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Computational Details 
 

Calculations were performed using Gaussian 09W, Revision C.01,
39

 running on an Intel Core i5-2500 (quad, 

3.3 GHz), equipped with 4 GB RAM; results were visualized using GaussView 5.0.  Geometries were 

optimized with the hybrid density functional B3LYP, using the RECP basis set Lanl2dz for Ru and 6-31G** 

for all other atoms.  Minima were characterized by frequency calculations at the same level of theory.  Single 

point energy calculations were subsequently performed with the B3LYP functional, using Lanl2dz for Ru 

and the 6-311+G** basis set for all other atoms; NBO calculations were performed at the same level of 

theory.       

 

The supplemental file RuPHCl.xyz contains the computed Cartesian coordinates of compounds 1, 2a, 3, 4a, 

6 and proposed intermediary A.  The file may be opened as a text file to read the coordinates, or opened 

directly by a molecular modelling program such as Mercury (version 3.3 or later, 

http://www.ccdc.cam.ac.uk/pages/Home.aspx) for visualization and analysis. 
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Table S1: Electronic energies of compounds 1, 2a, 3, 4a, 6 and intermediary A (defined as ‘X’), and 

summated energies with one and two equivalents of HCl. 

 

 

E(X) E(X + HCl) E(X + 2HCl) 

X /a.u. /kcal mol
-1

 /a.u. /kcal mol
-1

 /a.u. /kcal mol
-1

 

HCl -460.8338442 -289177.846 

    1 -3278.596984 -2057352.394 -3739.430829 -2346530.239 -4200.264673 -2635708.085 

2a -3530.044816 -2215138.422 -3990.878660 -2504316.268 -4451.712504 -2793494.113 

A -3990.904856 -2504332.706 -4451.738700 -2793510.552 

  3 -3739.457921 -2346547.240 -4200.291765 -2635725.085 

  4a -4451.791213 -2793543.504 

    6 -4200.343814 -2635757.747         

 

 

Table S2: Comparative electronic energies (kcal mol
-1

) and ∆Ereact for additions of HCl to ‘X’. 

 

 

E(X + nHCl) E(Y) ∆∆∆∆Ereact 

X + nHCl →→→→Y /kcal mol
-1

 /kcal mol
-1

 /kcal mol
-1

 

1 + HCl →→→→ 3 -2346530.239 -2346547.240 -17.001 

2a + HCl →→→→ A -2504316.268 -2504332.706 -16.438 

A + HCl →→→→ 4a -2793510.552 -2793543.504 -32.952 

3 + HCl →→→→ 6 -2635725.085 -2635757.747 -32.661 

    2a + 2HCl →→→→ 4a -2793494.113 -2793543.504 -49.390 

1 + 2HCl →→→→ 6 -2635708.085 -2635757.747 -49.662 
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Figure S1: Distribution of NBO charge density for compound 3.  



S5 
 

 

 
 

Figure S2: Distribution of NBO charge density for intermediary A. 
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Figure S3. 
31

P{
1
H} (top) and 

31
P (bottom) NMR signatures for [Ru(P(H)ClCH2SiMe3)Cl2(CO)(PPh3)2] (4a) 

plot on equivalent scales.  The multiplicity of the chlorophosphane resonances is illustrated as inset for the 

proton decoupled spectrum.   

 

 

Figure S4. 
31

P{
1
H} (top) and 

31
P (bottom) NMR signatures for [Ru(P(H)ClCH2SiMe2Ph)Cl2(CO)(PPh3)2] 

(4b) plot on equivalent scales.  The multiplicity of the chlorophosphane resonances is illustrated as inset for 

the proton decoupled spectrum.   
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Figure S5. 
31

P{
1
H} (top) and 

31
P (bottom) NMR signatures for [Ru(P(H)ClCH2SiMe2Tol)Cl2(CO)(PPh3)2] 

(4c) plot on equivalent scales.  The multiplicity of the chlorophosphane resonances is illustrated as inset for 

the proton decoupled spectrum.   

 

Figure S6. 
31

P{
1
H} (top) and 

31
P (bottom) NMR signatures for [Ru(P(H)ClCH2SiMe2C6H4CF3)Cl2(CO)-

(PPh3)2] (4d) plot on equivalent scales.  The multiplicity of the chlorophosphane resonances is illustrated as 

inset for the proton decoupled spectrum.   
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Figure S7. 
31

P{
1
H} (top) and 

31
P (bottom) NMR signatures for [Ru(P(H)ClCH2SiMe2n-Bu)Cl2(CO)(PPh3)2] 

(4e) plot on equivalent scales.  The multiplicity of the chlorophosphane resonances is illustrated as inset for 

the proton decoupled spectrum.   

 

Figure S8. 
31

P{
1
H} NMR signatures for [Ru(P(H)=CHtBu)Cl2(CO)(PPh3)2] (3) (top) with the proton coupled 

phosphacarbon resonance as inset, and Ru(P(H)ClCH2tBu)Cl2(CO)(PPh3)2] (6) (bottom).  The multiplicity 

(dd) of the chlorophosphane resonances is illustrated as inset for compound 6. 
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Figure S9: Expansions of the PPh3 / PH region of 
31

P-
1
H HMBC plots for compounds 4a-e.  The relative 

cross-peak integrals of correlations for the two separate PPh3 units is in each case at least 5:1, indicative of a 

statistically significant difference in the magnitude of the H-P-Ru-P (
3
J) scalar interactions.   

 

 

Figure S10a: 
1
H-NMR spectrum of compound 4d indicating trace impurities. 
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Figure S10b: 
13

C{
1
H}-NMR spectrum of compound 4d. 

 

 

Figure S10c: 
19

F-NMR spectrum of compound 4d, indicating trace impurity. 
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Figure S11a: 
1
H-NMR spectrum of nBuMe2SiCH2PCl2 indicating residual solvent.  

 

Figure S11b: 
31

P-NMR spectrum of nBuMe2SiCH2PCl2 indicating trace impurity. 
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Figure S12a: 
1
H-NMR spectrum of compound 2d  

 

 

Figure S12b: 
13

C{
1
H}-NMR spectrum of compound 2d. 
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Figure S13a: 
1
H-NMR spectrum of compound 2e  

 

 

Figure S13b: 
13

C{
1
H}-NMR spectrum of compound 2e. 
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Figure S14a: 
1
H-NMR (CD2Cl2) spectrum of compound 4a 

 

 

Figure S14b: 
13

C{
1
H}-NMR (CDCl3) spectrum of compound 4a. 
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Figure S15a: 
1
H-NMR (CD2Cl2) spectrum of compound 4b  

 

 

Figure S15b: 
13

C{
1
H}-NMR (CD2Cl2) spectrum of compound 4b. 
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Figure S16a: 
1
H-NMR (CD2Cl2) spectrum of compound 4c 

 

 

Figure S16b: 
13

C{
1
H}-NMR (CD2Cl2) spectrum of compound 4c. 
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Figure S17a: 
1
H-NMR (CD2Cl2) spectrum of compound 4e  

 

 

Figure S17b: 
13

C{
1
H}-NMR (CD2Cl2) spectrum of compound 4e. 

 


