Supporting Information for

Covalent Stabilization of Inverse Bicontinuous Cubic Structures of Block Copolymer Bilayers by Photodimerization of Indene Pendant Groups of Polystyrene Hydrophobic

Blocks

Moon Gon Jeong[†] and Kyoung Taek Kim^{§, *}

[†]Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50

UNIST Road, Ulsan 689-798, Korea

[§]Department of Chemistry, Seoul National University, Seoul 151-747, Korea.

*Correspondence to: ktkim72@snu.ac.kr

CONTENTS

1.	A coincidence of the composition ratio of 1-TMS and styrene to the feed ratio	S-2
2.	GPC analysis of P1-TMS, P2-TMS, P1 and P2	S-3
3.	Cross-linking of film of P1	S-4
4.	Short-wavelength UV light ($\lambda = 254$ nm) exposure to cross-linked P1 solution & demonstrat	ion of
	[2 + 2]-cycloaddition and retro-cyclization of indenylstyrene model compound	S-5
5.	A coincidence of the composition ratio of indenylstyrene in the hydrophobic block and stabi	lity of
	the self-assembled structures	S-7
6.	Short-wavelength UV light ($\lambda = 254$ nm) exposure to cross-linked vesicles of P4	S-9
7.	Reference	S-9

1. A coincidence of the composition ratio of 1-TMS and styrene to the feed ratio

- Feed ratio

[Initiator]: [1-TMS]: [Styrene] = 1: 72 (30%): 168 (70%)

- DP_n ratio

1-TMS: Styrene = 46 (34%): 91 (66%)

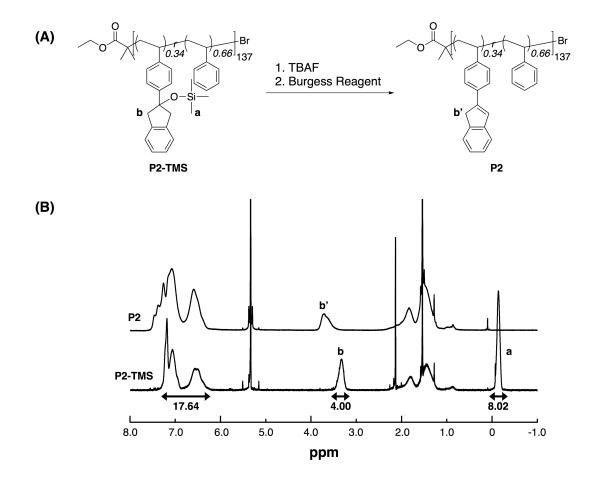


Figure S1. (A) A scheme for post-modification of P2-TMS to P2. (B) ¹H NMR spectra of P2-TMS and P2. The DP_n ratio was calculated based on the P2-TMS spectrum.

2. GPC analysis of P1-TMS, P2-TMS, P1 and P2

Table S1. Molecular weight (M_n) and polydispersity index (D) of P1-TMS, P2-TMS, P1 and P2

Sample	$M_{\rm n} ({\rm kg \ mol}^{-1})$	Đ
P1-TMS	17.9	1.34
P1	12.1	1.50
P2-TMS	23.8	1.36
P2	21.6	1.38

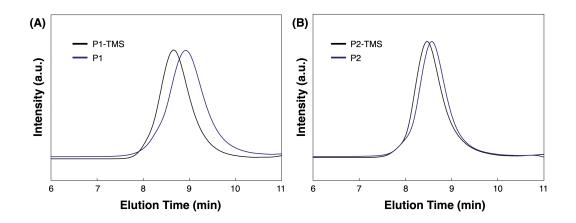


Figure S2. GPC spectra of (A) P1-TMS, P1 and (B) P2-TMS, P2.

