Supporting Information

Investigation of Hydrophilic Auristatin Derivatives for Use in Antibody Drug Conjugates

Brian A. Mendelsohn*, Stuart D. Barnscher ${ }^{\dagger}$, Josh T. Snyder, Zili An, Jennifer M. Dodd and
Julien Dugal-Tessier

Agensys Inc., an affiliate of Astellas Pharma Inc, 1800 Stewart St, Santa Monica, CA, USA 90404.
*To whom correspondence should be addressed: bmendelsohn@agensys.com

Table of Contents

Chemical Synthesis 2
General Methodology 2
General Procedure for the Synthesis of the P4-P5 Unit 3
Scheme SI1. Synthesis of Pyridine-Containing Derivatives 6
Scheme SI2. Synthesis of N-MeVal Derivatives through P1-P3 coupling 9
Scheme SI3. Alternate synthesis of some compounds through P1-P3 coupling. 10
Scheme SI4. Deprotection of Fmoc-NH-MeVal 15
Drug-Linker Synthesis 21
Hydrophobic Interaction Chromatography (HIC) 25
Biological Testing Data 26
Figure SI1. Tubulin polymerization curves 26
Figure SI2. Efficacy of Pyridine-containing Free Drugs 27
Figure SI3. Soluble Aggregate vs. DAR for Trastuzumab (IgG1) ADCs 28
Figure SI4. Plot of Efficacy of Free Drugs at both $2 \mathrm{mg} / \mathrm{kg}$ and $4 \mathrm{mg} / \mathrm{kg}$ 29
Figure SI5. In vivo efficacy of non-cleavable ADCs 30
Figure SI6. In vivo efficacy of carbamate ADCs 31
Figure SI7 In vivo efficacy of cleavable ADCs 32
Compound Characterization Data 34
Figure SI7. ORTEP Drawing of $\mathbf{1 2}$ 34
Table SI1. Summary of Crystallographic Information 35
Figure SI8. ${ }^{1} \mathrm{H}$ NMR of compound 12 (full spectrum) 36
Figure SI9. ${ }^{1} \mathrm{H}$ NMR for compound $\mathbf{1 2}$ (aliphatic region expansion) 32
Figure SI10. ${ }^{13} \mathrm{C}$ NMR for compound 12 37
Figure SI11. ${ }^{13} \mathrm{C}$ NMR for compound $\mathbf{1 2}$ (aliphatic region expansion) 38
References 39

Chemical Synthesis

General Methodology. Reactions were carried out at ambient temperature with exposure to air, unless otherwise noted. All reagents and solvents were purchased from commercial sources and used as received. Flash chromatography was carried out on a Yamazen purification system using pre-packed Yamazen Universal columns. Preparatory HPLC was carried out using a Phenomenex Gemini-NX $10 \mu \mathrm{~m}$, C18 $110 \AA$ column ($150 \times 30 \mathrm{~mm}$) using a 5 to 100% gradient of acetonitrile/ 0.05% aqueous trifluoroacetic acid mixture over 13 minutes unless another column or solvent system is noted. Drug compounds purified by preparatory HPLC ($\mathbf{1 2} \mathbf{- 2 8}$) were assumed to be salts containing one molecule of TFA. NMR spectra were obtained on a Bruker 400 or 500 MHz Avance NMR at $25^{\circ} \mathrm{C}$. The NMR spectra obtained were referenced by setting the residual solvent peak to reported values. ${ }^{1}$ LC-MS analysis was carried out on Waters Acquity UPLCs equipped with Single-Quad mass spectrometry detectors using a 5 to 100% gradient of acetonitrile in 0.05% aqueous trifluoroacetic acid mixture over 2 minutes with a Waters BEH C18 $1.7 \mu \mathrm{~m}(2.1 \times 50 \mathrm{~mm})$ column. High resolution mass spectrometry samples were injected without column on to a Dionex 3000-Orbitrap Velos LC-MS.

Abbreviation

ADC, Antibody Drug Conjugate; DAR, Drug to Antibody Ratio; DEPC, Diethyl cyanophosphonate; DIEA, diisopropylethylamine; HIC, Hydrophobic Interaction

Chromatography; mc, maleimidocaproyl; mcVCP, maleimidocaproyl-Valine-Citrulline-Paba; MMAE, monomethyl auristatin E; MMAF, monomethyl auristatin F; MMAPYE, monomethyl auristatin PYE; SEC, size exclusion chromatography; TCEP, tris(2-carboxyethyl)phosphine.

General Procedure for the Synthesis of P4-P5 Unit

To a stirred room temperature suspension of Boc-Dap-OH dicyclohexamine salt (1 equiv) and P5 amine (1.1 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{M}$) was added DIEA (2 equiv), followed by DEPC (1.5 equiv). LCMS analysis indicated completion of reaction after 8 h . Compounds SI-1a-m were isolated by flash chromatography using 2% to $10 \% \mathrm{MeOH} / 1 \% \mathrm{NEt}_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent.

Boc-Dap-2-(2-aminoethyl)pyridine (SI-1a, 5 main text) ($0.796 \mathrm{~g}, 2.03$ $\mathrm{mmol})$ was obtained in 95% yield. ESI MS: $m / z=414.2\left(\mathrm{M}+\mathrm{Na}^{+}\right), 392.3(\mathrm{M}+\mathrm{H}), 336.2,292.2$ $((\mathrm{M}+\mathrm{H})-\mathrm{Boc})$.

sl-1b Boc-Dap-3-(2-aminoethyl)pyridine (SI-1b) (1.29 g, 3.30 mmol) was obtained in 94% yield. ESI MS: $m / z=414.2\left(M+\mathrm{Na}^{+}\right), 392.3(\mathrm{M}+\mathrm{H}), 292.2((\mathrm{M}+\mathrm{H})-\mathrm{Boc})$.

Boc-Dap-4-(2-aminoethyl)pyridine (SI-1c) ($2.92 \mathrm{~g}, 7.46 \mathrm{mmol}$) was obtained in 91% yield. ESI MS: $m / z=414.2\left(\mathrm{M}+\mathrm{Na}^{+}\right), 392.2(\mathrm{M}+\mathrm{H}), 292.2((\mathrm{M}+\mathrm{H})-\mathrm{Boc})$.

si-1d
Boc-Dap-[2-(1H-imidazol-2-yl)ethyl]amine (SI-1d) (1.48 g, 3.89 mmol$)$ was obtained in 72\% yield. ESI MS: $m / z 381.3(\mathrm{M}+\mathrm{H})$, 325.3, $281.2((\mathrm{M}+\mathrm{H})$ - Boc $)$.

sl-1e
Boc-Dap-2-(1H-imidazole-1-yl)-ethylamine (SI-1e) ($1.64 \mathrm{~g}, 4.31 \mathrm{mmol}$) was obtained in 79\% yield. ESI MS: $m / z 381.7(\mathrm{M}+\mathrm{H})$, 325.2, $281.2((\mathrm{M}+\mathrm{H})$ - Boc $)$.

Boc-Dap-[2-(1H-imidazol-4-yl)ethyl]amine (SI-1f) (1.77 g) was obtained in 109% yield. The excess mass was attributed to dicyclohexylamine, however the material was used without further purification. ESI MS: $m / z 403.3\left(\mathrm{M}+\mathrm{Na}^{+}\right), 381.3(\mathrm{M}+\mathrm{H}), 281.2((\mathrm{M}+\mathrm{H})$ $-\mathrm{Boc})$.

Boc-Dap-4-(2-aminoethyl)morpholine (SI-1g) (3.43 g) was obtained in 134% yield. The excess mass was attributed to dicyclohexylamine, however the material was used without further purification. ESI MS: $m / z 400.4(\mathrm{M}+\mathrm{H}), 422.3\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Boc-Dap-2-(4-methyl-piperazin-1-yl)-ethylamine (SI-1h) (1.69 g, 4.10 $\mathrm{mmol})$ was obtained in 59% yield. ESI MS: $m / z 413.2(\mathrm{M}+\mathrm{H}), 357.3$.

sl-1i
Boc-Dap- N, N-dimethylethylenediamine ($\mathbf{S I - 1 i}$) ($1.54 \mathrm{~g}, 4.31 \mathrm{mmol}$) was obtained in 67% yield. ESI MS: $m / z 358.3(\mathrm{M}+\mathrm{H}), 302.3$.

Synthesized according to Perron, V. et al. ${ }^{2}$ Fmoc-4-(2aminoethyl)aniline• $\mathbf{H C l}(\mathbf{S I}-2)(6.57 \mathrm{~g}, 16.6 \mathrm{mmol})$ was obtained in 84% yield.

Boc-Dap-4-(2-aminoethyl)aniline-Fmoc (SI-1j) ($1.25 \mathrm{~g}, 1.99 \mathrm{mmol})$ was obtained in 93\% yield. ESI MS: $m / z 628.4(\mathrm{M}+\mathrm{H}), 650.4\left(\mathrm{M}+\mathrm{Na}^{+}\right), 528.4((\mathrm{M}+\mathrm{H})-$ Boc).

