption spectrum of an ideal J aggregate. 

Although most of the transition strength comes from the lowest energetic exciton state, about 10% 

derive from higher lying exciton states. The skewness of the band thus depends on the energetic 

splitting between the lowest and the next higher exciton states, which is a function of exciton 



delocalization. Therefore, the standardized skewness (skewness of a band that has been scaled to 

standard deviation one, see eq. S9) decreases with increasing diagonal disorder, because diagonal 

disorder adds inhomogenous broadening to the band, which acts more strongly on the standard 

deviation (Fig. S2b) than on the exciton localization (Fig. S2A). 

Finally, the fourth standardized moment is the kurtosis or “tailed-ness” of a band: 

κ = ∫ (𝐸 − μ)4 ⋅ 𝑆𝑛(𝐸)𝑑𝐸
𝐸𝑚𝑎𝑥+0.2𝑒𝑉

𝐸𝑚𝑎𝑥−0.2𝑒𝑉
σ4⁄       (S11) 

According to eq. S11, a Gaussian function attains a kurtosis of κ=3. The kurtosis of the experimental 

absorption spectrum is κexp = 5.6. In Fig. S2d, we show that several combinations of the model 

parameters yield this experimental kurtosis. The highest kurtosis is found in the absence of both 

diagonal and off-diagonal disorder; in this case, the Lorentzian lineshapes dominate the kurtosis, 

being much stronger tailed than a Gaussian. 

In summary, we find that several combinations of the model parameters are able to reproduce the 

width (Fig. S2b) and the tailed-ness (Fig. S2d) of the experimental absorption band, but the high 

experimental skewness can only be approximately reached when the defect density is between 4 

and 8 defects per 70-mer. Therefore, we conclude that the experimental absorption spectrum can 

only be reproduced when topological defects are present that cause a hard segmentation of the 

aggregate. 



 

Fig. S2. First, second, third, and fourth moments of the simulated linear absorption spectra, using 

the model of hard segmentation by defects as explained under point A of this supporting material 

(panels a, b, c, and d, respectively) 

In Fig. S3, we show the result of the simulation of the experimental absorption spectrum by 

assuming a Lévy distribution of the site energies (diagonal disorder) rather than the couplings (off-

diagonal disorder). A symmetric Lévy distribution with mean zero is given by5 

𝑝(𝐸) =
1

2π
∫ 𝑒𝑖𝐸𝑡𝑒−(|β𝑡|)

α
𝑑𝑡

+∞

−∞
,       (S12) 

 where α and β are the index of stability and the scale parameter of the distribution, respectively. As 

Fig. S3 shows, we do obtain a decent fit also for this model, if we assume both α and β close to 1. 

However, we find that the fit improves if a 35-mer is calculated instead of a 70-mer, which again 

shows the need for hard segmentation. Most importantly though, we find that the simulated 2DES 

spectra, using the best parameters of this model, show negligible strengths of the PA bands and thus 

completely fail to reproduce the experimental 2DES spectra. For these reasons, we discard this 

model. 



Fig. S3: a) experimental absorption spectrum (dots) and best fit of simulations assuming only 

diagonal disorder given by a stable symmetric Lévy distribution according to eq. S11 (line). b) The 

squared error between experiment and simulation, given in a logarithmic color scale (see scale bar) 

as function of the Lévy parameters. 

 

 

 

D Complete results of global fitting 

In Fig.S4 a, b, we show experimental 2DES maps at various t2 times up to 200 fs, the corresponding 

fits according to eq. S6, and the residuals, in the upper, middle and lower row, respectively. In Fig. 

S5, we show the same graphs for t2 times from 370 fs upward. In Fig.S6, we show the time-resolved 

exciton densities, as obtained from the fits in Fig.S4 in the upper row, while the middle row shows 

global fits obtained by numerical integration of a system of ordinary differential equations, after 

nonlinear optimization has been performed on the transfer matrix elements (eq.2 in main text). The 

lower row shows the residuals. Fig. S7 is the same as Fig.S6, but for longer t2 times. Fig. S8 gives the 

transition dipole moment, density of states, and excited state spectra of one-excitons as function of 

exciton energy. Figures S9, S10, and S11, finally, show exciton densities 𝐶(ω1,𝑡2,ω𝑓) obtained 

according to eq. 1 in main text, and and fits according to eq.2 in main text (upper and middle rows, 

respecively) for different pump fluences, as indicated. The lower row shows the residuals. 

