Supporting Information

The Essential Medicinal Chemistry of Curcumin

Kathryn M. Nelson^a, Jayme L. Dahlin^b, Jonathan Bisson^c, James Graham^c, Guido F. Pauli^{c,d}, Michael A. Walters^{a,*}

AUTHOR AFFILIATIONS

^a Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55414, USA

^b Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA

^c Center for Natural Product Technologies, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA

^d Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA

Table of contents

Supplemental Table 1	_S2
Supplemental Table 2	_S3
Supplemental Table 3	_S4
Examples of covalent modification of proteins by curcumin	_S5
References	_S6

Target	Potency	Selectivity	Assay descriptions	Comments	Ref(s)
p300	IC ₅₀ = ~25 μM	G9a-GST,	[³ H]acetyl-CoA HAT	1. No detergent in assays	1
		HDAC1	assays; in vitro	2. Incubation times allow for compound	
			transcription assay;	degradation	
			cell-based HAT	3. Micromolar compound concentrations	
			assays	4. Reactive mechanism(s) not excluded	
HDAC8	IC ₅₀ = 115 μM	None	Molecular modeling	1. No detergent in assays	2
112/100	1050 110 μm	1 tonio	(docking);	2. Enzyme source nuclear extract containing other	
			fluorometric HDAC	HDACs and HATs	
				3. No counter-screens for fluorescence interference	
			assay with HeLa		
			nuclear extract	performed	
				4. No evidence of direct target engagement	
				5. Heavy reliance on docking	3
GSK-3β	IC ₅₀ = 66.3 nM	None	Docking; tau	1. No detergent or thiol-scavenging agents in	5
			phosphoELISA	assays.	
			assay; liver glycogen	2. Heavy reliance on docking	
			in Balb/c mice;	3. No evidence of direct target engagement	
				4. Long incubation times for <i>in vitro</i> assay; no	
				confirmation of compound stability	
				5. Non-specific in vivo readout	
Tau fibril	IC ₅₀ = 3.5 µM	None	ThT fluorescence	1. Long incubation time (6 h) in primary assay	PubChem
formation	'		assay (primary, AID	2. Fluorescent readouts	AID 1475
			1460); FP mP	3. Inactive in FP mP secondary assay	_
			(secondary, AID	4. Active in FP total counter-screen ($IC_{50} = 13 \text{ uM}$)	
			1468); FP total	5. Not selected for follow-up (AIDs 1558, 1559,	
			(counter-screen, AID	1712)	
			1463)	(11)2)	
Amyloid	IC ₅₀ = 1–64	None	ThT fluorescence	1. Fluorescent readouts	4-5
Amyloid		None			
fibril	μM		assay on Tg2576	2. Long incubation times (> 1 h) allow for	
formation			mouse brain	compound degradation	
			sections;	3. Concentrations tested above aggregation	
			aggregation ELISA	threshold	
			(6E10)	4. Follow-up work showed no affect of curcumin on	
				Aβ aggregation states	
CFTR	app <i>K</i> _i = 5–15	None	Nasal epithelium	1. No evidence of target engagement	6
	µM (against		potential changes in	2. No confirmation of compound presence in vivo	
	SERCA)		ΔF508 mice	Results irreproducible by separate lab	
CB1	<i>K</i> _i = 5.9 nM	446-fold	Incubation with	1. Incubation time sufficient for compound	7-8
		over CB2	membrane fraction	degradation	
		(<i>K</i> _i > 2 μM)	of CHO cells stably	2. No orthogonal confirmation of target	
			expressing CB1 or	engagement	
			CB2	3. Work retracted when results were irreproducible	
TrxR	Rat IC ₅₀ = 3.6	None	DTNB reduction	1. Concentrations tested above aggregation	9
	μM		assay; in vitro and	threshold	
	HeLa cells		with HeLa cells	2. No detergent in assays	
	$IC_{50} = 15 \mu M$			3. No target engagement for cellular assay	
	10 ₅₀ – 10 µm			4. Long incubation time (2–6 h) sufficient for	
				degradation	
	IC ₅₀ ~ 10 μM	Nono	Incubation with		10
IRAK	$10_{50} \sim 10 \mu \text{M}$	None		1. Results do not exclude membrane disruption	
			whole cells;	2. No evidence of target engagement	
			immunoprecipitation/	3. Concentrations tested above chemical	
			Western blot	aggregation threshold	
			detection by anti-		
			IRAK antibodies		
ErbB2	Only tested at	None	Whole cell	1. Results do not exclude membrane disruption	11
	50 µM		incubations;	2. Incubation time (1–4 h) sufficient for compound	
			radioassay with	degradation	
			immunoprecipitated	3. No confirmation of target engagement	
			protein	4. Concentration tested above chemical	
		1			

Supplemental Table 1. Prototypical examples of assays reporting curcumin bioactivity.