3. Cross-linking of film of P1

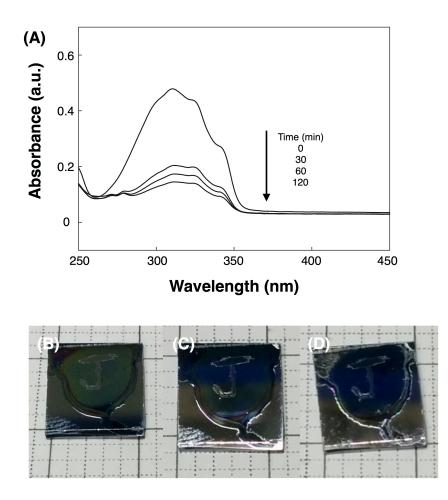


Figure S3. (A) UV-Vis spectra of polymer film of P1 spin-coated onto square quartz plate (2 cm x 2 cm) at irradiation of UV light ($\lambda > 300$ nm, 200 W) for different exposure time. (B-D) Photographs of polymer film of P1 spin-coated onto silicon wafer (1 cm x 1 cm) with scratch. (B) Polymer film of P1 before and (C) after 2 h of UV light irradiation. (D) Cross-linked polymer film of P1 after soaking in THF for 1 h.

Short-wavelength UV light (λ = 254 nm) exposure to cross-linked P1 solution & demonstration of [2 + 2]-cycloaddition and retro-cyclization of indenylstyrene model compound

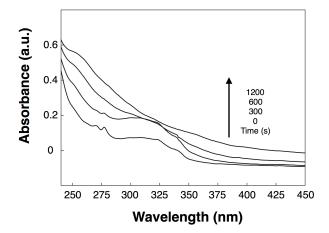
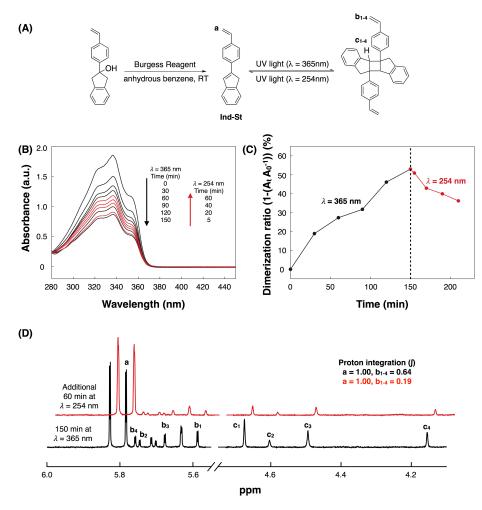
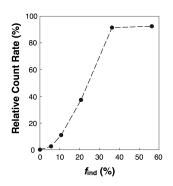



Figure S4. UV-Vis spectra of cross-linked P1 in CH_2Cl_2 at short-wavelength UV light ($\lambda = 254$ nm, 6 W) irradiation for different exposure times.

Figure S5. (A) Schematic procedures for preparation of a model compound 4-indenylstyrene (**Ind-St**) and its [2 + 2]-cycloaddition at long-wavelength UV light ($\lambda = 365$ nm) and retro-cyclization of indene dimers at short-wavelength UV light ($\lambda = 254$ nm). (B) UV-Vis spectra of **Ind-St** in benzene (1 mg mL⁻¹) with irradiation of long-wavelength UV light (black) and short-wavelength UV light (red), sequentially, for different exposure times. (C) Plot of the UV exposure time against the dimerization ratio (1 - ($A_t A_0^{-1}$)), where A_0 and A_t are the absorbance values at 337 nm at time 0 and t, respectively. The dimerization ratio at t = 150 min was 53.0% and t = 210 min was 36.2%. (D) ¹H NMR spectra of **Ind-St** solution after irradiation of long-wavelength UV light (black) and short-wavelength UV light (red), sequentially. "b₁₋₄" and "c₁₋₄" are caused by 4 different isomers of indene dimers.¹ The dimerization ratio calculated by the proton integration (($\int b$) ($\int a + \int b$)⁻¹) was 39.0% at t = 150 min and was 16.0% at t = 210 min.