N-Fmoc- N-methylaminoethylamine (SI-4). To a stirred room temperature solution of N^{\prime}-Boc- N-methylaminoethylamine SI-3 (1.00 g, 4.75 $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added Fmoc-OSu ($1.76 \mathrm{~g}, 5.22 \mathrm{mmol}$) and DIEA ($1.69 \mathrm{~g}, 9.49$ mmol). After 1 h , analysis by LC-MS showed the reaction was complete. The solvent was removed in vacuo and the viscous mixture was dissolved in EtOAc (100 mL), washed with 0.1 M HCl $(50 \mathrm{~mL})$, sat. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, and brine $(50 \mathrm{~mL})$. The organic fraction was dried over magnesium sulfate, filtered, and concentrated in vacuo. The crude N^{\prime} 'Boc- N-Fmoc- N methylaminoethylamine was used without further purification.

To a stirred room temperature solution of crude N^{\prime}-Boc- N-Fmoc- N-methylaminoethylamine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added TFA (2 mL). After 10 h , analysis by LC-MS showed the reaction was complete. The solvent was removed in vacuo and the crude product was purified by flash chromatography using $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent. N-Fmoc- N-methylaminoethylamine $\cdot \mathrm{TFA}$ (SI-4) ($2.04 \mathrm{~g}, 3.89 \mathrm{mmol}$) was obtained in 79\% yield. ESI MS: $m / z 297.2(\mathrm{M}+\mathrm{H})$.

Boc-Dap- N -Fmoc- N -methylaminoethylamine (SI-1k) (0.617 g, 1.09 $\mathrm{mmol})$ was obtained in 58% yield. ESI MS: $m / z 566.6(\mathrm{M}+\mathrm{H}), 466.4((\mathrm{M}+\mathrm{H})-\mathrm{Boc})$.

Boc-Dap-N-Fmoc-N-ethylenediamine (SI-1I) (1.38 g, 2.50 mmol$)$ was obtained in 39% yield. ESI MS: $m / z 552.4(\mathrm{M}+\mathrm{H}), 574.4\left(\mathrm{M}+\mathrm{Na}^{+}\right), 452.3((\mathrm{M}+\mathrm{H})-\mathrm{Boc})$.

2-(4-Cbz-piperazin-1-yl)ethanamine•TFA (SI-6).
To a stirred room temperature solution of 1-(2-aminoethyl)piperazine SI-5 (4.00 g, 31.0 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(170 \mathrm{~mL})$ was added $\mathrm{Cbz-OSu}(7.73 \mathrm{~g}, 31.0 \mathrm{~g})$ followed by DIEA ($5.40 \mathrm{~mL}, 31.0$ mmol) and DMAP ($10 \mathrm{mg}, 0.08 \mathrm{mmol}$). After 24 h , the slightly yellow reaction mixture was washed with $0.1 \mathrm{M} \mathrm{HCl}(150 \mathrm{~mL})$, sat. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, and brine $(100 \mathrm{~mL})$. The organic fraction was dried over magnesium sulfate, filtered, and concentrated in vacuo. The crude product was isolated by flash chromatography using $2 \%-10 \% \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by further purification by preparatory HPLC. 2-(4-Cbz-piperazin-1-yl)ethanamine•TFA SI-6 (0.862 $\mathrm{g}, 2.28 \mathrm{mmol}$) was obtained in 7% yield.

Boc-Dap-2-(4-Cbz-piperazin-1-yl)ethanamine (SI-1m) (0.96 g, 1.80 $\mathrm{mmol})$ was obtained in 79\% yield. ESI MS: $m / z 533.2(\mathrm{M}+\mathrm{H}), 1065.9(2 \mathrm{M}+\mathrm{H})$.

Scheme SI1. Synthesis of Pyridine-Containing Derivatives ${ }^{1}$

${ }^{1}$ (a) CMPI, DIEA, EtOAc, $0^{\circ} \mathrm{C}$; (b) (i) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (ii) DEPC, DIEA, EtOAc; (c) piperidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (d) Boc-Abz-OH, DEPC, DIEA, EtOAc; (e) Fmoc-NH-MeVal-OH, DEPC, DIEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$;

Fmoc-Val-Dil-O ${ }^{t}$ Bu (8). To a solution of Dil-O t Bu hydrochloride 7 (0.60 g, 2.03 mmol) and Fmoc-Val-OH $6(0.829 \mathrm{~g}, 2.44 \mathrm{mmol})$ in EtOAc (3 mL) was added DIEA $(0.65 \mathrm{~mL}, 3.65 \mathrm{mmol})$. The reaction was cooled to $0{ }^{\circ} \mathrm{C}$ and stirred for 20 min , followed by the addition of a further portion of DIEA ($0.65 \mathrm{~mL}, 3.65 \mathrm{mmol}$). The reaction mixture was cooled for another 20 min , followed by addition of CMPI $(0.83 \mathrm{~g}, 3.65 \mathrm{mmol})$. After 8 h , the reaction mixture was extracted sequentially with $1 \mathrm{M} \mathrm{HCl}(25 \mathrm{~mL} \times 2)$ and brine $(50 \mathrm{~mL})$. The organic phase was dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The product was purified by flash chromatography (18% - 55% EtOAc:hexanes, then 90% EtOAc:hexanes). Fmoc-Val-Dil-O ${ }^{t}$ Bu (8) ($1.10 \mathrm{~g}, 1.89 \mathrm{mmol}$) was obtained in 93% yield. ESI MS: $m / z=581.6(\mathrm{M}+\mathrm{H}), 525.4\left((\mathrm{M}+1)-{ }^{t} \mathrm{Bu}\right)$.

Fmoc-Val-Dil-OH (SI-11). Fmoc-Val-Dil-OtBu (8) (10.0 g, 17.2 mmol$)$ was dissolved in $4 \mathrm{M} \mathrm{HCl} /$ dioxane ($30 \mathrm{~mL}, 120 \mathrm{mmol}$) and the mixture was stirred at $23{ }^{\circ} \mathrm{C}$. After 24 h , the mixture was concentrated under reduced pressure to yield Fmoc-Val-Dil-OH SI$11(9.0 \mathrm{~g}, 17 \mathrm{mmol})$ as a pale yellow foam in 99% yield. ESI MS: $m / z=525.4(\mathrm{M}+\mathrm{H})$.

Fmoc-Val-Dil-Dap-2-(2-aminoethyl)pyridine (SI-7a, 9 main text). To a room temperature suspension of Fmoc-Val-Dil-O ${ }^{t} \mathrm{Bu}(\mathbf{8})(0.883 \mathrm{~g}, 1.52 \mathrm{mmol})$ and Boc-Dap-2-(2-aminoethyl)pyridine (SI-1a, 5 main text) $(0.451 \mathrm{~g}, 1.52 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5$ mL) was added TFA (2 mL). LC-MS analysis indicated complete reaction after 8 h . Volatile organics were evaporated under reduced pressure and the residue was used as-is. To a room temperature suspension of this mixture of H-Dap-2-(2-pyridyl)ethylamine•TFA and Fmoc-Val-Dil-OH in EtOAc (2 mL) was added DIEA ($1.1 \mathrm{~mL}, 6.08 \mathrm{mmol}$), followed by DEPC (0.92 mL , $6.08 \mathrm{mmol})$. After 15 h , sat. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ was added and the mixture was extracted with EtOAc (3 x 25 mL). The combined organics were dried over magnesium sulfate and concentrated in vacuo. The resulting viscous oil was dissolved in a minimal amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
and purified by flash chromatography $\left(5 \%-10 \% \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Fmoc-Val-Dil-Dap-2-(2aminoethyl)pyridine (SI-7a, 9 main text) ($0.888 \mathrm{~g}, 1.11 \mathrm{mmol}$) was obtained in 73% yield. ESI MS: $m / z=798.5(\mathrm{M}+\mathrm{H})$.

Compound SI-7c was synthesized in an analogous fashion:

Fmoc-Val-Dil-Dap-4-(2-aminoethyl)pyridine (SI-7c) (2.51
$\mathrm{g}, 3.15 \mathrm{mmol})$ was obtained in 53% yield. ESI MS: $m / z=799(\mathrm{M}+\mathrm{H})$.

Fmoc-MeVal-Val-Dil-Dap-2-(2-aminoethyl)pyridine
(SI-10a, main text 11). To a stirred room temperature solution of Fmoc-Val-Dil-Dap-2-(2aminoethyl)pyridine (SI-7a, 9 main text) $(1.75 \mathrm{~g}, 2.19 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added piperidine (5 mL). After 8 h , analysis by LC-MS showed the reaction was complete. Volatile organics were evaporated in vacuo to yield crude H-Val-Dil-Dap-2-(2-pyridyl)ethylamine (SI8a, 10 main text) that was used without further purification.

To a stirred room temperature suspension of crude H-Val-Dil-Dap-2-(2-aminoethyl)pyridine (SI-8a, 10 main text) and Fmoc-MeVal-OH ($1.55 \mathrm{~g}, 4.38 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ was added DIEA ($1.56 \mathrm{~mL}, 8.76 \mathrm{mmol}$), followed by DEPC ($1.32 \mathrm{~mL}, 8.76 \mathrm{mmol}$). After 18 h , a further portion of DIEA ($1 \mathrm{~mL}, 5.61 \mathrm{mmol}$) and DEPC ($1 \mathrm{~mL}, 6.57 \mathrm{mmol}$) was added. Once analysis by LC-MS showed the reaction was complete, the solvent was removed in vacuo, the crude mixture was dissolved in EtOAc (100 mL) and washed with sat. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, and water (50 mL x 2). The organic fraction was dried over magnesium sulfate and concentrated in vacuo. The resulting oil was purified by flash chromatography using $5 \%-10 \% \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent. Fmoc-MeVal-Val-Dil-Dap-2-(2-pyridyl)ethylamine SI-10a, 11 main text ($1.07 \mathrm{~g}, 1.17 \mathrm{mmol}$) was obtained in 59% yield. ESI MS: $m / z=912.7(M+H)$.