Supplemental Table 2. Reported half-lives of curcumin at a variety of conditions.¹²⁻¹³ Note:

рН	Temperature	Buffer system	t _{1/2} (min)	
3.0	37 °C	0.1 M citrate-phosphate	118.63	
5.0	23 °C	0.1 M citrate-phosphate	> 20.0	
5.0	37 °C	0.1 M citrate-phosphate	199.08	
6.0	23 °C	0.1 M citrate-phosphate	> 20.0	
6.0	37 °C	0.1 M phosphate	195.69	
6.5	37 °C	0.1 M phosphate	153.02	
6.8	37 °C	0.1 M phosphate	39.75	
7.0	23 °C	0.1 M citrate-phosphate	> 20.0	
7.0	37 °C	RPMI 1640	~ 20.0	
7.0	37 °C	RPMI 1640 + fetal bovine serum	360–480	
7.2	37 °C	0.1 M phosphate	9.40	
7.2	37 °C	0.5 M phosphate	9.54	
7.2	37 °C	0.025 M phosphate	9.47	
7.40	37 °C	Human blood	360–480	
7.5	23 °C	0.1 M citrate-phosphate	20.0	
8.0	23 °C	0.1 M citrate-phosphate	~ 4.0	
8.0	37 °C	0.1 M phosphate	1.05	
8.5	23 °C	0.1 M phosphate	~ 7.5	
9.0	23 °C	0.1 M phosphate	~ 11	
10.0	37 °C	0.1 M carbonate	14.05	

RPMI 1640 contains glutathione but no other proteins, lipids, or growth factors.

Supplemental Table 3. Reported activities of curcumin that are potential toxic side effects. Assay values reported as IC_{50} values unless otherwise indicated. AMMC: 3-[2-(N,Ndiethyl-N-methylammonium)ethyl]-7-methoxy-4-methylcoumarin; BFC: 7-benzyloxy-4-(trifluoromethyl)-courmarin; BQ: 7-benzyloxyquinoline; CEC: 3-cyano-7-ethoxycoumarin; CDNB: 1-chloro-2,4-dinitrobenzene; DBF: dibenzylfluorescein; EROD: ethoxyresorufin deethylation; K_f = formation constant; MFC: 7-methoxy-4-(trifluoromethyl)-courmarin; β NF: β -napthoflavone; PB: phenobarbital; PROD: pentoxyresorufin depentylation;

Curcumin Reactivity	Evidence	
hERG (KCNH2 potassium voltage-gated channel,	5.55 μM, (whole cell patch-clamp HEK293; dose-dependent inhibition) ¹⁴	
subfamily H (EAG-related), member	$4.4 \pm 1.4 \mu$ M, (thallium influx); 22 μ M (patch clamp) ¹⁵	
Cellular toxicity	31 μM, (murine macrophage cells, J774.1);	
	15.2 μM, (kidney cells, HEK 293T) ¹⁶	
CYP450 inhibition	1A1/1A2: $K_i 0.14 \mu M$, IC ₅₀ 2 μM ; (competitive inhibition of EROD activity in	
	βNF-induced rat liver microsomes)	
	2B1/2B2: K _i 76.02 μ M, IC ₅₀ 14 μ M, (competitive inhibition of PROD activity in	
	PB-induced microsomes) ¹⁷	
	3A4: 14.9 ± 1.4 μM (BFC); 54.4 ± 18.3 μM (BQ); 44.1 ± 4.2 μM (DBF)	
	2C9 : 6.0 ± 1.4 μM (MFC)	
	2D6: 175 ± 47.0 μM (AMMC)	
	1A2: 104.6 ± 22.1 μM (CEC) ¹⁸	
Glutathinone S-transferase activity	ransferase activity Ki 2.29 µM, inhibition of GST activity toward CDNB ^{17, 19-20}	
Protein reactivity	See Table 1	
Iron chelation	K _f =10 ²² Fe(III)-curcumin complex. Curcumin induced a phenotype of iron	
	deficiency in mice fed a low-iron diet (5 mg iron/kg) ²¹ and significantly reduced	
	iron stores in mice fed a Western-type diet. ²²	

