Supporting Information

O-Acetyl Side-chains in Monosaccharides: NMR *J*-Couplings and Statistical Models for Acetate Ester Conformational Analysis

Toby Turney¹, Qingfeng Pan³, Luke Sernau⁴, Ian Carmichael², Wenhui Zhang¹, Xiaocong Wang⁵, Robert J. Woods⁵, and Anthony S. Serianni^{1*}

¹Department of Chemistry and Biochemistry, and the ²Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556-5670; ³Omicron Biochemicals Inc., South Bend, IN 46617-2701; ⁴Facebook Inc., 1101 Dexter Ave. N, Seattle, WA 98101; ⁵Complex Carbohydrate Research Center, 315 Riverbend Rd, University of Georgia, Athens, GA 30602

*Author for correspondence: <u>aseriann@nd.edu</u>

Table of Contents

1. Scheme S1. Torsional constraints used in DFT calculated	ations of 5-9 3
2. Scheme S2. NMR J-couplings calculated by DFT in 5-	• 9 4
3. Scheme S3. Definitions of θ rotamers in 1-9	5
4. Figure S1: Plots showing correlations between ${}^{2}J_{C1',CX}$	and
C1'-O _x -C _x bond angle in 5-8 (x = 2 or 3)	6
5. Figure S2. Plot of calculated ${}^{3}J_{C1',H6R}$ and ${}^{3}J_{C1',H6S}$ in 9 a	after
shifting the latter curve shown in Figure 5 by 120°	7
6. Figure S3. Plots of calculated ${}^{3}J_{C1',Cy}$ as a function of ℓ	9 _x in
5-9 , where $x = 2$, 3 or 6 and $y = x \pm 1$	8
7. Figure S4. Parameter space for uniform models of 1, 2	α and 2β 9
8. Figure S5. Partial $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum (150 MHz) c	of $1^{2'\alpha}$ and $1^{2'\beta}$ 10
9. Figure S6. Partial $^{13}\text{C}\{^{1}\text{H}\text{ NMR}\text{ spectrum}$ (150 MHz) sl	nowing signals
arising from C3 of $1^{1'}\alpha$ and $1^{1'}\beta$, and C2 of 2β	11
10. Figure S7. Partial $^{13}C{^{1}H}$ NMR spectrum (150 MHz)	showing signals
arising from C2 of $1^{1'}\beta$, C2 of 2α , C3 of 2β , and C5	5 of 3 β 12
11. Figure S8. Partial $^{13}C{^{1}H}$ NMR spectrum (150 MHz)	showing signals
arising from C3 of 2α , C2 of $1^{1'}\alpha$, C5 of 3α , and C4	4 of 1 ^{1'} α/β 13
12. Figure S9. Partial ¹ H NMR spectrum (600 MHz) show	ring signals
arising from H3 of $1^{1'\alpha}$ and $1^{1'\beta}$	14

13. Figure S10. Partial ¹ H NMR spectrum (600 MHz) showing signals	
arising from H6 and H6' of ${f 3}lpha$ and ${f 3}eta$	15
14. Figure S11. Partial ¹ H NMR spectrum (600 MHz) showing	
signals arising from H2 of $2lpha$ and $2eta$	16
15. Cartesian coordinates for B3LYP optimized conformers of 5	17-25
16. Complete reference 16	26
17. Complete reference 32	26

Figure S1: Plots showing correlations between ${}^{2}J_{C1',CX}$ and C1'-O_X-C_X bond angle in **5-8** (x = 2 or 3). The calculated sign of ${}^{2}J_{C1',CX}$ is negative in all structures. (A) 2-O-acetyl in **7**. (B) 2-O-acetyl in **8**. (C) 3-O-acetyl in **6**. (D) 3-O-acetyl in **5**. (E) 6-O-acetyl in **9**.

Figure S2. Plot of calculated ${}^{3}J_{C1',H6R}$ and ${}^{3}J_{C1',H6S}$ in **9** after shifting the latter curve shown in Figure 5 (see text) by 120°. Filled symbols, ${}^{3}J_{C1',H6R}$. Open symbols, ${}^{3}J_{C1',H6S}$.