Compound SI-10c was synthesized in an analogous fashion:

SI-10c

Fmoc-MeVal-Val-Dil-Dap-4-(2-aminoethyl)pyridine
(SI-10c) ($1.95 \mathrm{~g}, 2.15 \mathrm{mmol}$) was obtained in 30% yield after purification by flash chromatography. ESI MS: $m / z 911.2(\mathrm{M}+\mathrm{H})$.

\boldsymbol{N}-Boc-4-Abz-Val-Dil-Dap-4-(2-aminoethyl)pyridine (SI-9c). To a stirred room temperature solution of Fmoc-Val-Dil-Dap-4-(2-aminoethyl)pyridine (SI-7a, 9 main text) $(3.46 \mathrm{~g}, 4.34 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added piperidine (2 mL). After 8 h, volatile organics were evaporated in vacuo to yield crude H-Val-Dil-Dap-4-(2aminoethyl)pyridine (SI-8a, 10 main text) that was used without further purification.

To a stirred room temperature suspension of crude H-Val-Dil-Dap-4-(2-aminoethyl)pyridine (SI8a, 10 main text $)$ and N-Boc-4-Abz-OH ($2.06 \mathrm{~g}, 8.68 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ was added DIEA ($3.10 \mathrm{~mL}, 17.4 \mathrm{mmol}$), followed by DEPC ($2.62 \mathrm{~mL}, 17.4 \mathrm{mmol}$). After 18 h , analysis by LCMS showed the reaction was complete. The solvent was removed in vacuo and the crude product was dissolved in EtOAc (20 mL), washed with sat. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, water ($50 \mathrm{~mL} \times 2$), dried over magnesium sulfate and concentrated in vacuo. The resulting viscous oil was purified by flash chromatography using $5 \%-10 \% \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent. N-Boc-4-Abz-Val-Dil-Dap-4-(2-aminoethyl)pyridine (SI-9c) $(2.09 \mathrm{~g}, 2.63 \mathrm{mmol})$ was obtained in 61% yield. ESI MS: m / z $795.5(\mathrm{M}+\mathrm{H})$.

The remaining examples were synthesized by coupling P1-P3 with P4-P5:

Scheme SI2. Synthesis of N-MeVal Derivatives through P1-P3 coupling

(a) piperidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (b) Fmoc-MeVal or $\mathrm{Me}_{2} \mathrm{~N}-\mathrm{Val}$ (Dov), DEPC, DIEA, EtOAc; (c) (i) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ii) HATU, DIEA, HOBt, DMF;

Scheme SI3. Alternate synthesis of some compounds through P1-P3 coupling

 DMF; (f) HNEt_{2} or dodecyl mercaptan, DBU then HNEt_{2}.

SI-13
Fmoc-MeVal-Val-Dil-O ${ }^{t}$ Bu (SI-12). To a stirred room temperature solution of Fmoc-Val-Dil-O ${ }^{t} \mathrm{Bu}(\mathbf{8})(5.00 \mathrm{~g}, 8.61 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added piperidine (5 mL). After 8 h , analysis by LC-MS showed the reaction was complete. Volatile organics were evaporated in vacuo to yield crude H -Val-Dil-O ${ }^{t} \mathrm{Bu}$ (9) that was used without further purification.

To a stirred room temperature suspension of crude H -Val-Dil-O ${ }^{t} \mathrm{Bu}$ (9) and Fmoc-MeVal-OH ($9.13 \mathrm{~g}, 25.8 \mathrm{mmol}$) in EtOAc (10 mL) was added DIEA ($6.14 \mathrm{~mL}, 34.4 \mathrm{mmol}$), followed by DEPC ($5.19 \mathrm{~mL}, 34.4 \mathrm{mmol}$). After 12 h , analysis by LC-MS showed the reaction was complete. The reaction mixture was washed with $1 \mathrm{M} \mathrm{HCl}(150 \mathrm{~mL} \times 2)$ and brine $(150 \mathrm{~mL})$. The organic fraction was dried over magnesium sulfate and concentrated in vacuo. The resulting viscous oil was purified by flash chromatography using $18 \%-90 \%$ EtOAc:hexanes as the eluent. Fmoc-MeVal-Val-Dil-O ${ }^{t} \mathrm{Bu}$ (SI-13) ($5.54 \mathrm{~g}, 7.98 \mathrm{mmol}$) was obtained in 93% yield. ESI MS: m / z $694.6(\mathrm{M}+\mathrm{H}), 716.5\left(\mathrm{M}+\mathrm{Na}^{+}\right), 638.5\left((\mathrm{M}+\mathrm{H})-{ }^{t} \mathrm{Bu}\right)$.

si-14 Dov-Val-Dil-O ${ }^{\boldsymbol{t}} \mathbf{B u} \cdot \mathbf{T F A}(\mathbf{S I}-14)$. To a stirred room temperature solution of crude Fmoc-Val-Dil-O ${ }^{t} \mathrm{Bu}(\mathbf{8})(13.3 \mathrm{~g}, 22.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added piperidine $(15 \mathrm{~mL})$. After 8 h , analysis by LC-MS showed the reaction was complete. Volatile organics were evaporated in vacuo to yield crude H -Val-Dil-Ot ${ }^{t} \mathrm{Bu}$ that was used without further purification.

To a stirred room temperature suspension of crude H-Val-Dil-O ${ }^{t} \mathrm{Bu}(9)$ and $\operatorname{Dov}(6.63 \mathrm{~g}, 45.7$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added DIEA (12.2 mL , 68.5 mmol), followed by DEPC (10.3 $\mathrm{mL}, 68.5 \mathrm{mmol}$). After 12 h , analysis by LC-MS showed the reaction was complete. The solvent was evaporated in vacuo, the crude mixture was dissolved in $\operatorname{EtOAc}(50 \mathrm{~mL})$, washed with water ($50 \mathrm{~mL} \times 2$), and brine (50 mL). The organic fraction was dried over magnesium sulfate and concentrated in vacuo. The resulting viscous oil was purified by preparatory HPLC. Dov-Val-Dil-O ${ }^{t} \mathrm{Bu} \cdot \mathrm{TFA}(\mathbf{S I}-\mathbf{1 4})(9.58 \mathrm{~g}, 15.2 \mathrm{mmol})$ was obtained in 67% yield. ESI MS: $m / z 508.4$ (M+ $\left.\mathrm{Na}^{+}\right), 486.3(\mathrm{M}+\mathrm{H}), 430.3\left((\mathrm{M}+\mathrm{H})-{ }^{t} \mathrm{Bu}\right)$.

Val-Dil-O ${ }^{t}$ Bu (SI-12). To a stirred solution of Fmoc-Val-Dil-O ${ }^{t}$ Bu (8) (143 g, 246 mmol) in EtOAc (200 mL) was added diethylamine ($200 \mathrm{~mL}, 1.9 \mathrm{~mol}$). After 1 h , the crude mixture was concentrated under reduced pressure. Ethyl acetate was added ($2 \times 200 \mathrm{~mL}$) and the mixture was concentrated under reduced pressure. Toluene $(50 \mathrm{~mL})$ was then added and the mixture was concentrated under reduced pressure. To the residue was added hexanes (1000
$\mathrm{mL})$ and $0.5 \mathrm{M} \mathrm{HCl}(1000 \mathrm{~mL})$. The layers were separated and the organic layer was extracted with $0.1 \mathrm{M} \mathrm{HCl}(2 \times 500 \mathrm{~mL})$. The combined aqueous layers were then washed with hexanes (2 x 500 mL). The pH of the aqueous layer was adjusted to >10 using $\mathrm{K}_{2} \mathrm{CO}_{3}$, and was extracted with three portions of EtOAc. The combined organic layers were washed with brine (500 mL), dried over MgSO_{4} and concentrated under reduced pressure. Val-Dil-O'Bu, SI-12 (66.8 g, 186 mmol) was obtained as a pink oil in 76% yield. ESI MS: $m / z 359.4(\mathrm{M}+\mathrm{H})$.

Fmoc-4-aminobenzyl-Val-Dil-O ${ }^{t}$ Bu (SI-16). To a stirred suspension of Val-Dil-O'Bu (SI-12) ($2.05 \mathrm{~g}, 5.72 \mathrm{mmol}$), Fmoc-4-aminobenzoic acid (2.24 g , $6.23 \mathrm{mmol})$ and CMPI ($2.25 \mathrm{~g}, 8.81 \mathrm{mmol}$) in EtOAc (20 mL) was added DIPEA ($4.0 \mathrm{~mL}, 23.0$ mmol). After 18 h , the mixture was filtered, and diluted with EtOAc. The solution was washed with two portions of 1 M HCl , sat. NaHCO_{3} and brine. The organic layer was passed through a phase separator and concentrated under reduced pressure. Fmoc-4-aminobenzyl-Val-Dil-Ot ${ }^{t} \mathrm{Bu}$ (SI-16) ($2.50 \mathrm{~g}, 3.57 \mathrm{mmol}$) was obtained as an off-white solid in 62% yield. ESI MS: $\mathrm{m} / \mathrm{z} 700.4$ $(\mathrm{M}+\mathrm{H})$.

