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Simulation methods 
Polymer molecular dynamics simulations employ a bead-spring polymer model1 that has been widely 

employed in the simulation of polymeric systems.2–4 Within this model, the van der Waals interaction 

between two non-bonded monomers is represented by a 12-6 Lennard-Jones potential: 
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where,   and   correspond to a bead size and interaction strength, respectively. The interaction is 

truncated and shifted at r = rc = 2.5σ such that VLJ(rc) = 0. Covalently bonded beads additionally interact 

via a finitely extensible nonlinear elastic (FENE) potential of the form  
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where, the second term is truncated at a distance of 21/6 σ, k0 = 30 sets the bond energy and 
0 1.5R   is the 

maximum bond length. This model is employed for the polymer density optimization and compatibilizer 

sequence optimization problems as described in the following sections. 

Density optimization 

We simulate a polymer melt of 40-bead copolymer chains, each consisting of a sequence of beads of type 

0 and type 1, having interaction strength ε00 = 1 and ε11 = 0.7, with a cross-interaction of ε01 = 0.83. The 

sequence of beads of type 0 and 1 in the chain is specified within the genetic algorithm by that material’s 

40-bit genome, with a 0 indicating a bead of type 0 and a 1 indicating a bead of type 1. Because a higher 

cohesive energy favors higher density at a fixed temperature, an optimization for the sequence yielding 

the highest density should therefore yield all type 0 repeat units. The density of each model polymer is 

determined via molecular dynamics (MD) simulations within the LAMMPS MD environment.5 

Simulations are conducted in the isothermal-isobaric ensemble where the number of particles (N), 

pressure (P) and Temperature (T) are constant. A reduced temperature T = 1 and reduced pressure P = 0 

are employed in these simulations. The Equation of motion is integrated using the Verlet algorithm with 
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the time step 0.005t   , where τ is the unit of time. The temperature and pressure are controlled using 

the Nose-Hoover thermostat and barostat with damping parameters of 2 τ in LJ units for both.6 The 

system is periodic in all three directions. Each system is equilibrated for 105 steps, sufficient to reach the 

equilibrium density, followed by a data-collection run of 105 steps. The density of the system is averaged 

over data points during the production run.   

Copolymer compatabilizers 

Within simulations of interfacial compatibilization, non-bonded beads interact with LJ 

parameters ε = 1 and σ = 1; however, whereas interactions between like beads include attractions 

by employing a cutoff distance of 2.5σ, interactions between unlike beads (0-1) are made to be 

fully repulsive by employing a cutoff distance of 21/6σ. As a consequence, homopolymers of type 

0 and type 1 are highly immiscible, with an interface of order 1σ thick. The number of particles 

(N), temperature (T) and pressure (P) normal to the interface are constant in the simulation.  The 

equation of motion are integrated using the Verlet algorithm with the integration time step of 

0.005τ, and temperature (T=1) and pressure (P=0) are controlled by the Nose-Hoover thermostat 

and barostat.6 The simulation box dimensions along two directions (x and y) are fixed, as the two 

polymer domains form the interface along the corresponding plane (xy). The box dimension 

along the third direction (z) is adjusted by the barostat in order to maintain system’s pressure at 

zero. The system is periodic in all three directions. The system is equilibrated for 2x106 steps, 

and data are collected for the following 2x106 steps. The genetic algorithm seeks to minimize the 

interfacial energy γ, which is computed from the data collection period from the system pressure 

tensor as7 
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 where Pxx, Pyy and Pzz are the normal diagonal components of the pressure tensor. The normal to 

the interface is in the z-direction of the simulation box, and Lz corresponds to the length of the 

box in this direction.  

Neural network methodology 

Ground state of Ising model: 

 

The topologies of the ANN for 2D and 1D Ising Models are {36 36 36 1} (36 input nodes, two 36-node 

hidden layers, and one output node), and {40 40 40 1}, respectively. The training period for the ANN is 

5000.  Figure 1 illustrates the reduction in prediction error during the training for the largest training data 

set tested. In order to ensure that the ANN is not overfitting to the data, we also performed a check in 

which we tested the network performance on a randomly chosen set of test data withheld from training. 

Figure 2 shows the error in ANN’s prediction on test data, which are not incorporated in the training set, 

as a function of the training period. These results indicate that the ANN is not overfitting to the data and 

is nearing convergence at the time of training termination. 
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Gene maximization 

The ANN topology for gene maximization is {100, 100, 1}. Figure 3 represents the error during the 

training for the largest training data set used in this study. The error is seen to converge with in the 

training period. Similar to the previous case study, in Figure 4, we report the results of employing the 

neural network to predict test data, which are not included in the training set. This indicates that the ANN 

is not being over fitted and is near convergence at the end of training. 
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Figure 2: Prediction error during training, measurement on 

an unknown data set. The training and testing data points 

for 1D Ising model system are 4493 and 499 respectively.  

Similarly, the training and testing data points for 2D Ising 

model are 2016 and 224 respectively. 

Figure 1: Error in the ANN’s prediction during the training. 

The error is calculated on the training data set. Total data 

points used for training the ANN for 1D and 2D Ising 

models are 4992 and 2240, respectively. 
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Figure 4: Error calculated on the unknown data set. The 

training and test data points are 2045 and 227 respectively.  
Figure 3: Error on the training data set as a function of   

training period. Total data points used for training the 

ANN are 2272.  
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Polymer density optimization 

The topology of the ANN employed for this problem is {40 40 20 1}. Figure 5 shows the reduction of 

error during the training of the network. Error is also calculated for unknown data set during the training 

of the ANN, which is shown in Figure 6. Figure 5 and 6 suggest that the prediction error during the 

training is decreasing systematically and reaching a convergence at the end of the training.  

Designing high-performance copolymer compatabilizers 

The topology of the ANN used for compatabilizer system is {20 30 30 1}. Figure 7 represents 

the error during the training of the network. The error in predicting the unknown data is shown as 

a function of the training period in the Figure 8. These results suggest that there is no overfitting 

during the training of the network.  
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Figure 6: Prediction error calculated using unknown data 

set. The training and test data set consist of 2276 and 252 

data points, respectively.  

Figure 5: Error reduction during the training of the 

ANN. The ANN was trained with 2528 data points.  
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Figure 8: Prediction error calculated based on unknown 

data set. The total training and test data points are 2909 

and 323, respectively. 

Figure 7: Error in training data set as a function of 

training period. Total training data points are 3232.  
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