Figure S3. Plots of calculated ${}^{3}J_{C1',Cy}$ as a function of θ_x in **5-9**, where x = 2, 3 or 6 and $y = x \pm 1$. (A) ln **8**, ${}^{3}J_{C1',C1}$ (red) and ${}^{3}J_{C1',C3}$ (black). (B) ln **7**, ${}^{3}J_{C1',C1}$ (red) and ${}^{3}J_{C1',C3}$ (black). (B) ln **7**, ${}^{3}J_{C1',C1}$ (red) and ${}^{3}J_{C1',C3}$ (black). (C) ln **5**, ${}^{3}J_{C1',C2}$ (green) and ${}^{3}J_{C1',C4}$ (black). (D) ln **6**, ${}^{3}J_{C1',C2}$ (green) and ${}^{3}J_{C1',C4}$ (black). (E) ln **9**, ${}^{3}J_{C1',C5}$.

Figure S4. Parameter space for uniform models of θ in the 3-Oacetyl group of 1 (A) and the 2-Oacetyl groups of 2α (B) and 2β (C). Local minima are present in each parameter space, but are different from the significantly global minimum. These results indicate that the best-fitting model for each compound represents a unique solution.

Figure S5. Partial ¹³C{¹H} NMR spectrum (150 MHz) of $\mathbf{1}^{2'\alpha}$ and $\mathbf{1}^{2'\beta}$ showing signals aring from C3 β , C5 β and C3 β . The C3 β and C3 α signals are split by the presence of ¹³C enrichment (~99 atom-%) at C2' (CH₃), giving ³*J*_{C2',C3} values of 1.3 Hz and 1.1 Hz, respectively (see Table 1 in text).

Figure S6. Partial ¹³C{¹H} NMR spectrum (150 MHz) showing signals arising from C3 of **1**^{1'} α and **1**^{1'} β , and C2 of **2** β . The three signals are split by the presence of ¹³C enrichment (~99 atom-%) at C1' (C=O), giving ²J_{C1',C3} values of 2.8 Hz for C3 α (1) and C3 β (1), and 2.7 Hz for ²J_{C1',C2} in C2 β (2) (see Table 1 in text).

Figure S7. Partial ¹³C{¹H} NMR spectrum (150 MHz) showing signals arising from C2 of **1**¹' β , C2 of **2** α , C3 of **2** β , and C5 of **3** β . The four signals are split by the presence of ¹³C enrichment (~99 atom-%) at C1' (C=O), giving a ³ $J_{C1',C3}$ value of 1.1 Hz for C3 β (**2**), a ² $J_{C1',C2}$ value of 2.6 Hz for C2 α (**2**), a ³ $J_{C1',C5}$ value of 2.5 Hz for C5 β (**3**), and a ² $J_{C1',C2}$ value of 1.0 Hz for C2 β (**1**) (see Table 1 in text).

Figure S8. Partial ¹³C{¹H} NMR spectrum (150 MHz) showing signals arising from C3 of **2** α , C2 of **1**^{1'} α , C5 of **3** α , and C4 of **1**^{1'} α/β . The four signals are split by the presence of ¹³C enrichment (~99 atom-%) at C1' (C=O), giving a ³ $J_{C1',C3}$ value of 2.0 Hz for C3 α (**2**), a ³ $J_{C1',C2}$ value of 1.0 Hz for C2 α (**1**), a ³ $J_{C1',C5}$ value of 2.5 Hz for C5 α (**3**), and ³ $J_{C1',C4}$ values of 1.0 Hz for C4 α/β (**1**) (see Table 1 in text).

Figure S9. Partial ¹H NMR spectrum (600 MHz) showing signals arising from H3 of $\mathbf{1}^{1'}\alpha$ and $\mathbf{1}^{1'}\beta$. Each multiplet contains ${}^{3}J_{\text{H2,H3}}$, ${}^{3}J_{\text{H3,H4}}$ and ${}^{3}J_{\text{C1',H3}}$. ${}^{3}J_{\text{HH}}$ values of 9.0 and 9.6 Hz were extracted from the upfield multiplet, whereas the downfield gave corresponding values of ~9.8 Hz. Both multiplets yield a ${}^{3}J_{\text{C1',H3}}$ value of 3.9 Hz (see Table 1 in text).

