Multistep Oxidation of Diethynyl OligophenylamineBridged Diruthenium and Diiron Complexes

Jing Zhang, ${ }^{\dagger}$ Shen-Zhen Guo, ${ }^{\dagger}$ Yu-Bao Dong, ${ }^{\dagger}$ Li Rao, ${ }^{\dagger}$ Jun Yin, ${ }^{\dagger}$ Guang-Ao Yu, ${ }^{\dagger}$ František Hartl,** Sheng Hua Liu**

${ }^{\dagger}$ Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
${ }^{\ddagger}$ Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K.

Crystallographic Information

Table S1. Crystal data and parameters of data collection and refinement for complexes 1a and 2a.

Complex	1a	2a
Formula	$\mathrm{C}_{94} \mathrm{H}_{91} \mathrm{NP}_{4} \mathrm{Ru}_{2}$	$\mathrm{C}_{106} \mathrm{H}_{100} \mathrm{~N}_{2} \mathrm{P}_{4} \mathrm{Ru}_{2} \cdot 3\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
Formula weight	1560.70	1982.67
Temperature (K)	$298(2)$	$296(2)$
Crystal system	Monoclinic	Triclinic
Space group	$C 2 / c$	$P-1$
$a(\AA)$	$42.877(6)$	$9.848(3)$
$b(\AA)$	$9.6957(14)$	$14.954(5)$
$c(\AA)$	$21.349(3)$	$16.443(6)$
$\alpha\left({ }^{\circ}\right)$	90	$77.951(5)$
$\beta\left({ }^{\circ}\right)$	$112.940(2)$	$89.872(5)$
$\gamma\left({ }^{\circ}\right)$	90	$80.650(5)$
$V\left(\AA^{3}\right)$	$8173(2)$	$2335.4(14)$
Z	4	1
Density (calculated) $\left(\mathrm{Mg}^{3} / \mathrm{m}^{3}\right)$	1.268	1.410
Absorption coefficient $\left(\mathrm{mm}^{-1}\right)$	0.49	0.61
$F(000)$	3240	1024
Crystal size $\left(\mathrm{mm}{ }^{3}\right)$	$0.20 \times 0.20 \times 0.10$	$0.20 \times 0.20 \times 0.20$
Theta range for data collection $\left({ }^{\circ}\right)$	1.03 to 28.00	1.267 to 28.128

Index ranges

Reflections collected
Independent reflections
Max. and min. transmission
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[I>2 \sigma(I)]$
R indices (all data)
$-56 \leq h \leq 55,-12 \leq k \leq 12$,
$-27 \leq l \leq 28$
34815
$9817[R(\mathrm{int})=0.037]$
0.952 and 0.908

9817 / 0/462
1.132
$R 1=0.0450, \mathrm{w} R 2=\quad R 1=0.1398, \mathrm{w} R 2=0.4261$
0.1188
$R 1=0.0664, \mathrm{w} R 2=\quad R 1=0.1608, \mathrm{w} R 2=0.4097$
0.1389

Largest diff. peak and hole
1.09 and $-0.37 \mathrm{e}^{-3}$
5.85 and $-1.63 e^{-3}$

Figure S1. X-ray crystal structure of 2a shown with thermal ellipsoids at the 50% probability level (A), and the packing view of 2a (B). Hydrogen atoms and co-crystallized solvent molecules have been omitted for clarity. CCDC 1435473.

Spectro-Electrochemical Information

Figure S2. Cyclic voltammograms $(\mathrm{CV}, v=50 \mathrm{mV} \mathrm{s}$-1 $)$ and corresponding square-wave voltammograms (SWV, at $f=10 \mathrm{~Hz}$ and $t_{\mathrm{p}}=25 \mathrm{mV}$) of the ligand bridge precursors $1 \mathbf{d}$ (top) and 2d (bottom).

Figure S3. IR spectra in the $v(\mathrm{C} \equiv \mathrm{C})$ region recorded for complex $\mathbf{2 a}$ in four different oxidation states generated in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / 10^{-1} \mathrm{M} n$ - $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ at 298 K within an OTTLE cell. Note that singly oxidized $[\mathbf{2 a}]^{+}$cannot be obtained in the pure form due to its partial valence disproportionation to 2a and $[\mathbf{2 a}]^{2+}$.

Figure S4. IR spectra recorded in the $v(\mathrm{C} \equiv \mathrm{C})$ region for compounds $\mathbf{1 d}$ and $\mathbf{2 d}$ in different oxidation states $(0,+1$ or +2$)$ generated in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / 10^{-1} \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ at 298 K within an OTTLE cell.

Figure S5. IR spectra recorded in the $v(\mathrm{C} \equiv \mathrm{C})$ region during the electrochemical oxidation of $\mathbf{1 b}$ into $[\mathbf{1 b}]^{2+}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / 10^{-1} \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ at 298 K within an OTTLE cell. The process involves an equilibrium with the minor mixed-valence state $[\mathbf{1 b}]^{+}$(see also Figure S6).

