Multistep Oxidation of Diethynyl Oligophenylamine-

Bridged Diruthenium and Diiron Complexes

Jing Zhang,[†] Shen-Zhen Guo,[†] Yu-Bao Dong,[†] Li Rao,[†] Jun Yin,[†] Guang-Ao Yu,[†] František Hartl,^{*,‡} Sheng Hua Liu^{*,†}

[†] Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China

[‡] Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K.

Crystallographic Information

Complex	1 a	2a
Formula	$C_{94}H_{91}NP_4Ru_2$	$C_{106}H_{100}N_2P_4Ru_2 \bullet 3(CH_2Cl_2)$
Formula weight	1560.70	1982.67
Temperature (K)	298(2)	296(2)
Crystal system	Monoclinic	Triclinic
Space group	C2/c	<i>P</i> -1
<i>a</i> (Å)	42.877(6)	9.848 (3)
$b(\mathrm{\AA})$	9.6957(14)	14.954 (5)
$c(\text{\AA})$	21.349(3)	16.443 (6)
α (°)	90	77.951 (5)
β (°)	112.940 (2)	89.872 (5)
γ (°)	90	80.650 (5)
$V(\text{\AA}^3)$	8173 (2)	2335.4 (14)
Ζ	4	1
Density (calculated) (Mg/m ³)	1.268	1.410
Absorption coefficient (mm ⁻¹)	0.49	0.61
F(000)	3240	1024
Crystal size (mm ³)	$0.20 \times 0.20 \times 0.10$	$0.20\times0.20\times0.20$
Theta range for data collection (°)	1.03 to 28.00	1.267 to 28.128

Table S1. Crystal data and parameters of data collection and refinement for complexes 1a and 2a.

Index ranges	-56≤h≤55, -12≤k≤12, -27≤l≤28	-13≤ <i>h</i> ≤13, -19≤ <i>k</i> ≤19, -21≤ <i>l</i> ≤21
Reflections collected	34815	19652
Independent reflections	9817 [<i>R</i> (int) = 0.037]	10847 [$R(int) = 0.053$]
Max. and min. transmission	0.952 and 0.908	0.746 and 0.539
Data / restraints / parameters	9817 / 0 / 462	10847 / 39 / 582
Goodness-of-fit on F^2	1.132	1.081
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0450, wR2 =	R1 = 0.1398, w $R2 = 0.4261$
	0.1188	
R indices (all data)	R1 = 0.0664, wR2 =	R1 = 0.1608, wR2 = 0.4097
	0.1389	
Largest diff. peak and hole	$1.09 \text{ and } -0.37 \text{ e.}^{-3}$	5.85 and -1.63 e.^{-3}

Figure S1. X-ray crystal structure of **2a** shown with thermal ellipsoids at the 50% probability level (A), and the packing view of **2a** (B). Hydrogen atoms and co-crystallized solvent molecules have been omitted for clarity. CCDC 1435473.

Spectro-Electrochemical Information

Figure S2. Cyclic voltammograms (CV, v = 50 mV s⁻¹) and corresponding square-wave voltammograms (SWV, at f = 10 Hz and $t_p = 25$ mV) of the ligand bridge precursors **1d** (top) and **2d** (bottom).

Figure S3. IR spectra in the v(C=C) region recorded for complex **2a** in four different oxidation states generated in CH₂Cl₂/10⁻¹ M *n*-Bu₄NPF₆ at 298 K within an OTTLE cell. Note that singly oxidized [**2a**]⁺ cannot be obtained in the pure form due to its partial valence disproportionation to **2a** and [**2a**]²⁺.

Figure S4. IR spectra recorded in the v(C=C) region for compounds **1d** and **2d** in different oxidation states (0, +1 or +2) generated in CH₂Cl₂/10⁻¹ M *n*-Bu₄NPF₆ at 298 K within an OTTLE cell.

Figure S5. IR spectra recorded in the $v(C\equiv C)$ region during the electrochemical oxidation of **1b** into $[\mathbf{1b}]^{2+}$ in CH₂Cl₂/10⁻¹ M *n*-Bu₄NPF₆ at 298 K within an OTTLE cell. The process involves an equilibrium with the minor mixed-valence state $[\mathbf{1b}]^+$ (see also Figure S6).