Figure S11. Partial ¹H NMR spectrum (600 MHz) showing signals arising from H2 of 2α (filled circles) and 2β (open circles). Each multiplet contains three *J*-values: ${}^{3}J_{H1,H2}$, ${}^{3}J_{H2,H3}$, and ${}^{3}J_{C1',H2}$. For H2 α , these values are 3.6 Hz, 10.1 Hz and 3.6 Hz, respectively. For H2 β , these values are 8.0 Hz, 9.6 Hz and 4.0 Hz, respectively (see Table 1 in text).

Cartesian Coordinates for B3LYP Optimized Rotamers of **5**. Structure **5**: $\theta = 0^{\circ}$

С	-1.714212	-0.687664	0.163560
С	-1.245530	1.635019	0.248945
С	0.198065	1.430712	-0.266850
С	0.681414	0.024996	0.091532
С	-0.312991	-1.046309	-0.341543
Н	-1.735173	-0.709244	1.268703
Н	0.193716	1.540299	-1.362194
Н	0.855271	-0.039360	1.168610
Н	-0.359317	-1.074183	-1.440477
Н	-1.228884	1.557959	1.348411
0	-2.086383	0.606863	-0.289631
0	-2.590731	-1.630152	-0.363315
0	0.114847	-2.291992	0.185571
Н	-0.538483	-2.948970	-0.108322
0	1.933651	-0.217347	-0.586786
0	1.116897	2.337069	0.331109
Н	0.833112	3.240178	0.118883
С	-1.851406	2.969830	-0.160590
Н	-2.884338	3.032778	0.194263
Н	-1.298855	3.806698	0.279132
Н	-1.849883	3.078963	-1.250719
С	-3.889845	-1.626245	0.233722
Н	-4.406840	-0.679089	0.047995
Н	-4.446448	-2.443423	-0.228758
Н	-3.822294	-1.796914	1.316343
С	3.037146	-0.466095	0.157631
0	3.050975	-0.502971	1.371149
С	4.232395	-0.690994	-0.734496
Н	5.115720	-0.881790	-0.124380
Н	4.048860	-1.542509	-1.397637
Н	4.399568	0.187332	-1.366084

Structure **5**: $\theta = 30^{\circ}$

С	-1.613056	-0.771923	0.148631
С	-1.404035	1.584299	0.280633
С	0.062732	1.544918	-0.207345
С	0.696871	0.196447	0.149545
С	-0.171301	-0.960945	-0.337691
Н	-1.651684	-0.823877	1.252214
Н	0.070484	1.670474	-1.300807
Н	0.846969	0.175060	1.232681
Н	-0.196707	-0.933437	-1.437964
Н	-1.398284	1.495354	1.379334

0	-2.122182	0.481128	-0.284222
0	-2.367904	-1.794276	-0.417469
0	0.357466	-2.191036	0.126118
Н	-0.238315	-2.878583	-0.217458
0	1.988898	0.162974	-0.496583
0	0.857266	2.541098	0.425224
Н	0.475968	3.407862	0.214491
С	-2.141093	2.852627	-0.125620
Н	-3.178869	2.804195	0.217086
Н	-1.684137	3.739105	0.326539
Н	-2.138545	2.970668	-1.214768
С	-3.668975	-1.952626	0.153563
Н	-4.288691	-1.067850	-0.025412
Н	-4.118831	-2.819103	-0.334609
Н	-3.601026	-2.136373	1.234028
С	3.010552	-0.475360	0.124158
0	2.934295	-0.982050	1.223684
С	4.263354	-0.393525	-0.713742
Н	5.062532	-0.961126	-0.236042
Н	4.078639	-0.782120	-1.719869
Н	4.567478	0.653589	-0.816245