5. A coincidence of the composition ratio of indenylstyrene in the hydrophobic block and stability of the self-assembled structures

Sample	Initiator	$DP_n \left(\mathrm{St} \right)^a$	$DP_n (\text{Ind-St})^a$	$f_{\mathrm{Ind}} \left(\%\right)^a$	$f_{ m PEG}\left(\% ight)^{b}$	$M_{\rm n}$ (kg mol ⁻¹) ¹ H NMR ^{<i>a</i>}	$M_{\rm n} ({\rm kg \ mol}^{-1})$ GPC ^c	<i>Ð</i> GPC
P1S	(PEG550) ₃	169	10	5.6	8.1	22.0	25.0^{e}	1.12
P2S	(PEG550) ₃	175	21	10.7	7.2	24.6	21.7^{e}	1.09
P3S	(PEG550) ₃	126	33	20.7	7.7	23.0	20.5	1.08


Table S2. Characterization of additional polymers containing indene species

^{*a*}Degree of polymerization (*DP_n*), indenenylstyrene ratio of hydrophobic block (f_{Ind}) and M_n were calculated from ¹H NMR integration of deprotected polymers (**P-OH**). ^{*b*}The molecular weight ratio of the PEG domain (f_{PEG}) to that of the hydrophobic block (1650 g mol⁻¹ for (PEG550)₃ initiator). ^{*c*}GPC data were measured from depreted polymers (**P-OH**).

Table S3. DLS count rates of cross-linked poly	mer vesicles with various indenylstyrene ratio
--	--

Sample	$f_{(0/2)}$	Count rate (>	Relative count rate	
Sample	$f_{\rm ind}$ (%)	diluted in water	diluted in THF	THF/Water (%)
P1S	5.6	106.6	2.8	2.6
P2S	10.7	134.2	14.7	11.0
P3S	20.7	80.2	29.9	37.3
P6	36.3	49.0	44.8	91.4
P5	56.4	50.0	46.2	92.4

^aSame amount of cross-linked vesicles were diluted in water and THF respectively.

Figure S6. Plot of f_{ind} vs. relative count rate. Critical content of indenylstyrene in the hydrophobic block for decent cross-linking was around 30%.

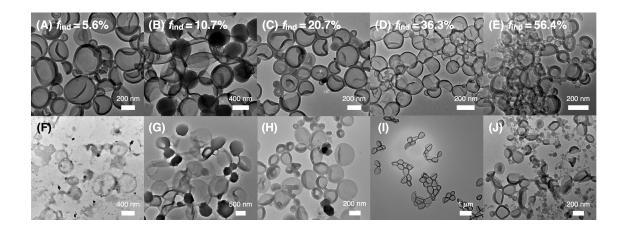


Figure S7. (A-E) TEM images of non-cross-linked vesicles of (A) P1S ($f_{ind} = 5.6\%$), (B) P2S ($f_{ind} = 10.7\%$), (C) P3S ($f_{ind} = 20.7\%$), (D) P6 ($f_{ind} = 35.3\%$) and (E) P5 ($f_{ind} = 56.4\%$). (F-J) TEM images of cross-linked vesicles of (F) P1S, (G) P2S, (H) P3S, (I) P6 and (J) P5 after changing the dispersion solvent to THF.

(A) = 254 nm, 5 h = 254 nm, 2 h (A) =

6. Short-wavelength UV light ($\lambda = 254$ nm) exposure to cross-linked vesicles of P4

Figure S8. (A) Dynamic light scattering size plots of the self-assembled structures of P4 exposed to longwavelength UV light ($\lambda > 300$ nm, 5 h) in a tetrahydrofuran (THF) solution (red) and sequentially exposed to short-wavelength UV light ($\lambda = 254$ nm, 2 h) in a THF solution (black). (B) TEM image of vesicles of P4 exposed to short-wavelength UV light after changing the dispersion solvent to THF.

Reference

(1) Wolff, T.; Schmidt, F.; Volz, P. Regioselectivity and Stereoselectivity in the Photodimerization of Rigid and Semirigid Stilbenes. *J. Org. Chem.* **1992**, *57*, 4255-4262.