 

 

 



 

Fig. S4. Experimental 2DES maps, global fits according to eq. S3 using basis states σ (ω3, f) from a Frenkel 

exciton model (see Fig. S6), and residuals. (upper, middle, and lower row, respectively) 

 

Fig. S5: same as Fig. S4, but for larger t2 values 

 

 

 

 

 



 

 

Fig. S6. Time and energy resolved exciton densities 𝐶(ω1, 𝑡2, 𝜔𝑓), as obtained from the global fits in Fig.S4, 

global fits to 𝐶(ω1, 𝑡2, 𝜔𝑓) by nonlinear optimization of the off-diagonal transfer matrix elements and the 

dispersiveness parameter γ in eq.2 in main text, and residuals (upper, middle, and lower row, respectively). 

The false color scale is defined by the maximum signal in the upper row and valid for all three rows. 

 

 

Fig. S7. Same as Fig. S6, but on a longer t2 scale. 

 

 



Fig. S8. A) Normalized transition dipole moment for the basis of one-exciton states from the ground 

state (black) and normalized density of exciton states per energy interval, as function of one-exciton 

energy. B) Basis spectra σ(ω3,f) as a function of one-exciton energy, as obtained from calculation of 

all relevant Liouville pathways starting from the specific one-exciton, normalized to the PB 

maximum. These states were obtained by diagonalization of a Frenkel Hamiltonian of an aggregate 

containing Gaussian disorder in the site energies but heavy tail states in the coupling. See Fig.S1C 

for a pictorial representation of the simulated aggregate. The graph shows that the evolution of 

the characteristic features of the basis spectra with exciton energy is sufficiently smooth to justify 

the binning that we have used to reduce the number of basis states in eq. S6. 

 

E Pump fluence dependence 

We performed the same analysis on various sets of 2DES maps, varying the pump fluence from 0.3 

up to 2.1 μJ cm-2. In Fig. S9, we show the values of the 2DES maps at ω1 = ω3 = 2.13 eV (region of 

photoinduced absorption) for various times t2. Although the pump fluence has been varied by nearly 

an order of magnitude, the normalized time traces remain very similar. From Fig.S9, we can therefore 

not confirm the presence of singlet annihilation which has been described in TDBC/water.6 

Figure S9. Value of the 2DES maps at the given excitation and detection energy as function of 

waiting time t2. The excitation fluence is parameter. 



 

 

For the simulations of the intensity dependent 2DES maps, we used the same set of exciton 

states as in the evaluation according to eq.1 in the main text. The resulting time-resolved exciton 

distributions are given in Figs S11-13, upper rows. Fitting these with a rate equation model (eq.2 in 

main text)  was possible without systematic deviations, see middle and lower rows for fits and 

residuals, respectively. The resulting transfer matrices are shown in Fig. S10. They all show similar 

features as Fig. 4b in main text, namely matrix elements for downward ET which are orders of 

magnitude faster than those for upward ET. However, increasing the pump intensity leads to an 

overall reduction of the matrix elements. This finding might be explained by exciton annihilation, 

being an energy transfer process between two excitons, yielding one exciton in a hot ground state 

and the other one in a highly excited state. By this mechanism, high energy excitons are constantly 

“recycled” as long as there is sufficient exciton population, thus yielding an apparent reduction of 

the overall exciton relaxation rate. 

 

 

Fig. S10. Transfer matrices K resulting from the fittings in Fig.S11, S12, and S13, using eq. 2 of main 

text, for measurements analogous to those in Fig.2 of main text at different pump intensities, as 

given in the legend. 

