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1. Comparison with the Model of Gundabala et al.  

Our simulation (Figures on the left) almost perfectly fits the profiles calculated by Gundabala et 

al.,1, 2 (Figures on the right. Reprinted with permission from reference 2 below. Copyright 2006 

American Chemical Society) as shown in Figure S1 below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. Surfactant distributions just before the end of the first drying stage versus distance from 

substrate scaled by the film thickness. Surfactant concentration is expressed in percent of excess or 

depletion compared to the hypothetical situation where the surfactant was distributed 

homogeneously throughout the film thickness.  

Top line: A̅ = 1; k = 10; PeS = 0.5; PeP as indicated. 

Bottom line: A̅ = 1; PeS = 0.5; PeP = 1; k as indicated. 

                                                           

(1) Gundabala, V.R.; Zimmerman, W.B.; Routh, A.F. A Model for Surfactant Distribution in Latex 

Coatings. Langmuir 2004, 20, 8721-8727. 

(2) Gundabala, V.R.; Routh, A.F. Predicting Surfactant Distribution in Dried Latex Films. in Film 

Formation; Process and Morphology. Provder, T.; Ed. ACS Symposium Series 941. American 

Chemical Society, Washington, DC. 2006, 53-65. 
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2. Effect of Surfactant Peclet Number in the First Drying Step 

 

 

This Figure complements Fig. 3 in the article. A small surfactant Peclet number tends to flatten the 

surfactant distribution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2. Percent surfactant excess/depletion as a function of scaled distance from the substrate 

in the vertical direction. Vertical convection of surfactant taken into account. 

k = 4; A̅ = 1; PeP = 50; PeS as indicated in the insert. 
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3. Supplements to the Part Dealing with Wet Sintering (�̅� = 0.5) 

 

 

Figure S3 is to compare to Figure 6 in the text. It shows surfactant distributions when Peclet 

numbers are reduced. Excesses at the substrate are enhanced and minima in the curves are no longer 

observed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3. Deformation by wet sintering. �̅� = 0.5. Percent surfactant excess/depletion as a function 

of scaled distance from the substrate in the vertical direction. 

PeP = 5; PeS = 0.1; t = 1 when particle volume fraction has reached 0.64 in contact with the 

substrate. 

Intermediate polymer / surfactant system (k = 4; A̅ = 1) at various times. 
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Figure S4 complements Figure 6a in the text. It shows how the surfactant is partitioned between 

the particle surfaces and the water phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4. Deformation by wet sintering. �̅� = 0.5. Surfactant partitioning between particle surfaces 

and water phase as a function of scaled distance from the substrate in the vertical direction. 

PeP = 50; PeS = 0.5; t = 1 when particle volume fraction has reached 0.64 in contact with the 

substrate. 

Intermediate polymer / surfactant system (k = 4; A̅ = 1) at various times. 
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Derivation of the transport equations by means of a variational
principle

We provide below a derivation of the equations for the transport of latex beads and surfactant
molecules, based on a least dissipation variational approach. The approach is based on a Ray-
leighian function R = Ġ + D/2 sum of the Gibbs free-energy variation rate Ġ and one half of
the dissipation rate D/2. The minimization of R with respect to each thermodynamic variable
variation rate provides a set of dynamic equations, which can be interpreted as the kinetic linear
response to the thermodynamic forces acting in the system (Onsager relaxation principle). Our
derivation follows closely Doi [M. Doi, Onsager’s Variational Principle in Soft Matter, Journal
of Physics : Condensed Matter, 2011, 23, 284118 and Soft Matter Physics, Oxford University
Press, 2013].

The free energy variation rate Ġ originates from a gradient of surfactant chemical potential
and a gradient of osmotic pressure for the concentrated suspension (chemical potential of the
beads). In expressing the first contribution, one must take care of the Langmuir equilibrium
between surfactant adsorbed on the beads, and in solution. This equilibrium is assumed to hold
everywhere and at all times.

Langmuir equilibrium and latex beads free-energy
Taking the latex solution as a suspension of identical spheres with radius R0 and number
concentration Cp. The bead volume fraction follows from simple geometrical considerations

φ =
4πR3

0

3
Cp. (1)

The surface to volume ratio of the suspension is 3/R0. In what follows, it turns out to be
convenient to express the surfactant concentrations in terms of volume fraction φ. We therefore
introduce (1− φ)Cs, average number density of free surfactant in solution and φCa, equivalent
fraction of surfactant adsorbed onto the surface. The total number of surfactant molecules in a
volume reads ∫

dr

[
(1− φ)Cs + φCa

]
. (2)

The Langmuir equilibrium rules the exchange of surfactant molecules at concentration Cs in
the solvent with single occupancy adsorption sites at the surface, and is characterized by an
adsorption energy −ε and a maximal coverage density φCm. In other words, each latex bead

carries at most
4πR3

0
3 Cm on its surface (R0Cm/3 molecules per unit surface). Within the previous

assumptions and notations, the chemical potential of surfactant molecules adsorbed at the
surface reads µa = kTCa/(Cm − Ca) − ε and must match the chemical potential in solution
µs. If in addition µs follows the Raoult law, the Langmuir equilibrium reduces to a standard
relation between surface and volume concentrations