Fmoc-4-aminobenzyl-Val-Dil-O ${ }^{t}$ Bu (SI-18). To Fmoc-4-aminobenzyl-Val-Dil-Ot ${ }^{t} \mathrm{Bu}(\mathbf{S I - 1 6})(2.50 \mathrm{~g}, 3.57 \mathrm{mmol})$ was added 4 M HCl in dioxane $(9.0 \mathrm{~mL}$, 36.0 mmol) and the mixture was stirred 16 h . The crude solution was concentrated under reduced pressure. The residue was dissolved in MeCN and $\mathrm{H}_{2} \mathrm{O}$ and lyophilized. Fmoc-4-aminobenzyl-Val-Dil-Ot ${ }^{t}$ Bu (SI-18) ($2.12 \mathrm{~g}, 3.29 \mathrm{mmol}$) was obtained as a brown solid in 92% yield. ESI MS: m/z $644.4(\mathrm{M}+\mathrm{H})$.

Fmoc-MeVal-Val-Dil-Dap-[2-(1H-imidazol-2-
yl)ethyl]amine•TFA (SI-10d). Fmoc-MeVal-Val-Dil-O ${ }^{t}$ Bu (SI-13) ($1.20 \mathrm{~g}, 1.73 \mathrm{mmol}$) and

Boc-Dap-[2-(1H-imidazol-2-yl)ethyl]amine (SI-1d) $(0.60 \mathrm{~g}, 1.58 \mathrm{mmol})$ were suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, and TFA (4 mL) was added. After 8 h , analysis by LCMS showed the reaction was complete. The volatile organics were evaporated in vacuo to yield crude Fmoc-MeVal-Val-Dil-OH and H-Dap-[2-(1H-imidazol-2-yl)ethyl]amine•TFA, which were used without further purification.

To a stirred room temperature suspension of this mixture in DMF (6 mL) was added DIEA $(1.41 \mathrm{~mL}, 7.90 \mathrm{mmol})$, followed by $\operatorname{HATU}(1.80 \mathrm{~g}, 4.74 \mathrm{mmol})$ and $\operatorname{HOBt}(0.48 \mathrm{~g}, 3.16 \mathrm{mmol})$. After 12 h , analysis by LC-MS showed the reaction was complete. Sat. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added, followed by extraction with EtOAc ($4 \times 10 \mathrm{~mL}$). The combined organic extract was washed with brine (20 mL), dried over magnesium sulfate, filtered, and concentrated in vacuo. Fmoc-MeVal-Val-Dil-Dap-[2-(1H-imidazol-2-yl)ethyl]amine•TFA (SI-10d) (0.578 g, 0.553 mmol) was obtained in 35% yield after purification by preparatory HPLC. ESI MS: $m / z 900.7$ $(M+H)$.

Compounds SI-10e-i were synthesized in an analogous fashion:

Fmoc-MeVal-Val-Dil-Dap-2-(1H-imidazole-1-yl)-
ethylamine•TFA (SI-10e) $(0.211 \mathrm{~g}, 0.202 \mathrm{mmol})$ was obtained in 3% yield after purification by preparatory HPLC. ESI MS: $m / z 900.2(\mathrm{M}+\mathrm{H})$.

Fmoc-MeVal-Val-Dil-Dap-[2-(1 H -imidazol-4-
yl)ethyl]amine•TFA (SI-10f) ($60 \mathrm{mg}, 0.057 \mathrm{mmol}$) was obtained in 1% yield after purification by preparatory HPLC. ESI MS: $m / z 900.8(\mathrm{M}+\mathrm{H})$.

Fmoc-MeVal-Val-Dil-Dap-4-(2-
aminoethyl)morpholine•TFA (SI-10g) ($0.578 \mathrm{~g}, 0.544 \mathrm{mmol}$) was obtained in 7% yield after purification by preparatory HPLC. ESI MS: $m / z 919.9(\mathrm{M}+\mathrm{H})$.

Fmoc-MeVal-Val-Dil-Dap-2-(4-methyl-piperazin-1-
yl)-ethylamine•TFA (SI-10h) ($0.533 \mathrm{~g}, 0.495 \mathrm{mmol}$) was obtained in 10% yield after purification by preparatory HPLC. ESI MS: $m / z 932.9(\mathrm{M}+\mathrm{H})$.

Fmoc-MeVal-Val-Dil-Dap- N, N -
dimethylethylenediamine•TFA (SI-10i) ($3.75 \mathrm{~g}, 3.67 \mathrm{mmol}$) was obtained in 52% yield after purification by preparatory HPLC. ESI MS: $m / z 877.8(\mathrm{M}+\mathrm{H})$.

Dov-Val-Dil-Dap-4-(2-aminoethyl)aniline-Fmoc (SI-
14j) (2.63 g) was obtained in 141% yield after purification by flash chromatography using $5 \%-$ $10 \% \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent. Excess mass was attributed to unknown impurities, however material was used without further purification. ESI MS: $m / z 939.7(\mathrm{M}+\mathrm{H})$, $961.7\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Dov-Val-Dil-Dap- N-Fmoc- N -
methylaminoethylamine•TFA (SI-14k) $(0.437 \mathrm{~g}, 0.428 \mathrm{mmol})$ was obtained in 39% yield after purification by preparatory HPLC. ESI MS: $m / z 877.8(\mathrm{M}+\mathrm{H}), 899.7\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Dov-Val-Dil-Dap-ethylenediamine-Fmoc (SI-14I) (1.04
$\mathrm{g}, 1.20 \mathrm{mmol}$) was obtained in 48% yield after purification by flash chromatography using $5 \%-$ $10 \% \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent. ESI MS: $m / z 863.7(\mathrm{M}+\mathrm{H}), 885.7\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Dov-Val-Dil-Dap-2-(4-Cbz-piperazin-1-
$\mathbf{y l}$)ethanamine ${ }^{-T F A}$ (SI-14m). To a stirred room temperature suspension of Boc-Dap-2-(4-Cbz-piperazin-1-yl)ethanamine SI-1m ($0.31 \mathrm{~g}, 0.59 \mathrm{mmol}$) and Dov-Val-Dil-OtBu SI-13 (0.314 $\mathrm{g}, 0.65 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added TFA (4 mL). After 8 h , analysis by LC-MS showed the reaction was complete. The volatile organics were evaporated in vacuo to yield crude Dov-Val-Dil-OH•TFA and H-Dap-2-(4-Cbz-piperazin-1-yl)ethanamine•TFA that were used without further purification.

To a stirred room temperature suspension of crude Dov-Val-Dil-OH•TFA and H-Dap-2-(4-Cbz-piperazin-1-yl)ethanamine•TFA in DMF (5 mL) was added DIEA ($0.42 \mathrm{~mL}, 2.35 \mathrm{mmol}$), followed by HATU $(0.45 \mathrm{~g}, 1.18 \mathrm{mmol})$ and $\mathrm{HOBt}(0.18 \mathrm{~g}, 1.18 \mathrm{mmol})$. After 10 h , the reaction was terminated by the addition of sat. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, followed by extraction with EtOAc (4 x 20 mL). The combined organic extract was washed with brine (50 mL), dried over magnesium sulfate, and concentrated in vacuo. The resulting viscous oil was purified by preparatory HPLC. Dov-Val-Dil-Dap-2-(4-Cbz-piperazin-1-yl)ethanamine•TFA SI-14m ($0.029 \mathrm{~g}, 0.029 \mathrm{mmol}$) was obtained in 5% yield. ESI MS: $m / z 844.9(\mathrm{M}+\mathrm{H}), 866.8\left(\mathrm{M}+\mathrm{Na}^{+}\right), 422.9(\mathrm{M}+2 \mathrm{H})^{2+}$.

