pH and Potential Transients of the $b c_{1}$

Complex Co-reconstituted in Proteo-

Lipobeads with the Reaction Center from $R b$.

sphaeroides

Andreas F. Geiss ${ }^{\dagger \dagger \hbar}$, Raghav Khandelwal ${ }^{\S}$, Dieter Baurecht ${ }^{ \pm}$, Christina Bliem ${ }^{\dagger \dagger, \pi}$, Ciril ReinerRozman ${ }^{\dagger \dagger}$, Michael Boersch ${ }^{\ddagger}$, G. Matthias Ullmann ${ }^{\dagger}$, Leslie M. Loew ${ }^{\perp}$, and Renate L. C. Naumann ${ }^{\dagger *}$
${ }^{\dagger}$ Biosensor Technologies, Austrian Institute of Technology GmbH, AIT, Donau-City Str. 1, 1220 Vienna, Austria

* University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180 Wien, Austria
${ }^{\text {§ }}$ Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh, 208016, India
${ }^{ \pm}$Faculty of Chemistry, Department of Physical Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
${ }^{\text {a }}$ Center of Electrochemical Surface Technology, CEST, Viktor-Kaplan-Str. 2, 2700 Wiener Neustadt, Austria
${ }^{\ddagger}$ Single-Molecule Microscopy Group, Jena University Hospital, Nonnenplan 2-4, 07743 Jena, Germany
${ }^{\dagger}$ Computational Biochemistry Group, University of Bayreuth, Universitätsstraße 30, NWI, 95447 Bayreuth, Germany
${ }^{\perp}$ R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut 06030, USA

Figure S1. UV/Vis absorption spectra of the $1: 1$ mixture of $R C$ with $b c_{1}$ complexes before and after reduction with sodium hydrosulfite, detached from NTA-modified beads by imidazole.

Figure S2. Calibration plot of PLBs labeled with fluorescein-DHPE as a function of pH . Fluorescence emission intensities were measured of PLBs labeled with fluorescein-DHPE immersed in KCl solution ($35 \mathrm{mM}, 5 \mathrm{mM}$ citrate, titrated to pH values 3-10).

Figure S3. Reproducibility of the data. (A) Selected curves of Fig. 3 with mean value and standard deviation. (B) Single measurements. (RC and $b c_{1}$ complexes co-reconstituted with Q-10 within PLBs labeled with fluorescein-DHPE, cyt c added to the aqueous solution (black) and control experiments without cyt c (red) and with $b c_{1}$ alone (blue). Arrows indicate when the halogen lamp is switched on (\uparrow) and off (\downarrow).)

Figure S4. RC and $b c_{1}$ complexes co-reconstituted in PLBs with Q-10 - cytochrome c was added to the aqueous solution - illuminated with the halogen lamp in the absence (black) and presence valinomycin and FCCP (blue), respectively, labeled with di-4-ANBDQBS. Arrows indicate when the halogen lamp is switched on (\uparrow) and off (\downarrow).

Evaluation of pH-transients

pH vs. time plots (Fig. 3B) after corrections for bleaching effects (subtraction of the control experiment without RC) as well as for signal offsets due to switching were fitted to eq (1).

$$
\begin{equation*}
p H(t)=y_{0}+A e^{R_{0} t} \tag{1}
\end{equation*}
$$

From the first derivative of eq (1)

$$
\begin{equation*}
p H^{\prime}(t)=R_{0} A e^{R_{0} t} \tag{2}
\end{equation*}
$$

the initial rate $\frac{\Delta p H}{d t}$ was obtained.

Table S1. Parameters obtained from the fitting

	$\mathbf{R}_{\mathbf{0}}$	\mathbf{A}	$\mathbf{y}_{\mathbf{0}}$	$\mathbf{d p H} / \mathbf{d t}_{\mathbf{i n i}}$
- valinomycin	-0.023	1.181	7.663	0.006
+ valinomycin	-0.024	3.153	7.120	0.017

Number of bc c_{1} complexes bound to $12.3 \mu L$ PLB pellet

With $4.6 \times 10^{-10} \mathrm{~mol} b c_{1}$ complexes bound to $250 \mu \mathrm{~L}$ PLB pellet out of which $12.3 \mu \mathrm{~L}$ were used for the measurement, the number of $b c_{1}$ calculates to

$$
\begin{gathered}
4.6 \times 10^{-10} \times 6.022 \times 10^{23}=2.76 \times 10^{14} \\
\frac{12.3}{250} \times 2.76 \times 10^{14}=1.36 \times 10^{13}
\end{gathered}
$$

Calculation of the number of protons per bc complex bound to Tris buffer at the initial proton release rate

With $\mathrm{pK}_{\mathrm{a}}=8.2$ of Tris buffer and $\mathrm{a} \mathrm{dpH} / \mathrm{dt}_{\text {ini }}=0.0063 \mathrm{~s}^{-1}$ the percentage of protonated Tris molecules was obtained using the Henderson-Hasselbalch equation to be 0.33%.

$$
\begin{gather*}
p H=p K_{a}+\log _{10} \frac{\left[A^{-}\right]}{[H A]} \tag{3}\\
10^{p K_{a}-p H}=\frac{[H A]}{\left[A^{-}\right]} \tag{4}
\end{gather*}
$$

From this the number of protons bound to $388 \mu \mathrm{~L}$ Tris-buffer ($5 \mathrm{mmol} / \mathrm{L}$) calculates to:

$$
\begin{gathered}
0.0033 \times 5 \times 10^{-3} \times 387.7 \times 10^{-6} \times 6,022 \times 10^{23}=3.89 \times 10^{15} \\
\frac{3.89 \times 10^{15}}{1.36 \times 10^{13}}=286
\end{gathered}
$$

The number of protons bound to fluorescein DHPE $\left(\mathrm{pK}_{\mathrm{a}}=6.7^{1}\right)$ are in the order of magnitude of 10^{12}, negligible in comparison.

REFERENCES

(1) Martin, M. M.; Lindqvist, L. The pH dependence of fluorescein fluorescence. Journal of Luminescence 1975, 10, 381-390.