Ca
Cm

=
Cs

Cs +A
, (3)

A being the volume concentration corresponding to a half-covered bead surface. In deriving the
transport equations of both surfactant and particle beads, one must express the total Gibbs
free-energy variation rate. The surfactant contribution to Ġ can be easily expressed in terms of
chemical potential ∫

dr

[
µa

∂

∂t
(φCa) + µs

∂

∂t
((1− φ)Cs)

]
(4)
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Given that Langmuir equilibrium is assumed throughout the sample, one has µs = µa and the
expression becomes ∫

drµs
∂

∂t

[
φCa + (1− φ)Cs

]
. (5)

The second contribution to the Gibbs free-energy variation rate originates from excluded
volume, dispersion and electrostatic interactions. All these are summarized into a free-energy
per volume f(φ). The contribution to Ġ simply reads∫

drf ′(φ)
∂φ

∂t
. (6)

It is clear from eq (5) and (6) that the thermodynamic variables under considerations are φ and
Cs (Ca being related to them through Langmuir equilibrium). These are the quantities for which
a transport equation must be found.

Dissipation for moving beads and surfactants in a solvent at rest
The simplest model assumes that solvent particles remain, on average, at rest. Introducing the
average velocity vs and diffusion coefficient Ds of surfactant molecules, one can express the
viscous dissipation of molecules as ∫

dr
kT

Ds
v2
s(1− φ)Cs. (7)

One recognizes in the above expression the particle friction coefficient kT/Ds (Einstein relation).
The product (1−φ)Csdr gives the number of surfactant molecules occupying a mesoscopic volume
dr, while Cs is the local concentration of tensioactive molecules, linked to the chemical potential
µs.

An analogue expression accounts for the dissipation of latex beads drifting across the static
medium. Denoting vp the local average bead velocity, the dissipation term reads∫

dr
kT

Dc(φ)
v2
p

3φ

4πR3
0

. (8)

The φ dependence of the friction kT/Dc(φ) expresses the influence of hydrodynamic interactions
acting in concentrated beads solutions, while the dilute limit kT/Dc(φ ' 0) = 6πηR0 reduces
to the usual Stokes friction.

Rayleighian and transport equations
We obtain for a solvent at rest the following Rayleighian

R =

∫
dr

{
µs
∂

∂t

(
φCa + (1− φ)Cs

)
+ f ′(φ)

∂φ

∂t
+

kT

2Ds
v2
s(1− φ)Cs +

kT

2Dc(φ)
v2
p

3φ

4πR3
0

}
, (9)

the dynamic variables of interest being ∂φ/∂t and ∂Cs/∂t. They are related to drift velocities
and currents by the usual flux balance relations :

∂φ

∂t
+∇ · (vpφ) = 0 (10)

for latex beads, and

∂

∂t

(
φCa + (1− φ)Cs

)
+∇ ·

(
vpφCa + vs(1− φ)Cs

)
= 0 (11)
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for surfactant molecules. These two relations makes it possible to rewrite the Rayleighian in
terms of bead and surfactant velocities only. Integrating by part, and assuming that no flux of
surfactant or particles is allowed across the system boundaries, one obtains

R =

∫
dr

{
(φCavp + (1− φ)Csvs) ·∇µs + Π′(φ)vp ·∇φ+

kT

2Ds
v2
s(1− φ)Cs +

kT

2Dc(φ)
v2
p

3φ

4πR3
0

}
,

(12)
where the identity φ∇f ′(φ) = Π′(φ)∇φ is used to put the latex beads osmotic pressure Π(φ) =
φf ′(φ)− f(φ) + f(0) in evidence.

Setting the functional derivatives of R with respect to vp(r) and vs(r) to zero (the Onsager-
Rayleigh variational principle) determines both vp and vs in terms of gradients of φ and µs.

kT

Ds
Cs(1− φ)vs + (1− φ)Cs∇µs = 0; (13)

Π′(φ)∇φ+
kT

Dc(φ)

3φ

4πR3
0

vp + φCa∇µs = 0. (14)

It is then straightforward to substitute for vp and vs in eqs (10,11), resulting in the transport
equations for beads and surfactant. In the following expressions, gradients are given in terms of
the vertical variable y.

∂φ

∂t
− ∂

∂y

(
4πR3

0

3
Π′(φ)

Dc(φ)

kT

∂φ

∂y

)
− ∂

∂y

(
Dc

kT

4πR3
0

3
φCa

∂µs
∂y

)
= 0; (15)

∂

∂t

(
φCa+(1−φ)Cs

)
− ∂

∂y

(
Ds

kT
(1− φ)Cs

∂µs
∂y

+
Dc

kT

4πR3
0

3
φCa

∂µs
∂y

+ Π′(φ)
Dc

kT

4πR3
0

3
Ca
∂φ

∂y

)
= 0.