 

 

 



 

 

Figure S11: like Fig. S6; pump energy 0.3 μJ cm-2 

 

Figure S12: like Fig. S6; pump energy 0.9 μJ cm-2 

 



 

Figure S13: like Fig. S6; pump energy 2.1 μJ cm-2 

 

 

 

 



F Details of Experimental Method: 
 
Two-dimensional electronic spectroscopy was performed in the partial collinear pump-probe 
geometry employing two collinear phase-locked pump pulses and a non-collinear probe pulse. 
The probe is delayed by the population time t2 and its spectrum is measured by a 
spectrometer. Additionally, a phase-locked pump pulse pair is generated and the two identical 
pulses are delayed by the coherence time t1. The Fourier transform with respect to t1 allows 
to resolve the obtained signals with respect to excitation energy. 2DES spectroscopy provides 
thus the possibility of combining excellent time and spectral precision in excitation and 
probing. 
 
A broadband non-collinear optical parametric amplifier (NOPA) was used to generate the 10 
fs-pump and probe pulses with spectrum spanning the 1.8-2.35 eV range. The NOPA was 
pumped by 100fs-pulses at 800nm from a regeneratively amplified 1 kHz repetition rate 
Ti:Sapphire laser (Coherent Libra). To generate coherence delay (T1), a novel optical device, 
called TWINS, was used, where the birefringence of α-BBO crystals generates variable delays 
for pulses polarized along the ordinary and extraordinary axes. As shown in Figure S14, the 
TWINS setup consists of three blocks A, B and C of two birefringent plates and wedges with 
their optical axes as shown by yellow arrows. A linear polarizer (1) changes the pump beam 
polarization from vertically (along the X-axis) to a polarization of 45° with respect to the XY 
plane. The beam passes through block A which consists of two wedges with optical axis along 
the Z-axis, the direction of propagation; and Y-axis, respectively. Since the horizontal and 
vertical components of the pump beam propagate with different velocities depending on the 
different refractive indexes, they are delayed by t1. By moving the entire block A, it is possible 
to scan the delay t1. Due to the different refraction for the X- and Y- pulses at the interfaces, 
the pulses are not collinear and their phase fronts are not parallel after passing through block 
A. In order to correct these features, block B is inserted in the path. It is composed of two 
wedges identical to those in block A but placed in the opposite order. Block C, whose optical 
axis is along the X-axis, introduces a constant negative delay. After passing through the second 
linear polarizer (2), the two orthogonal and delayed pump pulses are both polarized at 45° 
with respect to the XY plane. 

The birefringent material introduces a positive dispersion to the pump pulses which is 
compensated by a pair of chirped mirrors. The pump pulses are compressed to near transform 
limit by adjusting the number of reflections at the chirped mirror pair. The pump pulses then 
pass through a chopper working at a frequency of 500 Hz. 
The t1 delay and phase between the two pump pulses are calibrated by translating block A 
and observing the interference fringes of the beams scattered by a pinhole at the sample 
position into the spectrometer. The pump delay and phase are monitored in parallel to data 
acquisition and the subsequent t1 scans by deviating a small part of the pump beams into a 
photodiode and acquiring their interference. 
 
The probe pulse dispersion is compensated by another pair of chirped mirrors. The population 
delay (t2) between the pump and probe pulses is controlled by another pair of mirrors on a 
translation stage. The interference between the scattered pump pulses and the probe pulses 
is minimized by using an audio speaker changing the optical path of the probe beam. 
 



The probe pulses are delayed by the population time t2 with a conventional translation stage. 

Pump and probe pulses are focused to a spot size of 50 µm onto the sample at a small angle 
using all-reflective optics. The probe pulses transmitted through the sample are spectrally 
dispersed in a monochromator and recorded with a multichannel detector acquiring all laser 
shots at 1 kHz. For a fixed value of the population time t2, the differential transmission (DT/T) 

spectrum DT/T (t1, t2, ω3), ω3 being the probe frequency, is recorded as a function of the 

coherence time t1. Finally, the absorptive 2DES spectrum DT/T (ω1, t2, ω3) is obtained by 

taking the Fourier transform with respect to the coherence time t1. Along the excitation 

energy axis ω1 we normalize the signal such that the “photobleach excitation spectra” after 
long times (i.e, one-dimensional spectra DT/T (ω1, t2=400 fs, ω3= 2.10 eV) approximately 

match the ground state absorption spectrum. 
 

 
 
 
 
 

 



 

 
 

Fig. S14. Experimental set up for 2DES 
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