Scheme SI4. Deprotection of Fmoc-NH-MeVal

N-MeVal-Val-Dil-Dap-2-(2-aminoethyl)pyridine (12). To a stirred solution of Fmoc-MeVal-Val-Dil-Dap-2-(2-aminoethyl)pyridine (SI-10a, 11 main text) $(1.07 \mathrm{~g}, 1.17 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added piperidine $(5 \mathrm{~mL})$. After 10 h , the crude reaction mixture was diluted with DMSO and purified directly by preparatory HPLC. Compound 12 ($624 \mathrm{mg}, 0.78 \mathrm{mmol}$) was obtained as the TFA salt in 66% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) - a complex spectrum was observed, likely due to conformational isomers - δ
$8.83(\mathrm{~s}), 8.79(\mathrm{t}, J=8 \mathrm{~Hz}), 8.49(\mathrm{dt}, J=5.2,0.8 \mathrm{~Hz}), 8.08(\mathrm{t}, J=5.4 \mathrm{~Hz}), 7.86(\mathrm{t}, J=5.5 \mathrm{~Hz})$, $7.77-7.58(\mathrm{~m}), 7.26-7.17(\mathrm{~m}), 4.69-4.78(\mathrm{~m}), 4.67-4.54(\mathrm{~m}), 4.04-3.95(\mathrm{~m}), 3.86-3.76$ (m), $3.74-3.63(\mathrm{~m}), 3.63-3.52(\mathrm{~m}), 3.53-3.44(\mathrm{~m}), 3.32(\mathrm{~s}), 3.30(\mathrm{~s}), 3.26(\mathrm{~s}), 3.32-3.22$ (m), 3.21 (s), $3.20-3.17(\mathrm{~m}), 3.14(\mathrm{~s}), 3.15-3.07(\mathrm{~m}), 2.99(\mathrm{~s}), 3.02-2.95(\mathrm{~m}), 2.95-2.83$ (m), $2.73-2.63(\mathrm{~m}), 2.68(\mathrm{~s}), 2.52-2.39(\mathrm{~m}), 2.29(\mathrm{dd}, J=15.8,9.2 \mathrm{~Hz}), 2.24-2.13(\mathrm{~m}), 2.13$ - $1.92(\mathrm{~m}), 1.91-1.72(\mathrm{~m}), 1.69-1.50(\mathrm{~m}), 1.38-1.20(\mathrm{~m}), 1.12-1.00(\mathrm{~m}), 1.01-0.82(\mathrm{~m})$, $0.82-0.69(\mathrm{~m}), 0.64(\mathrm{~d}, J=6.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) signals corresponding to TFA were not included δ 173.5, 173.1, 172.9, 172.12 (br), 172.07, 171.9, 171.7, 169.1, 168.9, $166.02,166.00,159.1,158.9,149.1,148.9,136.5,136.4,123.2,123.1,121.5,89.3,85.7,81.8$, $77.9,77.7,73.7,69.4,65.58,65.54,64.49,61.1,60.3,58.7,58.5,57.3,57.1,55.9$ (br), 55.4, 55.2, 54.66, 54.63, 47.2, 46.20, 46.18, 43.7, 43.4, 40.9, 38.2, 37.9, 37.4, 37.1, 37.0, 36.9, 35.2, 33.8, $32.0,31.8,31.6,31.54,31.47,30.6,30.1,30.0,29.5,27.2,26.3,25.5,25.4,25.1,24.5,24.3,23.2$, $18.61,18.55,18.4,18.33,18.29,17.6,15.6,15.44,15.38,14.9,13.6,12.4,12.1,10.4,10.2$. ESIMS: $m / z 689.8(\mathrm{M}+\mathrm{H})^{+} ; 711.6(\mathrm{M}+\mathrm{Na})^{+} ;$ESI HRMS: m / z calc'd for $\left[\mathrm{C}_{37} \mathrm{H}_{64} \mathrm{~N}_{6} \mathrm{O}_{6}+\mathrm{H}\right]^{+}$ 689.4966, found 689.4966.

The following compounds were synthesized in an analogous fashion:

15
Compound $15(0.963 \mathrm{~g}, 1.16 \mathrm{mmol})$ was obtained as the TFA salt in 54% yield. ESI-MS $m / z 689.5(\mathrm{M}+\mathrm{H})^{+}, 711.4(\mathrm{M}+\mathrm{Na})^{+}$; ESI HRMS m / z calc'd for $\left[\mathrm{C}_{37} \mathrm{H}_{64} \mathrm{~N}_{6} \mathrm{O}_{6}+\mathrm{H}\right]^{+}$689.4966, found 689.4966 .

16
Compound 16 ($0.111 \mathrm{~g}, 0.135 \mathrm{mmol}$) was obtained as the TFA salt in 24% yield. ESI-MS: $m / z 678.7(\mathrm{M}+\mathrm{H})^{+}, 339.9(\mathrm{M}+2 \mathrm{H})^{2+}$; ESI HRMS: m / z calc'd for $\left[\mathrm{C}_{35} \mathrm{H}_{63} \mathrm{~N}_{7} \mathrm{O}_{6}+\mathrm{H}\right]^{+}$678.4918, found 678.4918.

17
Compound 17 ($100 \mathrm{mg}, 0.122 \mathrm{mmol}$) was obtained as the TFA salt in 60% yield. ESI-MS: $m / z 678.5(\mathrm{M}+\mathrm{H})^{+}$; ESI HRMS: m / z calc'd for $\left[\mathrm{C}_{35} \mathrm{H}_{63} \mathrm{~N}_{7} \mathrm{O}_{6}+\mathrm{H}\right]^{+}$678.4918, found 678.4918.

18
Compound 18 ($24 \mathrm{mg}, 0.029 \mathrm{mmol}$) was obtained as the TFA salt in 51% yield. ESI-MS: $m / z 678.7\left(\mathrm{M}+\mathrm{H}^{+} ; 700.6(\mathrm{M}+\mathrm{Na})^{+}, 340.0(\mathrm{M}+2 \mathrm{H})^{2+}\right.$; ESI HRMS: m / z calc'd for $\left[\mathrm{C}_{35} \mathrm{H}_{63} \mathrm{~N}_{7} \mathrm{O}_{6}+\mathrm{H}\right]^{+} 678.4918$, found 678.4918 .

19
Compound 19 ($0.246 \mathrm{~g}, 0.293 \mathrm{mmol}$) was obtained as the TFA salt in 54% yield. ESI-MS: $m / z 697.7(\mathrm{M}+\mathrm{H})^{+}, 349.3(\mathrm{M}+2 \mathrm{H})^{2+}$; ESI HRMS: m / z calc'd for $\left[\mathrm{C}_{36} \mathrm{H}_{68} \mathrm{~N}_{6} \mathrm{O}_{7}+\mathrm{H}\right]^{+}$697.5228, found 697.5228.

Compound 20 ($0.268 \mathrm{~g}, 0.314 \mathrm{mmol}$) was obtained as the TFA salt in 63% yield. ESI-MS: $m / z 710.8(\mathrm{M}+\mathrm{H})^{+}, 356.1(\mathrm{M}+2 \mathrm{H})^{2+}$; ESI HRMS: m / z calc'd for $\left[\mathrm{C}_{37} \mathrm{H}_{71} \mathrm{~N}_{7} \mathrm{O}_{6}+\mathrm{H}\right]^{+} 710.5544$, found 710.5544 .

Compound $21(0.963 \mathrm{~g}, 1.21 \mathrm{mmol})$ was obtained as the TFA salt in 62% yield. ESI-MS: $m / z 655.8(\mathrm{M}+\mathrm{H})^{+}, 328.1(\mathrm{M}+2 \mathrm{H})^{2+}$; ESI HRMS: m / z calc'd for $\left[\mathrm{C}_{34} \mathrm{H}_{66} \mathrm{~N}_{6} \mathrm{O}_{6}+\mathrm{H}\right]^{+}$655.5122, found 655.5122.

Compound $24(0.212 \mathrm{~g}, 0.265 \mathrm{mmol})$ was obtained as the TFA salt in 62% yield. ESI-MS $m / z 655.8(\mathrm{M}+\mathrm{H})^{+}, 328.5(\mathrm{M}+2 \mathrm{H})^{2+}$; ESI HRMS: m / z calc'd for $\left[\mathrm{C}_{34} \mathrm{H}_{66} \mathrm{~N}_{6} \mathrm{O}_{6}+\mathrm{H}\right]^{+}$655.5117, found 655.5122.

The remaining compounds were synthesized with slight variations:

Val-Dil-Dap-2-(2-ethylamino)pyridine•TFA (SI-8a). To a stirred $23{ }^{\circ} \mathrm{C}$ suspension of SI-1a ($0.35 \mathrm{~g}, 0.67 \mathrm{mmol}$), Fmoc-Val-Dil-OH SI-11 ($0.353 \mathrm{~g}, 0.67$ $\mathrm{mmol})$ in DMF $(5 \mathrm{~mL})$ was added HATU ($0.384 \mathrm{~g}, 1.0 \mathrm{mmol}$) and DIEA ($0.48 \mathrm{~mL}, 2.7 \mathrm{mmol}$). After 0.5 h , piperidine ($50 \mathrm{uL}, 0.51 \mathrm{mmol}$) was added. After stirring a further 1 h , the mixture was concentrated under reduced pressure, the residue was re-dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and precipitated in diethyl ether $(40 \mathrm{~mL})$. After the solvent was decanted, the precipitate was purified by preparatory HPLC. Val-Dil-Dap-2-(2-ethylamino)pyridine•TFA SI-8a ($0.296 \mathrm{~g}, 0.37$ mmol) was obtained in 55% yield as a white solid. ESI MS: m/z $575.4(\mathrm{M}+\mathrm{H}), 227.1(\mathrm{M}+$ $2 H)^{2+}$.

Compound 13. To a stirred $23{ }^{\circ} \mathrm{C}$ mixture of Val-Dil-Dap-2-(2-ethylamino)pyridine•TFA SI-8a ($0.105 \mathrm{~g}, 0.17 \mathrm{mmol}$) and Boc-d-MeVal-OH ($0.048 \mathrm{~g}, 0.21$ $\mathrm{mmol})$ in DMF (1 mL) was added HATU $(0.098 \mathrm{~g}, 0.26 \mathrm{mmol})$, followed by DIEA (0.12 mL , 0.69 mmol). After 0.2 h , the DMF was removed under reduced pressure. The residue was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and TFA $(1 \mathrm{~mL})$. After stirring a further 0.2 h , the solvent was removed under reduced pressure. The residue was purified by preparatory HPLC to yield compound $\mathbf{1 3}$ as the TFA salt $(0.042 \mathrm{~g}, 0.05 \mathrm{mmol})$ in 31% yield as a white powder. ESI-MS m / z $688.5(\mathrm{M}+\mathrm{H}), 344.7(\mathrm{M}+2 \mathrm{H})^{2+}$. HRMS: m / z calc'd for $\left[\mathrm{C}_{37} \mathrm{H}_{64} \mathrm{~N}_{6} \mathrm{O}_{6}+\mathrm{H}\right]^{+}$689.4957, found 689.4967.