(16)
Let us describe briefly the terms appearing in the above equations. Eq (15) relates the time
variation of the bead volume fraction to the gradient of osmotic pressure (middle term) and
a crossed diffusio-osmotic contribution proportional to the gradient of chemical potential µs
(last term). This term is present because each latex bead carries along a number of adsorbed
surfactant molecules proportional to φCa, and therefore feels a thermodynamic force pushing it
towards the chemical potential µs descent direction (see eq 14). In the improved treatment that
follows below, we show that a different and more physical diffusio-osmotic term emerges, that is
usually neglected in practice. Eq (16) relates the variation of surfactant molecules concentration
(first term) to the gradient of chemical potential (second term) and the advection of surfactant
molecules adsorbed on latex beads (last term). The third term is a counterpart of the crossed
diffusio-osmotic term discussed above.

Neglecting the diffusio-osmotic term φCa∇µs in eq (14) and assuming an ideal behavior for

µs = µ
(0)
s + kT ln(Cs/C0) leads to a basic set of equations, that constitute the starting point of

the study by Gundabala et al.

∂φ

∂t
− ∂

∂y

(
Dp(φ)

∂φ

∂y

)
= 0; (17)

∂

∂t

(
φCa + (1− φ)Cs

)
− ∂

∂y

(
Ds(1− φ)

∂Cs
∂y

+Dp(φ)Ca
∂φ

∂y

)
= 0. (18)
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with a particle collective diffusion coefficient defined as

Dp(φ) =
4πR3

0

3

Π′(φ)

kT
Dc(φ) (19)

The connection with Gundabala et al follows from the following additional notations and adimen-
sionalisation : Cs0 initial surfactant concentration, Ca ≡ 3Γ/R0, 3Γ∞/R0 ≡ Cm, Cs ≡ Cs/Cs0,
Γ ≡ 3Γ/(R0Cs0) = Cm/Cs0.

Water exchange due to latex beads displacement
To improve upon the steady solvent assumption, we now account for the solvent incompressibility
by modifying the conservation equation for beads and stating that the displacement of a bead
results in the exchange with an equivalent volume of solvent moving opposite to the bead. This
results in a different transport equation for the surfactants

∂

∂t

(
φCa + (1− φ)Cs

)
+∇ ·

(
vpφCa − vpφCs + vs(1− φ)Cs

)
= 0. (20)

Reiterating the above steps leads to a modified Rayleighian

R′ =

∫
dr

{
(φ(Ca − Cs)vp + (1− φ)Csvs) ·∇µs + Π′(φ)vp ·∇φ

+
kT

2Ds
v2
s(1− φ)Cs +

kT

2Dc

3φ

4πR3
0

v2
p

}
, (21)

and to the following dissipation equations

φvp = −4πR3
0

3

Dc

kT

(
Π′(φ)∇φ+ φ(Ca − Cs)∇µs

)
; (22)

Csvs = −Ds

kT
Cs∇µs. (23)

A significant difference compared with the steady solvent case concerns the diffusio-osmotic term
φ(Ca − Cs)∇µs. As expected, the gradient in chemical potential is now coupled the difference
Ca − Cs and the sign of the effective force is a priori undetermined. It depends on whether
the amount of surfactant carried by a colloidal particle is higher or lesser than the amount of
surfactant occupying an equivalent volume of solution. Neglecting again this contribution and
combining with eq (20) leads to a slightly different set of equations, which account properly for
a surfactant transport by a backflow around colloidal particles.

∂φ

∂t
− ∂

∂y

(
4πR3

0

3
Π′(φ)

Dc(φ)

kT

∂φ

∂y

)
= 0; (24)

∂

∂t

(
φCa + (1− φ)Cs

)
− ∂

∂y

(
Ds(1− φ)

∂Cs
∂y

+ Π′(φ)
Dc

kT

4πR3
0

3
(Ca − Cs)

∂φ

∂y

)
= 0. (25)

Simplifying by means of the collective diffusion constant Dp, one finally obtains :

∂φ

∂t
− ∂

∂y

(
Dp(φ)

∂φ

∂y

)
= 0; (26)
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∂

∂t

(
φCa + (1− φ)Cs

)
− ∂

∂y

(
Ds(1− φ)

∂Cs
∂y

+Dp(φ)(Ca − Cs)
∂φ

∂y

)
= 0. (27)

These equations are solved and compared to the results of Gundabala et al.
We note that for better consistency, diffusio-osmotic terms should be kept, and the non

vanishing solvent velocity should also be accounted for in the dissipation terms. Hindered
surfactant diffusion could also been introduced by means of a φ dependent coefficient Ds(φ).
This leads to ever more complex transport equations that will be the subject of future work.
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