Structure **5**: $\theta = 60^{\circ}$

С	1.599044	-0.773891	-0.148149
С	1.464853	1.573635	-0.272261
С	-0.028042	1.560582	0.116046
С	-0.704277	0.237923	-0.304504
С	0.112767	-0.951958	0.208106
Н	1.725249	-0.818292	-1.245497
Н	-0.103353	1.664337	1.209025
Н	-0.788972	0.304329	-1.394825
Н	0.044718	-0.947047	1.307458
Н	1.536726	1.488872	-1.369096
0	2.112177	0.453069	0.337636
0	2.275424	-1.825605	0.465481
0	-0.334094	-2.186326	-0.322522
Н	0.253892	-2.854228	0.071386
0	-2.026176	0.352618	0.278923
0	-0.747554	2.595529	-0.544493
Н	-0.344981	3.443371	-0.299403
С	2.199499	2.823988	0.191167
Н	3.259720	2.746089	-0.066966
Н	1.805707	3.720959	-0.298022
Н	2.113160	2.945862	1.276507
С	3.613569	-2.017380	0.000093
Н	4.239684	-1.149897	0.232908
Н	3.999225	-2.896940	0.518764

Н	3.628013	-2.196061	-1.083211
С	-3.021598	-0.521884	-0.004017
0	-2.957239	-1.405665	-0.829607
С	-4.270868	-0.136577	0.755513
Н	-5.028176	-0.911784	0.632279
Н	-4.057279	0.015594	1.817287
Н	-4.653318	0.809259	0.356104

Structure **5**: $\theta = 90^{\circ}$

С	-1.591823	-0.743329	0.147599
С	-1.462886	1.590928	0.156331
С	0.071671	1.579708	0.025382
С	0.705746	0.265488	0.519849
С	-0.073278	-0.988618	0.095808
Н	-1.905716	-0.678630	1.205361
Н	0.315537	1.681736	-1.042958
Н	0.750721	0.284413	1.614544
Н	0.186455	-1.255390	-0.937182
Н	-1.727848	1.539167	1.224998
0	-1.978785	0.441974	-0.521750
0	-2.184779	-1.842000	-0.470045
0	0.206473	-2.044319	1.005051
Н	-0.308673	-2.806688	0.691013
0	2.075847	0.389116	0.034944
0	0.677063	2.619248	0.787146
Н	0.297072	3.463731	0.498002
С	-2.109618	2.818378	-0.470462
Н	-3.198263	2.742035	-0.394615
Н	-1.806375	3.735632	0.045190
Н	-1.838316	2.902286	-1.528545
С	-3.588166	-1.965555	-0.226053
Н	-4.137575	-1.114834	-0.642212
Н	-3.909164	-2.884952	-0.719199
Н	-3.792033	-2.037949	0.850541
С	2.955869	-0.602533	-0.226604
0	2.751332	-1.791128	-0.116588
С	4.255904	0.005357	-0.709575
Н	4.976463	-0.788262	-0.910602
Н	4.081647	0.585453	-1.621521
Н	4.658332	0.690186	0.043477

Structure **5**: θ = 120°

С	-1.596859	-0.714251	0.213165
С	-1.407568	1.629512	0.100860
С	0.131460	1.564742	-0.022635

С	0.680650	0.259442	0.566125
С	-0.089050	-0.973819	0.084612
Н	-1.868922	-0.604172	1.279111
Н	0.393486	1.596092	-1.091666
Н	0.582486	0.265975	1.658072
Н	0.123628	-1.182714	-0.967984
Н	-1.661984	1.662398	1.173058
0	-1.977639	0.457963	-0.489775
0	-2.238169	-1.816139	-0.344776
0	0.265731	-2.064967	0.921570
Н	-0.236108	-2.829623	0.593031
0	2.117824	0.285704	0.340704
0	0.757422	2.627252	0.687344
Н	0.422922	3.464528	0.329386
С	-2.016988	2.831922	-0.606685
Н	-3.106800	2.800686	-0.516585
Н	-1.675530	3.772010	-0.161034
Н	-1.754621	2.829680	-1.670285
С	-3.631958	-1.902714	-0.038818
Н	-4.181138	-1.051508	-0.454486
Н	-3.992615	-2.827475	-0.493024
Н	-3.791523	-1.942633	1.046915
С	2.872214	-0.629072	-0.307767
0	2.472531	-1.627197	-0.868810
С	4.317324	-0.178977	-0.292539
Н	4.941505	-0.941438	-0.759980
Н	4.413116	0.762087	-0.844356
Н	4.655149	0.004461	0.731872