Figure S6. Infra-red (top) and electronic absorption (bottom) spectra of parent complex **1b** (black) and $[\mathbf{1b}]^{2+}$ (green) recorded after oxidation of **1b** with ferrocenium hexafluorophosphate (FcPF₆) in CH₂Cl₂ at room temperature. The intermediate spectra (red) correspond to the oxidation with 1 equiv. FcPF₆, which produced some $[\mathbf{1b}]^+$ identified by the transient NIR absorption below 10000 cm⁻¹.

Figure S7. UV-vis-NIR spectral changes recorded during the oxidation of complex $[1a]^{2+}$ to $[1a]^{3+}$ in CH₂Cl₂/10⁻¹ M *n*-Bu₄NPF₆ at 298 K within an OTTLE cell.

Figure S8. UV-vis-NIR spectral changes recorded during the oxidation of complex $[1b]^{2+}$ to $[1b]^{3+}$ in CH₂Cl₂/10⁻¹ M *n*-Bu₄NPF₆ at 298 K within an OTTLE cell.

Figure S9. Deconvolution of the intense NIR absorption of $[1a]^+$ (recorded during the anodic spectroelectrochemistry, see Figure 4 in the main text) into two Gaussian-shaped bands. Table S2 presents the corresponding electronic parameters.

Figure S10. UV-vis-NIR spectral changes recorded during the oxidation of TMS-terminated reference compound **1d** to $[1d]^+$ in CH₂Cl₂/10⁻¹ M *n*-Bu₄NPF₆ at 298 K within an OTTLE cell.

Figure S11. UV-vis-NIR spectral changes recorded during the oxidation of TMS-terminated reference compound **2d** to $[2d]^+$ (top), and $[2d]^{2+}$ (bottom) in CH₂Cl₂/10⁻¹ M *n*-Bu₄NPF₆ at 298 K within an OTTLE cell.

Figure S12. UV-vis-NIR spectral changes recorded during the careful stepwise oxidation of complex **2a** to $[2a]^+$ (top, not pure), $[2a]^{2+}$ (middle) and $[2a]^{3+}$ (bottom) in CH₂Cl₂/10⁻¹ M *n*-Bu₄NPF₆ at 298 K within an OTTLE cell. The generation of $[2a]^+$ is accompanied by some disproportionation to **2a** and $[2a]^{2+}$.

Figure S13. Frontier molecular orbitals of neutral complexes **1a**, **1b** and **2a** computed with the BLYP35/6-31G* method. Notably, the HOMOs are dominantly localized on the bridging ligands, which does not correspond with the asymmetric spin localization in the corresponding monocations, see Figure 6 in the main text.

Figure S14. Schematic diagrams of structural parameters (bond length [Å] and angle [°]) in neutral (left) and mixed-valence monocationic (right) states of complexes **1a**, **1b** and **2a** resulting

Table S2. Selected parameters derived from deconvolution of the NIR absorption band envelope in $[1a]^+$.^{*a*}

Complex	$[1a]^+$
$v_1/\text{cm}^{-1} (\varepsilon_{\text{max}}/\text{dm}^3 \text{mol}^{-1} \text{cm}^{-1})$	10200 (18100)
$v_2/\text{cm}^{-1} (\varepsilon_{\text{max}}/\text{dm}^3 \text{mol}^{-1} \text{cm}^{-1})$	7800 (12400)
$\Delta(v_2)_{1/2}{}^b$	2300
$\Delta(v_{\rm IVCT})_{1/2}({\rm calc})^c$	4244
$R_{ab}{}^d$ (Å)	14.19
$H_{\rm ab}~({\rm cm}^{-1})^e$	685

^{*a*}The monocation was generated within a spectroelectrochemical cell from a solution in CH₂Cl₂/10⁻¹ M *n*-Bu₄NPF₆. ^{*b*}The observed half-height bandwidth. ^{*c*} $\Delta(v_{IVCT})_{1/2}$ (calc) = 2[4 ln(2) v_{IVCT} RT]^{1/2} = [2310 v_{IVCT}]^{1/2} at ambient temperature. ^{*d*} Determined from the single crystal structure of **1a**. ^{*e*} H_{ab} = (2.06×10⁻²/ R_{ab})($\varepsilon_{max}v_{max}\Delta v$)^{1/2}.

NMR Spectra

100 MHz, ¹³C NMR in CDCl₃

100 MHz, ¹³C NMR in CDCl₃

160 MHz, ³¹P NMR in CDCl₃

100 MHz, ¹³C NMR in CDCl₃

160 MHz, ³¹P NMR in CDCl₃

