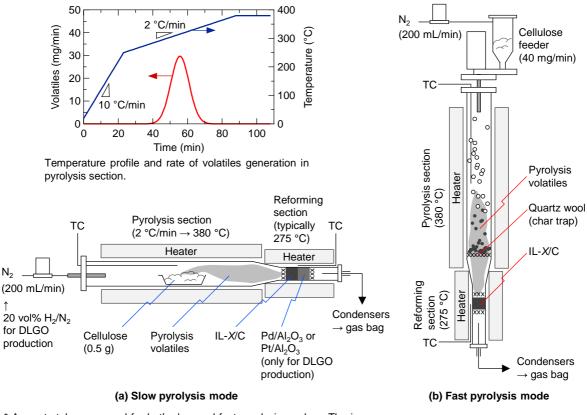
Supporting Information for

Production of Levoglucosenone and Dihydrolevoglucosenone by Catalytic Reforming of Volatiles from Cellulose Pyrolysis Using Supported Ionic Liquid Phase

Shinji Kudo^{†,*}, Nozomi Goto[†], Jonathan Sperry[‡], Koyo Norinaga[†], Jun-ichiro Hayashi^{†,§}

[†] Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga Koen, Kasuga 816-8580, Japan


[‡] Center for Green Chemical Science, School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, New Zealand

[§] Research and Education Center of Carbon Resources, Kyushu University, 6-1 Kasuga Koen, Kasuga 816-8580, Japan

* Corresponding author. E-mail: shinji_kudo@cm.kyushu-u.ac.jp. Phone/fax: +81 92 583 7793

Table of Contents

Page S2:	Schematics of reaction systems for catalytic reforming of volatiles from
	cellulose pyrolysis (Figure S1)
Page S2:	TG curve of cellulose pyrolysis (Figure S2)
Page S3:	TG curve of IL-B (Figure S3)
Page S3:	TG curves of IL-A recovered from fresh and spent IL-A/C (Figure S4)
Page S3:	¹³ C NMR spectra of liquid products (Figure S5)
Page S4:	MS spectrum of DLGO (Figure S6)

* A quartz tube was used for both slow and fast pyrolysis modes. The inner diameters were 210 mm and 65 mm at pyrolysis and reforming sections, respectively.

Figure S1. Schematics of reaction systems for catalytic reforming of volatiles from cellulose pyrolysis: (a) slow pyrolysis mode and (b) fast pyrolysis mode.

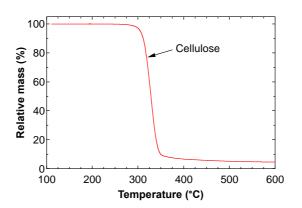
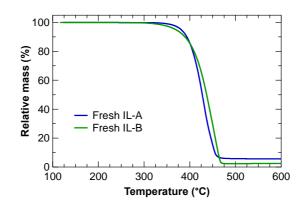
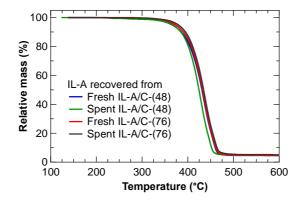
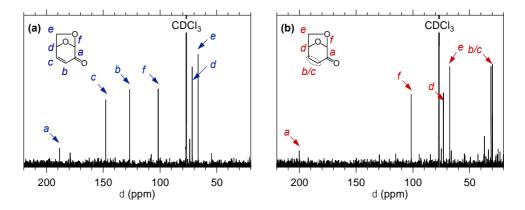


Figure S2. TG curve of cellulose pyrolysis: TGA under N₂ flow with 5 °C/min heating rate.

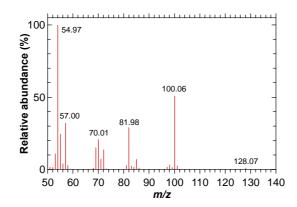

Figure S3. Comparison of TG curves between IL-A and IL-B: TGA under N_2 flow with 5 °C/min heating rate.

Figure S4. TG curves of IL-A recovered from fresh and spent IL-A/C: TGA under N_2 flow with 5 °C/min heating rate.

Figure S5. ¹³C NMR spectrum of liquid product (CDCl₃ soluble portion) from (a) entry 2 and (b) entry 15. The spectrum in (b) is consistent with that of DLGO reported in the work by Sherwood et al. (*Chem. Commun.* **2014**, 50, 9650–9652).

Figure S6. MS spectrum of the main peak of GC-MS chromatogram (c) in **Figure 2** at 32.0 min, which corresponds to DLGO.