Structure **5**: $\theta = 150^{\circ}$

1.628505	-0.681566	-0.244759
1.294529	1.663214	-0.117609
-0.242099	1.503839	-0.005941
-0.668660	0.176609	-0.635442
0.138278	-1.000967	-0.082064
1.888108	-0.569947	-1.313819
-0.519450	1.500144	1.059264
-0.470439	0.189257	-1.713119
-0.050290	-1.138687	0.984875
1.543135	1.736656	-1.189211
1.945269	0.519792	0.446782
2.333357	-1.736880	0.323964
-0.219579	-2.157493	-0.824677
0.304419	-2.887666	-0.455129
-2.111614	0.034659	-0.594054
-0.926768	2.534104	-0.707917
-0.667274	3.384947	-0.320726
	1.628505 1.294529 -0.242099 -0.668660 0.138278 1.888108 -0.519450 -0.470439 -0.050290 1.543135 1.945269 2.333357 -0.219579 0.304419 -2.111614 -0.926768 -0.667274	1.628505-0.6815661.2945291.663214-0.2420991.503839-0.6686600.1766090.138278-1.0009671.888108-0.569947-0.5194501.500144-0.4704390.189257-0.050290-1.1386871.5431351.7366561.9452690.5197922.333357-1.736880-0.219579-2.1574930.304419-2.887666-2.1116140.034659-0.9267682.534104-0.6672743.384947

С	1.827113	2.885216	0.617443
Н	2.916577	2.926228	0.527044
Н	1.424735	3.810864	0.193245
Н	1.566616	2.841532	1.680652
С	3.727927	-1.750792	0.010148
Н	4.232183	-0.865804	0.412069
Н	4.141510	-2.648809	0.472832
Н	3.883237	-1.795083	-1.076050
С	-2.786889	-0.585923	0.396664
0	-2.293642	-1.059237	1.400868
С	-4.269877	-0.542811	0.107909
Н	-4.807420	-1.107769	0.870203
Н	-4.611840	0.497598	0.113417
Н	-4.482960	-0.953935	-0.883360

Structure **5**: θ = 180°

С	1.692892	-0.617896	-0.213838
С	1.129091	1.684992	-0.198875
С	-0.385701	1.387452	-0.091087
С	-0.666028	0.012731	-0.708083
С	0.232541	-1.075250	-0.120479
Н	1.993106	-0.522136	-1.273822
Н	-0.663895	1.384968	0.969128
Н	-0.462761	0.079581	-1.782101
Н	0.002058	-1.221188	0.940748
Н	1.395116	1.723586	-1.268192
0	1.863652	0.632747	0.439012
0	2.462689	-1.581411	0.429015
0	0.026673	-2.268832	-0.862140
Н	0.610488	-2.935820	-0.463603
0	-2.070696	-0.346274	-0.691482
0	-1.168068	2.324875	-0.823851
Н	-1.006722	3.205507	-0.450206
С	1.534824	2.987381	0.476330
Н	2.617992	3.122383	0.402964
Н	1.059753	3.847662	-0.006739
Н	1.255006	2.978134	1.535507
С	3.867602	-1.469136	0.189436
Н	4.262246	-0.529421	0.589573
Н	4.338076	-2.310791	0.701101
Н	4.086347	-1.526440	-0.885213
С	-2.730066	-0.530864	0.472051
0	-2.231959	-0.417350	1.575690
С	-4.170610	-0.895104	0.205944
Н	-4.691294	-1.045352	1.152136
Н	-4.659079	-0.098255	-0.364065
Н	-4.222029	-1.808294	-0.395555

