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1. Dispersion-relation Phase Spectroscopy (DPS) 

Using SLIM, we can quantitatively measure the changes in the optical path length through the 

specimen. These changes are proportional to the values of the dry mass, i.e., the protein 

concentration of the microtubule, in this case.
1
 The spatiotemporal autocorrelation associated 

with the dry mass density, η (in pg/µm
2
), is defined as:  

���, �� = 〈η��′, 
�η��� + �, 
 + ��〉�,�� , (1) 

where	η is the density data outputted by SLIM and the angular brackets denoted averaging over a 

time-varying ensemble. We assume ergodicity, such that, in practice, we replace the ensemble 



average with a time average. Since the intracellular transport is due to both random and 

deterministic contributions, η satisfies the advection-diffusion equation,
2,3

 

�∇�η��, �� − � ⋅ �ηηηη��, �� − �
�� η��, �� = 0. (2) 

In Eq. 2, D is the diffusion coefficient of the Brownian (diffusion) component and v is the 

velocity of the active (deterministic) component. In order to solve for �, we Fourier transform 

Eq. 2 with respect r and use the differentiation properties of the Fourier transform, to obtain: 

�−��� + �� ∙ �����, �� − �
�
 ���, �� = 0, (3) 

Where q is the angular spatial frequency or mode and the variable conjugate to r. Equation 3 is 

first order in time; thus, the solution is obtained right away, 

���, �� = exp	�−��� + �� ∙ ���, (4) 

Where we assumed g is normalized such that ���, 0� = 1. 
Equation 4 indicates that a mass drift at constant velocity � introduces a sinusoidal 

modulation to the autocorrelation function. Clearly, in a living cell, we expect a distribution of 

velocities, with various magnitudes and orientations, say "�� − �#�, where �# is the mean 

velocity. Averaging the autocorrelation function over the ensemble of velocity distribution yields 

〈���, ��〉� = exp�−���	��$"�� − �#� exp��� ∙ ��� %��. (5) 

Note that the integral in Eq. 5 amounts to a Fourier transform with respect to velocity �. The 

conjugated variable is ��. Thus, Eq. 5 can be rewritten as: 

〈���, ��〉� = exp	�−���	��exp	��� ∙ �&��"'����, (6) 



Where "' is the Fourier transform of " shifted at �&, i.e, the Fourier transform of the zero-average 

velocity distribution. Again, we note a sinusoidal modulation term, exp	��� ∙ �&��, which this 

time is due to the dominant (mean) velocity, �&. 

If we consider the second order Taylor expansion of "' around the origin, we can obtain 

an analytic expression for Eq. 6 that does not dependent of the specific shape of "'. We start with 

the expansion of "' and assuming isotropy, i.e., "��� = "���, we find 

"'���� ≅ "'�0� + %"'����
%���� )*+,# �� +

1
2!
%�"'����
%����� )*+,# ����

�. (7) 

Next, we use the central ordinate theorem (see, e.g., Chapter 2 in Ref. 
4
) to identify each term in 

the expansion of "' with the moments of ", namely:  

"'�0� = $"���%�� 

= 1, 
(8a) 

%"'����
%���� )*+,# = $ ��"���%�� 

= 0, 

(8b) 

%�"'����
%����� )*+,# = −$�/"���%�� 

= −∆1�. 

(8c) 

In deriving Eq. 8a, we used the fact that "��� is a probability density, such that it is normalized 

to unit area. For Eq. 8b, in addition to the central ordinate theorem, we also used the 

differentiation theorem, 
2

2�*+� ↔ ��, where ↔ indicates Fourier transformation. Deriving Eq. 8c 

requires the use of the differentiation theorem twice, 
24

2�*+�4 ↔ −�/. Note that Eq. 8b amounts to 



the first order moment of ", which is zero (already shifted the origin of the velocity distribution 

at �#). Finally, Eq. 8c gives the variance of the velocity distribution, ∆1�. 

Combining Eqs 7 and 8, we obtain 

"'���� ≅ 1 − 1
2 �∆1���� 

≅ exp	�−∆1���, 
(9) 

Therefore, the velocity averaged autocorrelation function, which is the main quantity computed 

from our data is:  

〈���, ��〉� = exp���1#�� exp[−���� + ∆1�� �]. (10) 

In all the measurements presented here, we did not observe a dominant velocity, �#. This 

can be readily understood by an equal probability for the mass to be transported in opposite 

directions. Thus, with  �# ≅ 0, Eq. 10 can be expressed in the frequency domain as  

�7��, 8� = 1
1 + 8�

Γ�q��
 

(11) 

where Γ is the bandwidth and we used the knowledge that the Fourier transform of an 

exponential, �, is a Lorentzian, �7. Importantly, the expression for the bandwidth (or decay rate), 

Γ, amounts to a (ensemble averaged) dispersion relation,  

Γ�q� = ��� + ∆1�. (12) 

Equation 12 relates the spatial frequency (mode) q, with a temporal frequency quantity, Γ, the 

diffusion coefficient, D, and the standard deviation of the velocity distribution, ∆1. The 

expression shown in Eq. 12, combines the spatiotemporal frequencies associated with 

microtubule transport, where the active transport is expressed by the linear term and the passive 



transport with the quadratic term in q. Hence, through quantitative phase imaging and dispersion-

relation analysis, it is possible to retrieve information about and distinguish between both active 

and passive transport. Our data showed that microtubule gliding is dominated by the directed 

transport and the fit with Eq. 12 give access right away to the standard deviation of the velocity 

distribution (See Figs. 5-6). 

 

2. Statistical comparison between the tagged and untagged microtubule populations 

We looked at two categories of microtubules, those that were functionalized with biotin, and 

those without any labels. As in Figure 4, the parameters for consideration were the angle change 

and the mean gliding velocities.  In short, the difference between experimental runs was too 

significant to support a conclusion regarding the influence of tagging on microtubule motion.  

To investigate the statistical difference between biotin-tagging and the angle change behavior of 

gliding microtubules, we use a Mann-Whitney U-test (see, e.g., Section 8.4. in 
5
). This is a non-

parametric test similar to an unpaired T-test. In the tagged vs. untagged case, the test yields a 

value of p=0.66, which implies there is no statistically significant difference between tagging 

and angle change. 

To investigate the relationship between biotin-tagging and velocity we use an ANOVA 

test (see, e.g., Chapter 10 in 
5
), with each of the five experimental runs taken as a separate group. 

ANOVA for Gliding Velocities  

Source SS df MS F Prob>F 

Between 4.3341 4 1.08353 49.03 2.84674E-35 

Within 12.1337 549 0.0221   



Total 16.4679 553    

From the low “Prob>F” score, it is evident that the five experimental runs are not drawn from the 

same mean. Looking at Figure 4, there are two categories of microtubule velocity, those with 

mean ~0.4 and those with mean ~0.6. Further, the “Sum of Squares Between Groups” (SS, 

Between) parameter is smaller than the “Sum of Squares Within Groups” (SS, Within) indicating 

that the differences within groups outweigh the difference between biotin tagged, and untagged 

experiments.  
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