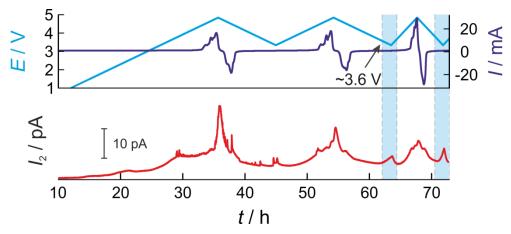
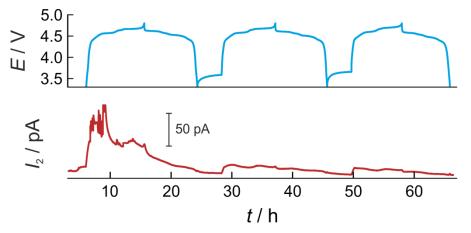
Supporting Information

Electrochemical Cross-Talk Leading to Gas Evolution and Capacity Fade in LiNi_{0.5}Mn_{1.5}O₄/Graphite Full-Cells

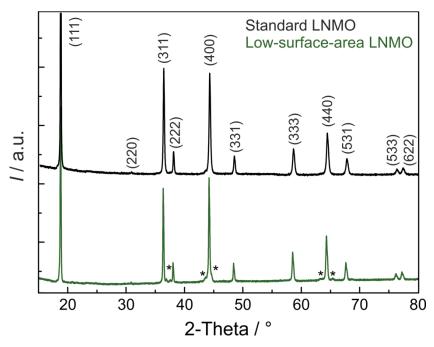
Barbara Michalak,[†] Balázs B. Berkes,^{*,†} Heino Sommer,^{†,‡} Torsten Brezesinski,^{*,†} and Jürgen Janek^{†,+}


[†]Battery and Electrochemistry Laboratory, Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

[‡]BASF SE, 67056 Ludwigshafen, Germany.


⁺Institute of Physical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany.

*E-mail: torsten.brezesinski@kit.edu


*E-mail: balazs.berkes@kit.edu

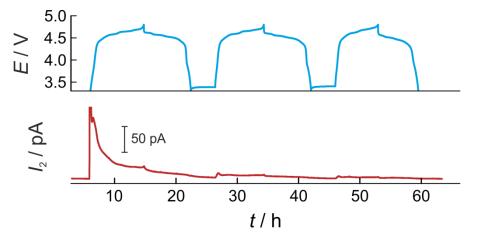

Figure S1. Cyclic voltammetric curves and the corresponding H_2 signal (m/z = 2) from DEMS for a standard LNMO/graphite cell. The sweep rate was 0.045 mV/s in the first two cycles, and then it was increased to 0.1 mV/s. As evident, the hydrogen peak at the end of discharge starts to appear at around 3.6 V.

Figure S2. Voltage profiles and the corresponding H_2 signal (m/z = 2) from DEMS for a standard LNMO/precycled graphite cell at C/10.

Figure S3. XRD patterns of standard LNMO and low-surface-area LNMO. Impurity phases (mainly NiO, Li_xNiO₂, and Li₂MnO₃) in the latter material are indicated by asterisks.

Figure S4. Voltage profiles and the corresponding H_2 signal (m/z = 2) from DEMS for a low-surface-area LNMO/graphite cell at C/10.