Examples of covalent modification of proteins by curcumin

TrxR (thioredoxin reductase). Curcumin has been reported to covalently modify both Cys⁴⁹⁶ and Sec⁴⁹⁷ in the C-terminal active site of the cytosolic TrxR1.⁹ This ubiquitous enzyme expressed in all living cells is an essential mammalian selenocysteine (Sec)-containing flavoenzyme. It catalyzes the NADPH-dependent reduction of the redox-active disulfide in thioredoxin (Trx), an enzyme that is involved in cellular redox control. Covalent modification leads to an induction of NADPH oxidase activity that leads to an increased production of reactive oxygen species (ROS). The authors of this work speculated that this increase in the production of ROS might be beneficial as there is an overexpression of TrxRs in a variety of tumor types.

IRAK (interleukin-1 (IL-1) receptor-associated kinase). Another reported covalent target of curcumin is IRAK.¹⁰ This kinase features five vicinal cysteines, four of which are located near arginine or histidine residues, making them particularly sensitive to reaction with electrophiles. Recruitment of IRAK to the IL-1 receptor is an early event in inflammatory signaling cascades. Alkylation of IRAK thiols by curcumin was demonstrated in a murine T-cell line stably overexpressing IKAK (EL-4^{IRAK}).

ErbB2. Finally, curcumin has been shown to covalently modify ErbB2 (Her2/neu), a transmembrane tyrosine kinase that acts as a coreceptor for other epithelial growth factor receptors. This covalent modification initiates the CHIP-dependent ErbB2 ubiquinination that leads to ErbB2 depletion.¹¹ ErbB2 was immunoprecipitated from cell lysates and [³H]-curcumin binding was evaluated. The radioactivity signal increased from protein incubated with [³H]-curcumin was competed away with cold curcumin.

S5

REFERENCES

- Balasubramanyam, K.; Varier, R. A.; Altaf, M.; Swaminathan, V.; Siddappa, N. B.; Ranga, U.; Kundu, T. K., Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. *J. Biol. Chem.* 2004, 279, 51163–51171.
- Bora-Tatar, G.; Dayangac-Erden, D.; Demir, A. S.; Dalkara, S.; Yelekci, K.; Erdem-Yurter, H. Molecular modifications on carboxylic acid derivatives as potent histone deacetylase inhibitors: Activity and docking studies. *Bioorg. Med. Chem.* 2009, *17*, 5219–5228.
- Bustanji, Y.; Taha, M. O.; Almasri, I. M.; Al-Ghussein, M. A. S.; Mohammad, M. K.; Alkhatib, H. S. Inhibition of glycogen synthase kinase by curcumin: Investigation by simulated molecular docking and subsequent *in vitro/in vivo* evaluation. *J. Enzyme Inhib. Med. Chem.* 2009, 24, 771–778.
- Yang, F.; Lim, G. P.; Begum, A. N.; Ubeda, O. J.; Simmons, M. R.; Ambegaokar, S. S.; Chen, P. P.; Kayed, R.; Glabe, C. G.; Frautschy, S. A.; Cole, G. M., Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid *in vivo*. *J. Biol. Chem.* **2005**, *280*, 5892–5901.
- 5. Chin, D.; Huebbe, P.; Pallauf, K.; Rimbach, G. Neuroprotective properties of curcumin in Alzheimer's disease merits and limitations. *Curr. Med. Chem.* **2013**, *20*, 3955–3985.
- Egan, M. E.; Pearson, M.; Weiner, S. A.; Rajendran, V.; Rubin, D.; Gloeckner-Pagel, J.; Canny, S.; Du, K.; Lukacs, G. L.; Caplan, M. J. Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects. *Science (Washington, DC, U. S.)* 2004, 304, 600–602.