Structure **5**: $\theta = 210^{\circ}$

С	1.780208	-0.578762	-0.170132
С	1.052189	1.671971	-0.291916
С	-0.431380	1.280804	-0.090057
С	-0.633528	-0.134871	-0.650665
С	0.352971	-1.126450	-0.042201
Н	2.065938	-0.537681	-1.237512
Н	-0.651929	1.312350	0.979605
Н	-0.472851	-0.041562	-1.730422
Н	0.136031	-1.237607	1.030635
Н	1.280245	1.647324	-1.370517
0	1.877571	0.720462	0.393523
0	2.612116	-1.448608	0.527006
0	0.234999	-2.366389	-0.721169
Н	0.878310	-2.962496	-0.301860
0	-1.980948	-0.669543	-0.589053
0	-1.314733	2.124670	-0.821674
Н	-1.209763	3.029889	-0.488991
С	1.390458	3.045686	0.268780
Н	2.459101	3.244592	0.144899
Н	0.842662	3.832441	-0.260104
Н	1.146921	3.100545	1.335576
С	4.006349	-1.263790	0.269874
Н	4.344992	-0.282329	0.617556
Н	4.529990	-2.047534	0.820354
Н	4.222182	-1.363573	-0.802216
С	-2.842429	-0.437271	0.423813
0	-2.595523	0.195955	1.430721
С	-4.148992	-1.148512	0.156676
Н	-4.869616	-0.894178	0.934674
Н	-4.545224	-0.874759	-0.825631
Н	-3.979915	-2.230629	0.154097

Structure **5**: $\theta = 240^{\circ}$

С	-1.840063	-0.536862	0.146541
С	-1.019426	1.666717	0.251586
С	0.461267	1.233541	0.093820
С	0.622901	-0.216423	0.575869
С	-0.444174	-1.147355	0.001867
Н	-2.111312	-0.461064	1.215539
Н	0.746434	1.327843	-0.958409
Н	0.548391	-0.168464	1.668553
Н	-0.255640	-1.271227	-1.075447
Н	-1.264010	1.652503	1.326481
0	-1.875957	0.753110	-0.441639
0	-2.720247	-1.380358	-0.523954

0	-0.374825	-2.390852	0.681767
Н	-1.066724	-2.947968	0.286685
0	1.899160	-0.874696	0.338328
0	1.295369	2.023476	0.935235
Н	1.215674	2.948795	0.655681
С	-1.293191	3.053111	-0.315642
Н	-2.354916	3.293930	-0.208105
Н	-0.723892	3.821234	0.217791
Н	-1.031591	3.094695	-1.378711
С	-4.100890	-1.128498	-0.250976
Н	-4.399305	-0.137516	-0.608489
Н	-4.667303	-1.895114	-0.782888
Н	-4.305931	-1.203328	0.825208
С	2.969416	-0.392070	-0.330471
0	3.041291	0.672923	-0.906190
С	4.069546	-1.431757	-0.320882
Н	4.959488	-1.024667	-0.802320
Н	4.305004	-1.738301	0.702687
Н	3.734992	-2.322594	-0.862905

Structure **5**: $\theta = 270^{\circ}$

С	-1.859289	-0.499763	0.162719
С	-1.012013	1.682958	0.109012
С	0.479726	1.238768	0.095765
С	0.644124	-0.234761	0.519986
С	-0.485379	-1.149959	0.032628
Н	-2.113644	-0.322710	1.223799
Н	0.884957	1.373894	-0.915742
Н	0.679422	-0.261493	1.614856
Н	-0.330700	-1.336498	-1.040460
Н	-1.307980	1.768811	1.167026
0	-1.859339	0.732642	-0.537623
0	-2.772903	-1.372074	-0.421324
0	-0.424747	-2.356826	0.777913
Н	-1.151089	-2.910729	0.444707
0	1.830263	-0.936806	0.040221
0	1.180977	2.026857	1.053785
Н	1.088201	2.959080	0.802252
С	-1.229302	3.017360	-0.593878
Н	-2.285614	3.296768	-0.539891
Н	-0.650497	3.820125	-0.125458
Н	-0.939311	2.947322	-1.647803
С	-4.141488	-1.058456	-0.151953
Н	-4.415259	-0.088338	-0.579626
Н	-4.737728	-1.845023	-0.618030
Н	-4.333496	-1.046276	0.929129
С	3.048606	-0.416972	-0.227142

3.369783	0.746835	-0.130144
3.965888	-1.524651	-0.700750
4.955338	-1.114564	-0.906340
4.039433	-2.309115	0.058974
3.560461	-1.983409	-1.608341
	3.369783 3.965888 4.955338 4.039433 3.560461	3.3697830.7468353.965888-1.5246514.955338-1.1145644.039433-2.3091153.560461-1.983409

