Supporting Information For

Snatching the Ligand or Destroying the Structure: Disruption of WW Domain by Phosphorene

Wei Zhang ^{a,‡*}, Chao Ye ^{b,‡*}, Phil De Luna ^c and Ruhong Zhou ^{b,c,d*}

^aSchool of Physics, China University of Mining and Technology, Xuzhou 221116, China ^bInstitute of Quantitative Biology and Department of Physics, Zhejiang University, Hangzhou 310027, China

^cComputational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA

^dDepartment of Chemistry, Columbia University, NY 10027, USA

[‡]These authors contribute equally to this work.

*Correspondence and requests for materials should be addressed to R.Z. (email: ruhosngz@us.ibm.com; Tel: +1 914-945-3591)

Figure S1: The configuration of phosphorene from different direction.

Figure S2: (a) The RMSD in the parallel I (black) and parallel II (red) model. (b) The distance between the PRM and two key residues, $d_{Y28,PRM}$ (orange) and $d_{W39,PRM}$ (cyan) in parallel I model, $d_{Y28,PRM}$ (olive) and $d_{W39,PRM}$ (purple) in parallel II model.

The RMSD and distance between the PRM and two key residues (Y28 and W39) in parallel I and parallel II model are computed. Fig. S1a shows that the structure of WW domain are steady with a low value in RMSD (> 2.5 Å). And the $d_{Y28,PRM}$ and $d_{W39,PRM}$ are steady too, in the Fig.S1 b. It illustrates WW domain kept a good binding state with PRM.

Figure S3: The van der Waals energy in the two disruption forms: snatching form $E_{snatching}$ (green line) and disruptive form $E_{destroying}$ (blue line)

The van der Walls energy $E_{vdw} (E_{PRM,WW} + E_{PRM,P} + E_{WW,P})$ in two disruption forms, denoted as $E_{snatching}$ and $E_{destroying}$.