- Prather, P. L.; Seely, K. A.; Levi, M. S. Notice of retraction. *J. Pharmacol. Exp. Ther.* **2009**, *331*, 1147.
- Seely, K. A.; Levi, M. S.; Prather, P. L. The dietary polyphenols trans-resveratrol and curcumin selectively bind human CB1 cannabinoid receptors with nanomolar affinities and function as antagonists/inverse agonists. *J. Pharmacol. Exp. Ther.* 2009, 330, 31– 39.
- Fang, J.; Lu, J.; Holmgren, A. Thioredoxin reductase is irreversibly modified by curcumin: A novel molecular mechanism for its anticancer activity. *J. Biol. Chem.* 2005, 280, 25284–25290.
- 10. Jurrmann, N.; Birgelius-Flohe, R.; Boel, G.-F. Curcumin blocks interleukin-1 (IL-1) signaling by inhibiting the recruitment of the IL-1 receptor-associated kinase IRAK in murine thymoma EL-4 cells. *J. Nutr.* **2005**, *135*, 1859–1864.
- Jung, Y.; Xu, W.; Kim, H.; Ha, N.; Neckers, L. Curcumin-induced degradation of ErbB2: A role for the E3 ubiquitin ligase CHIP and the Michael reaction acceptor activity of curcumin. *Biochim. Biophys. Acta* 2007, *1773*, 383–390.
- Wang, Y.-J.; Pan, M.-H.; Cheng, A.-L.; Lin, L.-I.; Ho, Y.-S.; Hsieh, C.-Y.; Lin, J.-K. Stability of curcumin in buffer solutions and characterization of its degradation products. *J. Pharm. Biomed. Anal.* **1997**, *15*, 1867–1876.
- 13. Griesser, M.; Pistis, V.; Suzuki, T.; Tejera, N.; Pratt, D. A.; Schneider, C. Autoxidative and cyclooxygenase-2 catalyzed transformation of the dietary chemopreventive agent curcumin. *J. Biol. Chem.* **2011**, *286*, 1114–1124.
- 14. Hu, C.-W.; Sheng, Y.; Zhang, Q.; Liu, H.-B.; Xie, X.; Ma, W.-C.; Huo, R.; Dong, D.-L. Curcumin inhibits hERG potassium channels *in vitro*. *Toxicol. Lett.* **2012**, *208*, 192–196.

- Xia, M.; Shahane, S. A.; Huang, R.; Titus, S. A.; Shum, E.; Zhao, Y.; Southall, N.; Zheng, W.; Witt, K. L.; Tice, R. R.; Austin, C. P. Identification of quaternary ammonium compounds as potent inhibitors of hERG potassium channels. *Toxicol. App. Pharmacol.* 2011, 252, 250–258.
- 16. Glaser, J.; Holzgrabe, U. Focus on PAINS: False friends in the quest for selective antiprotozoal lead structures from nature? *MedChemComm* **2016**, *7*, 214–223.
- Oetari, S.; Sudibyo, M.; Commandeur, J. N. M.; Samhoedi, R.; Vermeulen, N. P. E.
 Effects of curcumin on cytochrome P450 and glutathione S-transferase activities in rat liver. *Biochem. Pharmacol.* **1996**, *51*, 39–45.
- 18. Bamba, Y.; Yun, Y. S.; Kunugi, A.; Inoue, H. Compounds isolated from *curcuma aromatica* Salisb. inhibit human P450 enzymes. *J. Nat. Med.* **2011**, *65*, 583–587.
- Awasthi, S.; Pandya, U.; Singhal, S. S.; Lin, J. T.; Thiviyanathan, V.; Seifert, W. E.;
 Awasthi, Y. C.; Ansari, G. A. S. Curcumin-glutathione interactions and the role of human glutathione S-transferase P1-1. *Chem.-Biol. Interact.* **2000**, *128*, 19–38.
- Mathews, S.; Rao, M. N. A. Interaction of curcumin with glutathione. *Int. J. Pharm.* 1991, 76, 257–259.
- Jiao, Y.; Wilkinson, J. I. V.; Di, X.; Wang, W.; Hatcher, H.; Kock, N. D.; D'Agostino, R., Jr.; Knovich, M. A.; Torti, F. M.; Torti, S. V. Curcumin, a cancer chemopreventive and chemotherapeutic agent, is a biologically active iron chelator. *Blood* 2009, *113*, 462–469.
- 22. Chin, D.; Huebbe, P.; Frank, J.; Rimbach, G.; Pallauf, K. Curcumin may impair iron status when fed to mice for six months. *Redox Biol.* **2014**, *2*, 563–569.