Structure **5**: θ = 300°

С	1.844164	-0.553021	-0.200974
С	1.070282	1.669106	-0.159817
С	-0.384675	1.253106	0.188945
С	-0.660941	-0.177910	-0.301095
С	0.469123	-1.119550	0.150671
Н	1.959738	-0.478602	-1.298006
Н	-0.486591	1.250868	1.285876
Н	-0.701485	-0.281273	-1.391232
Н	0.430018	-1.221650	1.245303
Н	1.158959	1.685553	-1.258461
0	2.003081	0.730209	0.379734
0	2.789617	-1.423922	0.332492
0	0.272931	-2.371310	-0.488857
Н	0.999051	-2.941873	-0.184920
0	-1.833817	-0.807768	0.275623
0	-1.299597	2.160906	-0.405429
Н	-1.087376	3.045687	-0.068041
С	1.450105	3.034251	0.400969
Н	2.501263	3.239160	0.178167
Н	0.857082	3.835053	-0.051813
Н	1.313844	3.061089	1.487849
С	4.121010	-1.208647	-0.141894
Н	4.490108	-0.221219	0.154125
Н	4.741705	-1.982704	0.313065
Н	4.165372	-1.300347	-1.235257
С	-3.098547	-0.417283	-0.013846
0	-3.401831	0.409153	-0.845182
С	-4.081629	-1.275265	0.750744
Н	-5.089404	-0.877112	0.626486
Н	-4.045246	-2.296366	0.355195
Н	-3.823455	-1.323136	1.812384

Structure **5**: θ = 330°

С	-1.802199	-0.595093	0.189772
С	-1.093272	1.664336	0.208302
С	0.324710	1.290607	-0.287803
С	0.663404	-0.140099	0.141155
С	-0.438927	-1.110128	-0.282703

Н	-1.838898	-0.582254	1.294661
Н	0.320417	1.325336	-1.388610
Н	0.792022	-0.225125	1.223968
Н	-0.472181	-1.165921	-1.381000
Н	-1.093651	1.625534	1.309965
0	-2.036071	0.715586	-0.304433
0	-2.763742	-1.459635	-0.323002
0	-0.156036	-2.378089	0.287366
Н	-0.872807	-2.968194	-0.000582
0	1.872398	-0.597362	-0.504746
0	1.318792	2.157534	0.239436
Н	1.098654	3.061706	-0.035669
С	-1.550142	3.040879	-0.253452
Н	-2.577281	3.218909	0.078228
Н	-0.923607	3.830499	0.173901
Н	-1.519065	3.115076	-1.346120
С	-4.063829	-1.301474	0.250434
Н	-4.476869	-0.313112	0.023923
Н	-4.695231	-2.072726	-0.194509
Н	-4.029828	-1.440285	1.339187
С	3.055120	-0.446367	0.139921
0	3.172412	-0.002700	1.262644
С	4.182518	-0.986888	-0.705858
Н	5.135786	-0.799107	-0.210770
Н	4.048681	-2.064795	-0.846510
Н	4.177541	-0.522851	-1.696796

Complete Reference 16

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian*09, Revision E.01, Gaussian, Inc., Wallingford CT, 2009.

Complete Reference 32

Case, D. A.; Babin, V.; Berryman, J. T.; Betz, R. M.; Cai, Q.; Cerutti, D. S.; Cheatham, T. E. I.; Darden, T. A.; Duke, R. E.; Gohlke, H.; Goetz, A. W.; Gusarov, S.; Homeyer, N.; Janowski, P.; Kaus, J.; Kolossváry, I.; Kovalenko, A.; Lee, T. S.; LeGrand, S.; Luchko, T.; Luo, R.; Madej, B.; Merz, K. M.; Paesani, F.; Roe, D. R.; Roitberg, A.; Sagui, C.; Salomon-Ferrer, R.; Seabra, G.; Simmerling, C. L.; Smith, W.; Swails, J.; Walker, R. C.; Wang, J.; Wolf, R. M.; Wu, X.; Kollman, P. A. **2014**, AMBER 14, University of California, San Francisco.