Compound 14. To a mixture of Fmoc-MeVal-Val-Dil-OH (SI-17), HOBt ($95 \mathrm{mg}, 0.62 \mathrm{mmol}$) and EDCI ($163 \mathrm{mg}, 0.92 \mathrm{mmol}$) was added a solution of Dap-3-(2-ethylamino)pyridine (SI-1b) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and DMF (1 mL), followed by DIPEA $(423 \mu \mathrm{~L}, 2.43 \mathrm{mmol})$. After 18 h , the crude solution was concentrated under reduced pressure to remove $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The remaining solution was diluted with DMF and was purified by preparatory HPLC.

To a solution of Fmoc-MeVal-Val-Dil-Dap-3-(2-ethylamino)pyridine (SI-10b) in EtOAc (10 $\mathrm{mL})$ was added dodecyl mercaptan $(220 \mu \mathrm{~L}, 0.92 \mathrm{mmol})$, followed by $\mathrm{DBU}(18 \mu \mathrm{~L}, 0.12 \mathrm{mmol})$. After 5 h , diethylamine ($1.0 \mathrm{~mL}, 0.97 \mathrm{mmol}$) was added. After a further $18 \mathrm{~h}(23 \mathrm{~h}$ total), the crude solution was concentrated under reduced pressure. The resulting oil was dissolved in DMF and purified by preparatory HPLC. Compound $14(160 \mathrm{mg}, 0.02 \mathrm{mmol})$ was obtained as a colourless, glassy solid in 33% yield. ESI-MS: $m / z 689.4(M+H), 345.4(M+2 H)^{2+}$. ESI HRMS: m / z calc'd for $\left[\mathrm{C}_{37} \mathrm{H}_{64} \mathrm{~N}_{6} \mathrm{O}_{6}+\mathrm{H}\right]^{+}$689.4966, found 689.4957.

22
Compound 22. To a stirred room temperature suspension of impure Dov-Val-Dil-Dap-4-(2-aminoethyl)aniline-Fmoc SI-14j (1.75 g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) was added piperidine (2 mL). After 10 h , analysis by LC-MS showed the reaction was complete. The solvent was removed in vacuo and the product was purified by preparatory HPLC. Compound $22(0.759 \mathrm{~g}, 0.91 \mathrm{mmol})$ was obtained as the TFA salt in 47% yield. ESI-MS: m / z $717.7(\mathrm{M}+\mathrm{H})^{+} ; 740.7(\mathrm{M}+\mathrm{Na})^{+}$, $359.5(\mathrm{M}+2 \mathrm{H})^{2+}$; ESI HRMS: m / z calc'd for $\left[\mathrm{C}_{39} \mathrm{H}_{68} \mathrm{~N}_{6} \mathrm{O}_{6}+\mathrm{H}\right]^{+} 717.5279$, found 717.5278.

23
Compound 23. To a stirred room temperature suspension of Dov-Val-Dil-Dap-2-(4-Cbz-piperazin-1-yl)ethanamine•TFA SI-14m (29 mg, 0.029 mmol) and ammonium formate ($3 \mathrm{mg}, 0.051 \mathrm{mmol}$) in DMF (3 mL) and water (0.5 mL) was added 10% $\mathrm{Pd} / \mathrm{C}(17 \mathrm{mg})$. After stirring 48 h at $25^{\circ} \mathrm{C}$, the reaction mixture was filtered through a pad of
diatomaceous earth and the filtrate was concentrated to give 18 mg of $\mathbf{2 3}$ as the formate salt. The product was purified by preparatory HPLC, to yield compound $\mathbf{2 3} \cdot \mathrm{TFA}(0.015 \mathrm{~g}, 0.018 \mathrm{mmol})$ in 79% yield. ESI-MS $m / z 710.8(\mathrm{M}+\mathrm{H})^{+}, 356.1(\mathrm{M}+2 \mathrm{H})^{2+}$; HRMS m / z calc'd for $\left[\mathrm{C}_{37} \mathrm{H}_{71} \mathrm{~N}_{7} \mathrm{O}_{6}+\mathrm{H}\right]^{+} 710.5544$, found 710.5544 .

Compound 25. To a stirred room temperature suspension of Dov-Val-Dil-Dap-ethylenediamine-Fmoc SI-141 ($1.04 \mathrm{~g}, 1.20 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added piperidine $(2 \mathrm{~mL})$. After 10 h , analysis by LC-MS showed the reaction was complete. The solvent was removed and the product was purified by preparatory HPLC. Compound 25 (0.716 $\mathrm{g}, 0.82 \mathrm{mmol}$) was obtained as the TFA salt in 76% yield. ESI HRMS: m / z calc'd for $\left[\mathrm{C}_{33} \mathrm{H}_{64} \mathrm{~N}_{6} \mathrm{O}_{6}+\mathrm{H}\right]^{+}$641.4966, found 641.4966.

26
Compound 26. To a solution of Fmoc-4-aminobenzyl-Val-Dil-OH (SI-18) ($0.20 \mathrm{~g}, 0.30 \mathrm{mmol}$), Dap-2-(2-ethylamino)pyridine SI-1a ($0.14 \mathrm{~g}, 0.35$ $\mathrm{mmol})$, $\mathrm{HOBt}(52 \mathrm{mg}, 0.34 \mathrm{mmol})$ and EDCI ($89 \mathrm{mg}, 0.50 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added DIPEA $(211 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$. After 20 h , the crude mixture was diluted with DMF and purified directly by preparatory HPLC.

To a solution of the crude Fmoc-4-aminobenzyl-Val-Dil-Dap-2-(2-ethylamino)pyridine SI-9a in EtOAc (10 mL) was added diethylamine ($1.0 \mathrm{~mL}, 9.22 \mathrm{mmol}$). After 6 h , the crude mixture was concentrated under reduced pressure and purified by preparatory HPLC. Compound 26 (8.0 $\mathrm{mg}, 0.009 \mathrm{mmol}$) was obtained in 3% yield. ESI MS: $m / z 695.4(\mathrm{M}+\mathrm{H})$. ESI HRMS: m / z calc'd for $\left[\mathrm{C}_{38} \mathrm{H}_{58} \mathrm{~N}_{6} \mathrm{O}_{6}+\mathrm{H}\right]^{+}$695.4496, found 695.4496.

27
Compound 27. To a mixture of Fmoc-4-aminobenzyl-Val-Dil-OH (SI-18) ($0.40 \mathrm{~g}, 0.61 \mathrm{mmol})$, HOBt ($95 \mathrm{mg}, 0.62 \mathrm{mmol}$), and EDCI ($0.166 \mathrm{~g}, 0.93$ mmol) was added a solution of Dap-3-(2-ethylamino)pyridine SI-1b ($0.22 \mathrm{~g}, 0.60 \mathrm{mmol}$) in
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and DMF (1 mL). To this mixture was added DIPEA ($423 \mu \mathrm{~L}, 2.43 \mathrm{mmol}$). After 18 h , the crude solution was concentrated under reduced pressure to remove $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The remaining solution was diluted with DMF and purified directly by preparatory HPLC.

To the resulting Fmoc-4-aminobenzyl-Val-Dil-Dap-3-(2-ethylamino)pyridine SI-9b dissolved in EtOAc (10 mL) was added dodecyl mercaptan ($197 \mu \mathrm{~L}, 0.82 \mathrm{mmol}$), followed by DBU (18 $\mu \mathrm{L}, 0.12 \mathrm{mmol}$). After 5 h , diethylamine ($1.0 \mathrm{~mL}, 9.67 \mathrm{mmol}$) was added. After a further 18 h (23 h total), the crude solution was concentrated under reduced pressure. The crude oil was dissolved in DMF and purified directly by preparatory HPLC. After concentration, compound $27(29.0 \mathrm{mg}, 0.03 \mathrm{mmol})$ was obtained an off-white solid in 5% yield. ESI MS: $m / z 695.4$ (M+ H). ESI HRMS m / z calc'd for $\left[\mathrm{C}_{38} \mathrm{H}_{58} \mathrm{~N}_{6} \mathrm{O}_{6}+\mathrm{H}\right]^{+}$695.4496, found 695.4496.

Compound 28. To a stirred room temperature solution of Boc-4-Abz-Val-Dil-Dap-4-(2-aminoethyl)pyridine SI-9c (2.09 g, 2.63 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) was added TFA (2 mL). After 10 h , analysis by LC-MS showed the reaction was complete. The product was purified by preparatory HPLC. Compound $28(0.633 \mathrm{~g}, 0.755 \mathrm{mmol})$ was obtained as the TFA salt in 29% yield. ESI-MS: $m / z 695.5(\mathrm{M}+\mathrm{H})^{+} ; 717.5(\mathrm{M}+\mathrm{Na})^{+}$; ESI HRMS m / z calc'd for $\left[\mathrm{C}_{38} \mathrm{H}_{58} \mathrm{~N}_{6} \mathrm{O}_{6}+\mathrm{H}\right]^{+}$695.4496, found 695.4496.