Figure S6. Infra-red (top) and electronic absorption (bottom) spectra of parent complex 1b (black) and $[\mathbf{1 b}]^{2+}$ (green) recorded after oxidation of $\mathbf{1 b}$ with ferrocenium hexafluorophosphate $\left(\mathrm{FcPF}_{6}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature. The intermediate spectra (red) correspond to the oxidation with 1 equiv. FcPF_{6}, which produced some [1b] ${ }^{+}$identified by the transient NIR absorption below 10000 cm^{-1}.

Figure S7. UV-vis-NIR spectral changes recorded during the oxidation of complex $[\mathbf{1 a}]^{2+}$ to $[\mathbf{1 a}]^{3+}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / 10^{-1} \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ at 298 K within an OTTLE cell.

Figure S8. UV-vis-NIR spectral changes recorded during the oxidation of complex $[\mathbf{1 b}]^{2+}$ to $[\mathbf{1 b}]^{3+}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / 10^{-1} \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ at 298 K within an OTTLE cell.

Figure S9. Deconvolution of the intense NIR absorption of $[\mathbf{1 a}]^{+}$(recorded during the anodic spectroelectrochemistry, see Figure 4 in the main text) into two Gaussian-shaped bands. Table S2 presents the corresponding electronic parameters.

Figure S10. UV-vis-NIR spectral changes recorded during the oxidation of TMS-terminated reference compound $\mathbf{1 d}$ to $[\mathbf{1 d}]^{+}$in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / 10^{-1} \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ at 298 K within an OTTLE cell.

Figure S11. UV-vis-NIR spectral changes recorded during the oxidation of TMS-terminated reference compound 2d to [2d] ${ }^{+}$(top), and [2d] ${ }^{2+}$ (bottom) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / 10^{-1} \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ at 298 K within an OTTLE cell.

Figure S12. UV-vis-NIR spectral changes recorded during the careful stepwise oxidation of complex 2a to $[\mathbf{2 a}]^{+}$(top, not pure), $[\mathbf{2 a}]^{2+}$ (middle) and $[\mathbf{2 a}]^{3+}$ (bottom) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / 10^{-1} \mathrm{M}$ $n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ at 298 K within an OTTLE cell. The generation of [2a] ${ }^{+}$is accompanied by some disproportionation to $\mathbf{2 a}$ and $[\mathbf{2 a}]^{2+}$.

Figure S13. Frontier molecular orbitals of neutral complexes 1a, 1b and 2a computed with the BLYP35/6-31G* method. Notably, the HOMOs are dominantly localized on the bridging ligands, which does not correspond with the asymmetric spin localization in the corresponding monocations, see Figure 6 in the main text.
Neutral state

Figure S14. Schematic diagrams of structural parameters (bond length $\left[\AA\right.$] and angle [$\left.{ }^{\circ}\right]$) in neutral (left) and mixed-valence monocationic (right) states of complexes 1a, 1b and $\mathbf{2 a}$ resulting

Table S2. Selected parameters derived from deconvolution of the NIR absorption band envelope in $[\mathbf{1 a}]^{+} .{ }^{a}$

Complex	$[\mathbf{1 a}]^{+}$
$v_{1} / \mathrm{cm}^{-1}\left(\varepsilon_{\max } / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$	$10200(18100)$
$v_{2} / \mathrm{cm}^{-1}\left(\varepsilon_{\max } / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$	$7800(12400)$
$\Delta\left(v_{2}\right)_{1 / 2}{ }^{b}$	2300
$\Delta\left(v_{\mathrm{IVCT}}\right)_{1 / 2}(\mathrm{calc})^{c}$	4244
$R_{\mathrm{ab}}{ }^{d}(\AA)$	14.19
$H_{\mathrm{ab}}\left(\mathrm{cm}^{-1}\right)^{e}$	685
${ }^{a}$ The monocation was generated within a spectroelectrochemical cell from a solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / 10^{-1} \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF} \mathrm{F}_{6}$.	
${ }^{b}$ The observed half-height bandwidth. ${ }^{c} \Delta\left(v_{\mathrm{IVCT}}\right)_{1 / 2}($ calc $)=2\left[4 \ln (2) v_{\mathrm{IVCT}} \mathrm{RT}\right]^{1 / 2}=\left[2310 v_{\mathrm{IVCT}}\right]^{1 / 2}$ at ambient	
temperature. ${ }^{d}$ Determined from the single crystal structure of $\mathbf{1 a} .{ }^{e} H_{\mathrm{ab}}=\left(2.06 \times 10^{-2} / R_{\mathrm{ab}}\right)\left(\varepsilon_{\mathrm{max}} v_{\mathrm{max}} \Delta v\right)^{1 / 2}$.	

NMR Spectra

$400 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR in CDCl_{3}

$100 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR in CDCl_{3}

$400 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR in CDCl_{3}

$100 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR in CDCl_{3}

$400 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR in CDCl_{3}

3

$100 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR in CDCl_{3}

$160 \mathrm{MHz},{ }^{31} \mathrm{P}$ NMR in CDCl_{3}

$100 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR in CDCl_{3}

$\frac{\square}{8}$
$160 \mathrm{MHz},{ }^{31} \mathrm{P}$ NMR in CDCl_{3}

$160 \mathrm{MHz},{ }^{31} \mathrm{P}$ NMR in CDCl_{3}

