Supporting Information for

Perovskite/Poly(3-hexylthiophene)/Graphene Multiheterojunction Phototransistors with Ultrahigh Gain in Broadband Wavelength Region

Chao Xie and Feng Yan*

Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong,

China

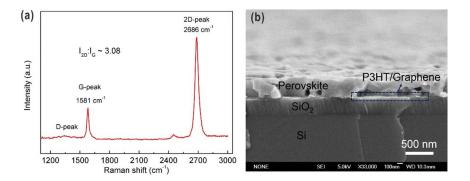


Fig. S1 (a) Raman spectrum of the graphene film on SiO₂/Si substrate. The large intensity ratio of $I_{\rm 2D}$: $I_{\rm G}$ (~3.08), combined with the weak D peak at ~1343 cm⁻¹, suggests good crystal quality of the monolayer graphene. (b) Cross-sectional SEM image of the CH₃NH₃PbI_{3-x}Cl_x perovskite/P3HT/graphene multiheterojunction on SiO₂/Si substrate.

^{*} E-mail: apafyan@polyu.edu.hk

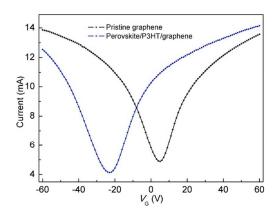


Fig. S2 Channel current of pristine graphene and $CH_3NH_3PbI_{3-x}Cl_x$ perovskite/P3HT/graphene measured under dark environment.

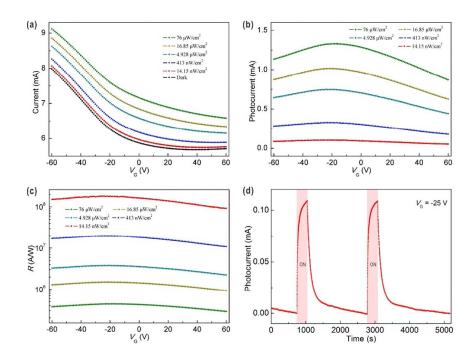


Fig. S3 (a) Channel current of the $CH_3NH_3PbI_{3-x}Cl_x$ perovskite/graphene phototransistor as a function of back-gate (V_G) under different illumination levels. Wavelength: 598 nm, V_{DS} =0.1 V. (b) Photocurrent and (c) responsivity (R) of the phototransistor as a function of V_G under different illumination levels. (d) Time-dependent photoresponse of the phototransistor to periodical on/off illumination (intensity: 14.15 nW/cm²) at V_G =-25 V, V_{DS} =0.1 V.

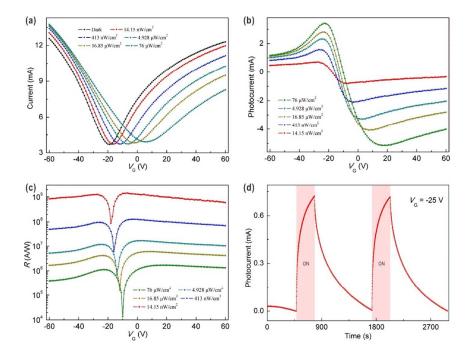


Fig. S4 (a) Channel current of the CH₃NH₃PbI₃ perovskite/P3HT/graphene phototransistor as a function of back-gate ($V_{\rm G}$) under different illumination levels. Wavelength: 598 nm, $V_{\rm DS}$ =0.1 V. (b) Photocurrent and (c) responsivity (R) of the phototransistor as a function of $V_{\rm G}$ under different illumination levels. (d) Time-dependent photoresponse of the phototransistor to periodical on/off illumination (intensity: 14.15 nW/cm²) at $V_{\rm G}$ =-25 V, $V_{\rm DS}$ =0.1 V.

Fig S5 Time-dependent photoresponse of the CH₃NH₃PbI_{3-x}Cl_x perovskite/P3HT/graphene phototransistor to periodical on/off illumination (intensity: 14.15 nW/cm^2) (a) at V_G =30 V, V_{DS} =0.1 V; (b) at V_G =-25 V, V_{DS} =0.1 V after being stored in a golvebox for ~4 weeks.

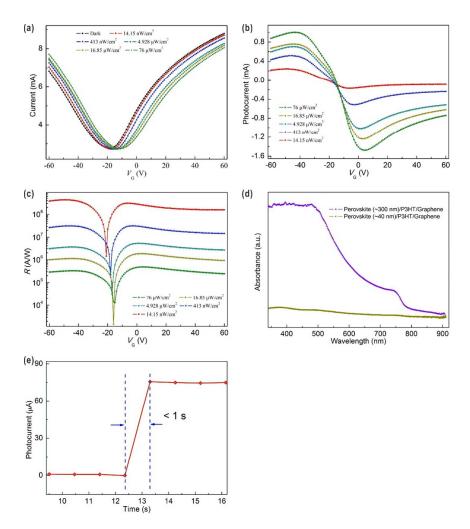


Fig S6 (a) Channel current of the CH₃NH₃PbI_{3-x}Cl_x perovskite (.40 nm)/P3HT/graphene phototransistor as a function of back-gate (*V*_G) under different illumination levels. Wavelength: 598 nm, *V*_{DS}=0.1 V. (b) Photocurrent and (c) responsivity (*R*) of the phototransistor as a function of *V*_G under different illumination levels. (d) Absorption spectrum of the CH₃NH₃PbI_{3-x}Cl_x perovskite (~40 nm)/P3HT/graphene film on glass, along with that of the CH₃NH₃PbI_{3-x}Cl_x perovskite (~300 nm)/P3HT/graphene film for comparison. (e) Enlarged view of the rising edge of the time-dependent photoresponse, which shows the rising time of the phototranistor.