Drug-Linker Synthesis.

Maleimidopropyl-12 (29). To a stirred solution of compound $\mathbf{1 2} \cdot \mathrm{TFA}(0.0247 \mathrm{~g}, 0.031 \mathrm{mmol})$ in EtOAc $(0.5 \mathrm{~mL})$ was added DIEA $(0.02 \mathrm{~mL}, 0.11$ mmol) and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 20 min . A further portion of DIEA ($0.02 \mathrm{~mL}, 0.11$ mmol) was added, followed by maleimidopropyl hydroxysuccinimide ($0.029 \mathrm{~g}, 0.11 \mathrm{mmol}$) and the mixture was warmed to $23^{\circ} \mathrm{C}$. After 16 h a further portion of DIEA ($0.02 \mathrm{~mL}, 0.11 \mathrm{mmol}$) and maleimidopropyl hydroxysuccinimide ($0.029 \mathrm{mg}, 0.11 \mathrm{mmol}$) was added. After a further 3 h, the mixture was concentrated in vacuo and the residue was purified directly by preparatory HPLC. Maleimidopropyl-12 (29) ($9 \mathrm{mg}, 0.009 \mathrm{mmol}$) was obtained as the TFA salt in 31% yield. ESI MS: $m / z 840.5(\mathrm{M}+\mathrm{H})$. (SDB-1501-71)

Maleimidocaproyl-12 (30). To a stirred solution of compound $\mathbf{1 2} \cdot$ TFA $(0.024 \mathrm{~g}, 0.030 \mathrm{mmol})$ and maleimidohexanoic acid $(0.022 \mathrm{~g}$, 0.11 mmol) in EtOAc (0.5 mL) was added DIEA ($0.02 \mathrm{~mL}, 0.11 \mathrm{mmol}$). The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 20 min , after which a further portion of DIEA ($0.02,0.11 \mathrm{mmol}$) was added. CMPI ($0.027 \mathrm{~g}, 0.11 \mathrm{mmol}$) was added and the mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 16 h . The resulting mixture was concentrated in vacuo and the residue was purified directly by preparatory HPLC. Maleimidocaproyl-12 ($18 \mathrm{mg}, 0.018 \mathrm{mmol}$) was obtained as the TFA salt in 60% yield. ESI MS: $m / z 882.6(\mathrm{M}+\mathrm{H})$.

Bromoacetamido-($\boldsymbol{\beta}$-Ala)-12 (31). To a stirred solution of compound $\mathbf{1 2} \cdot \mathrm{TFA}(18.8 \mathrm{mg}, 0.023 \mathrm{mmol})$ in DMF $(0.4 \mathrm{~mL})$ was added DIEA (15 $\mu \mathrm{L}, 0.082 \mathrm{mmol}$), followed by succinimidyl-3-(bromoacetamide)propionate ($25 \mathrm{mg}, 0.082$ mmol). After the reaction was deemed complete by LC-MS, the crude reaction mixture was purified directly by preparatory HPLC. Bromoacetamido-(β-Ala)- $\mathbf{1 2}$ (31) ($9 \mathrm{mg}, 0.009 \mathrm{mmol}$) was obtained as the TFA salt in 39% yield. ESI MS: $m / z ~ 880.3,882.6(\mathrm{M}+\mathrm{H})$.

Maleimidoethyl-4-nitrophenyl carbamate (SI-19). To a stirred solution of ethanolmaleimide ($500 \mathrm{mg}, 3.54 \mathrm{mmol}$) and 4-nitrophenylcarbonate ($2.15 \mathrm{~g}, 7.08 \mathrm{mmol}$) in DMF $(10 \mathrm{~mL})$ was added DIEA $(0.92 \mathrm{~mL}, 5.31 \mathrm{mmol})$. After 1 h, EtOAc and $\mathrm{H}_{2} \mathrm{O}$ were added. The organic layer was concentrated under reduced pressure. The oily residue was triturated with diethyl ether and the precipitate formed was filtered and dried. ${ }^{1} \mathrm{H}$ NMR analysis shows the presence of the product, mixed with 4-nitrophenol. The mixture was used without further purification. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.28(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.37$ (m, 2H), 6.78 (s, 2H), $4.44-4.38(\mathrm{~m}, 2 \mathrm{H}), 3.97-3.93(\mathrm{~m}, 2 \mathrm{H})$.

Maleimidoethylcarbamyl-12 (32). To a stirred solution of compound $\mathbf{1 2} \cdot$ TFA $(10 \mathrm{mg}, 0.012 \mathrm{mmol})$ and maleimidoethyl-4-nitrophenyl carbamate SI-19 ($10 \mathrm{mg}, 0.014 \mathrm{mmol}$) in DMF (0.3 mL) was added DIEA ($3.3 \mathrm{uL}, 0.019 \mathrm{mmol}$) and $\operatorname{HOBt}(1.9 \mathrm{mg}, 0.014 \mathrm{mmol})$. After 16 h , the mixture was diluted with DMSO and purified directly by preparatory HPLC. Maleimidoethylcarbamyl-12 (32) ($3.4 \mathrm{mg}, 0.004 \mathrm{mmol}$) was obtained in 32% yield. ESI MS: $m / z 854.8(\mathrm{M}+\mathrm{H}), 876.8\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Maleimidopropyl-4-nitrophenyl carbamate (SI-20). To a stirred solution of propanolmaleimide ($500 \mathrm{mg}, 3.22 \mathrm{mmol}$) and 4-nitrophenyl carbonate ($2.0 \mathrm{~g}, 6.44 \mathrm{mmol}$) in DMF (10 mL) was added DIEA ($0.92 \mathrm{~mL}, 4.84 \mathrm{mmol}$). After $1 \mathrm{~h}, \mathrm{EtOAc}$ and $\mathrm{H}_{2} \mathrm{O}$ were added. The organic layer was concentrated under reduced pressure. The oily residue was triturated with diethyl ether and the precipitate formed was filtered and dried. ${ }^{1} \mathrm{H}$ NMR shows the presence of the product mixed with 4-nitrophenol. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.34-8.22(\mathrm{~m}, 2 \mathrm{H})$, $7.47-7.36(\mathrm{~m}, 2 \mathrm{H}), 6.52(\mathrm{t}, J=0.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, 2.16-1.89 (m, 2H).

Maleimidopropylcarbamyl-12 (33). To a stirred solution of compound $\mathbf{1 2} \cdot$ TFA ($10 \mathrm{mg}, 0.012 \mathrm{mmol}$), maleimidopropyl-4-nitrophenyl carbamate SI-20 ($25.6 \mathrm{mg}, 0.080 \mathrm{mmol}$) and HOBt ($3.4 \mathrm{mg}, 0.025 \mathrm{mmol}$) in DMF (0.1 mL) was added DIEA ($5 \mu \mathrm{~L}, 0.025 \mathrm{mmol}$). After 16 h , the reaction was complete. The crude reaction mixture was purified directly by preparatory HPLC. Maleimidopropyl carbamyl-12 (33) (6.8 mg, $0.008 \mathrm{mmol})$ was obtained in 63% yield. ESI MS: $m / z 870.8(\mathrm{M}+\mathrm{H}), 892.8\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Maleimidopentyl-4-nitrophenyl carbonate (SI-21). To a stirred solution of pentanolmaleimide $(500 \mathrm{mg}, 2.54 \mathrm{mmol})$ and 4-nitrophenyl carbonate $(1.83 \mathrm{~g}, 6.00$ mmol) in DMF (3 mL) was added DIEA ($0.78 \mathrm{~mL}, 4.50 \mathrm{mmol}$). After 16 h , the reaction mixture was diluted with EtOAc , and washed with sat $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$ and brine. The crude residue was purified by flash chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: EtOAc. Maleimidopentyl-4-nitrophenyl carbonate SI-21 ($126 \mathrm{mg}, 0.36 \mathrm{mmol}$) was obtained in 13% yield.

Maleimidopentylcarbamyl-12 (34). To a stirred solution of compound $\mathbf{1 2} \cdot$ TFA ($3.2 \mathrm{mg}, 0.004 \mathrm{mmol}$), maleimidopentyl-4-nitrophenyl carbonate SI-21 ($2.8 \mathrm{mg}, 0.008 \mathrm{mmol}$) and HOBt ($1.1 \mathrm{mg}, 0.008 \mathrm{mmol}$) in DMF (0.1 mL) was added DIEA ($1.4 \mu \mathrm{~L}, 0.008 \mathrm{mmol}$). After 16 h , the reaction was complete. The crude mixture was diluted with DMSO and purified directly by preparatory HPLC. Maleimidopentylcarbamyl12, 34 ($2.1 \mathrm{mg}, 0.002 \mathrm{mmol}$) was obtained in 59% yield. ESI MS: $m / z 898.8(\mathrm{M}+\mathrm{H}), 920.7(\mathrm{M}$ $+\mathrm{Na}^{+}$).

Maleimido-1-hexanol (SI-22). Synthesized according to He, F. et al. ${ }^{3}$

Maleimidohexyl-4-nitrophenyl carbonate (SI-23). To a stirred solution of hexanolmaleimide SI-22 ($600 \mathrm{mg}, 3.04 \mathrm{mmol}$) and 4-nitrophenyl carbonate (1.82 g , 6.00 mmol) in DMF (3 mL) was added DIEA ($0.78 \mathrm{~mL}, 4.50 \mathrm{mmol}$). After 16 h , the mixture was diluted with EtOAc and washed with sat. $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$ and brine. The crude solid obtained was purified by flash chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: EtOAc. Maleimidohexyl-4nitrophenyl carbonate SI-23 (454 mg, 1.25 mmol) was obtained in 41% yield.

35
Maleimidohexylcarbamyl-12 (35). To a stirred solution of compound $\mathbf{1 2} \cdot$ TFA $(7.2 \mathrm{mg}, 0.009 \mathrm{mmol})$, maleimidohexyl-4-nitrophenyl carbonate SI-23 ($4.7 \mathrm{mg}, 0.013 \mathrm{mmol}$) and HOBt ($2.4 \mathrm{mg}, 0.018 \mathrm{mmol}$) in DMF (0.1 mL) was added DIEA ($3.1 \mu \mathrm{~L}, 0.018 \mathrm{mmol}$). After 16 h , the reaction mixture was purified directly by preparatory HPLC using neutral $\mathrm{H}_{2} \mathrm{O}$ (without TFA)/MeCN as the mobile phase. Maleimidohexylcarbamyl-12, $35(5.2 \mathrm{mg}, 0.006 \mathrm{mmol})$ was obtained in 64% yield. ESI MS: m / z $912.6(\mathrm{M}+\mathrm{H}), 934.8\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

MC-Val-Cit-Paba-12 (36).
To a stirred solution of compound $\mathbf{1 2} \cdot \mathrm{TFA}(23 \mathrm{mg}, 0.03 \mathrm{mmol}$), MC-Val-Cit-Paba-PNP (Purchased from Concortis) ($46.70 \mathrm{mg}, 0.06 \mathrm{mmol}$) and in DMF $(0.2 \mathrm{~mL})$ was added DIEA (23 $\mu \mathrm{L}, 0.13 \mathrm{mmol}$). After 16 h , the reaction mixture was purified directly by preparatory HPLC. Mc-Val-Cit-Paba-12 (17.3 mg, 0.01 mmol$)$ was obtained in 44% yield as the TFA salt. ESI MS: $m / z 1287.9(\mathrm{M}+\mathrm{H}), 644.7(\mathrm{M}+2 \mathrm{H})^{2+}$

Hydrophobic Interaction Chromatography (HIC) was performed to separate conjugated antibody species on the basis of drug load. A TSKGel Butyl NPR 4.6 ID x $3.5 \mathrm{~cm}, 2.5 \mu \mathrm{~m}$ column (Tosoh ${ }^{\circledR}$) was used with 1.5 M ammonium sulfate in 25 mM potassium phosphate pH 7.0 (mobile phase A) and 25 mM potassium phosphate pH 7.0 containing 25% isopropanol (mobile phase B) run at a flow rate of $0.8 \mathrm{~mL} / \mathrm{min}$ over a 12 minute linear gradient with UV monitoring which is following precisely the procedure in the literature. ${ }^{4}$ The retention time of trastuzumab showed very similar retention time.

Biological Testing Data

Figure SI1. Tubulin polymerization curves, at $10 \mu \mathrm{M}$ of payload. IH- denotes In-House comparator.

Figure SI2. Efficacy of Pyridine-containing Free Drugs (corresponds to Figure 4A in the main text).

Figure SI3. Soluble Aggregate vs. DAR for Trastuzumab (IgG1) ADCs.

Figure SI4. Plot of Efficacy of Free Drugs at both $2 \mathrm{mg} / \mathrm{kg}$ and $4 \mathrm{mg} / \mathrm{kg}$ (corresponds to main text Figure 4B). Male ICR/SCID mice bearing subcutaneously implanted human bladder cancer SW780 xenografts were dosed intravenously at either 2 or $4 \mathrm{mg} / \mathrm{kg}$. Groups dosed at $2 \mathrm{mg} / \mathrm{kg}$ (A) and $4 \mathrm{mg} / \mathrm{kg}$ (B) are presented separately for clarity. Vehicle: 20 mM Histidine $\mathrm{pH} 6.0 / 5 \%$ sucrose with 9% DMSO. Doses were given on days 0,6 and 13 . Each group consisted of 8 animals. The group treated with compound $\mathbf{2 2}$ at $4 \mathrm{mg} / \mathrm{kg}$ was terminated early due to animal
weight loss. The mean tumor volume in each group was plotted over time with the standard error.

Figure SI5. In vivo efficacy of non-cleavable ADCs (corresponds to main text Figure 7A). Female ICR/SCID mice bearing size-matched HCC1954 human breast cancer xenograft of 200 mm^{3} in volume were dosed intravenously at $10 \mathrm{mg} / \mathrm{kg}$ as a single dose on day 0 . Each group consisted of 10 animals. The mean tumor volume is plotted overt time with the standard error.

Figure SI6. In vivo efficacy of carbamate ADCs (corresponds to Figure 7B main text). Female ICR/SCID mice bearing size-matched HCC1954 human breast cancer xenograft of $200 \mathrm{~mm}^{3}$ in volume were dosed intravenously at $10 \mathrm{mg} / \mathrm{kg}$ as a single dose on day 0 . Each group consisted of 6 animals. The mean tumor volume is plotted over time with the standard error.

Figure SI7. In vivo efficacy of a cleavable ADC corresponds to Figure 8 in main text. Human breast carcinoma HCC1954 cells (3×10^{6} cells per mouse) were implanted into the mammary fatpad of female CB17/SCID mice. Treatment with Trastuzumab-36 or Kadcyla ${ }^{\mathrm{TM}}$ at $5 \mathrm{mg} / \mathrm{kg}$ as a single dose was started when tumors reached $200 \mathrm{~mm}^{3}(\mathrm{n}=10) . \mathrm{cHmLys} .1 \mathrm{c} 3 . \mathrm{G} 2 \mathrm{k}-36$ is the nonbinding Control ADC and the Vehicle is 20 mM Histidine / 5\% Trehalose, pH 5.2. A. Graph shows mean tumor volume over time with standard error for each cohort. B. Individual tumor volumes on day 21 in each cohort with mean and standard error.

Compound Characterization Data:

Figure SI8. ORTEP Drawing of $\mathbf{1 2}$ with 50% thermal ellipsoids. Crystals were grown in acetonitrile. The structure was refined as a two-component twin.

Table SI1. Summary of Crystallographic Information

Formula	$\mathrm{C}_{37} \mathrm{H}_{65} \mathrm{~N}_{6} \mathrm{O}_{6}, \mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{O}_{2}, \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$
Formula weight	$688.96,114.02,41.05$
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1}$
Color of crystal	colorless
Cell Lengths (\AA)	$\mathbf{a} 9.4629(4) \mathbf{b} 15.2084(7) \mathbf{c} 15.6029(6)$
Cell Angles $\left({ }^{\circ}\right)$	$\boldsymbol{\alpha} 90 \boldsymbol{\beta} 93.466(3) \gamma 90$
Cell Volume $\left(\AA^{3}\right)$	2241.39
Z, Z'	$\mathbf{Z}: 2 \mathbf{Z}^{\prime}: 0$
Temperature of Data Collection (K)	$100(2)$
Reflections Collected	18345
R-Factor (\%)	3.12
Goodness of Fit	1.048

\infty
\infty
*i\infty
*i\infty
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right.$ w $0.05 \% \mathrm{v} / \mathrm{v}$ TMS $)$

						\dagger		\dagger					$\dagger^{4}{ }^{1}$										
					$\stackrel{\circ}{\mathrm{N}}$	-		$\underset{\sim}{\text { ָ }}$					No										
10.5	10.0	9.5	9.0		8.5	8.0	7.5	7.0	6.5	6.0	5.5	$\begin{array}{r} 5.0 \\ \mathrm{f} 1(\mathrm{pr} \end{array}$	$\left.{ }^{5 p m}\right)^{4.5}$	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5

Figure SI9. ${ }^{1} \mathrm{H}$ NMR of compound 12 (full spectrum)

Figure SI10. ${ }^{1}$ H NMR for compound 12 (aliphatic region expansion)

Figure SI11. ${ }^{13} \mathrm{C}$ NMR for compound 12

Figure SI12. ${ }^{13} \mathrm{C}$ NMR of compound 12 (aliphatic region expansion)

References

1. Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. (1997) NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. J. Org. Chem. 62, 7512-7515.
2. Perron, V.; Abbott, S.; Moreau, N.; Lee, D.; Penney, C.; Zacharie, B. (2009) A method for the selective protection of aromatic amines in the presence of aliphatic amines. Synthesis, 283-289.
3. He, F.; Tang, Y.; Yu, M.; Wang, S.; Li, Y.; Zhu, D. (2007) A strategy for the detection of Diels-Alder reactions using fluorescence quenching of conjugated polymers. Adv. Funct. Mater. 17, 996-1002.
4. Singh, A. P.; Sharma, S.; Shah, D. K. (2016) Quantitative characterization of in vitro bystander effect of antibody-drug conjugates. J Pharmacokinet Pharmacodyn.
