Asymmetric Total Synthesis of Lepadiformine C Using Memory of Chirality in an Intramolecular Ester Enolate Michael Addition

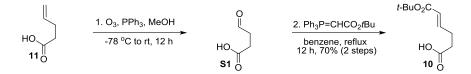
Seokwoo Lee, Minsik Bae, Jinkyung In, Jae Hyun Kim and Sanghee Kim*

College of Pharmacy, Seoul National University, Seoul, 08826 (Korea)

pennkim@snu.ac.kr

Contents

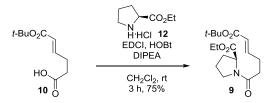
A. General ······S1
B. Experimental procedure and spectroscopic data analysis
B-1. Synthesis of Michael substrate 9 ····· S2–S3
B-2. Intramolecular Michael addition of 9 ······
B-3. Exploratory studies to determine the mechanism of Michael addition S5–S9
B-4. Synthesis of lepadiformine C (1)
C. Computational study
D. Chiral HPLC chromatograms of S2 ······ S20–S21
E. Copies of spectra (¹ H NMR, ¹³ C NMR, COSY, NOESY NMR) ······· S22–S33


A. General

All of the chemicals were of reagent grade and were used as received. All of the reactions were performed under an inert atmosphere consisting of dry nitrogen using distilled dry solvents. The reactions were monitored by thin layer chromatography (TLC) analysis using silica gel 60 F-254 TLC plates. Flash column chromatography was performed on silica gel (230-400 mesh). The optical rotations were measured using sodium light (D line 589.3 nm) at 20 °C. ¹H NMR (300, 400, 500, 600 or 800 MHz) and ¹³C NMR (100, 125, 150 or 200 MHz) spectra were recorded in δ units relative to the non-deuterated solvent as the internal reference. The IR spectra were recorded on a Fourier Transform Infrared spectrometer. High-resolution mass spectra (HRMS) were recorded using fast atom bombardment (FAB). HPLC was performed on an Agilent 1200 series instrument with a diode array detector (DAD) and CHIRALCEL OD-H column (0.46 × 25 cm, 5 µm).

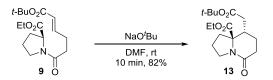
B. Experimental procedure and spectroscopic data analysis

B-1. Synthesis of Michael substrate 9


(E)-6-(tert-butoxy)-6-oxohex-4-enoic acid (10)

A solution of **11** (12.5 g, 125 mmol) in MeOH (400 mL) was cooled to -78 °C. Ozone was bubbled through the solution until blue color persisted. When TLC indicated the absence of the starting material, the ozone inlet tube was replaced with nitrogen, which was bubbled through the solution for 30 min to remove any excess ozone. Triphenylphosphine (65.5 g, 245 mmol) was added in one portion, the cooling bath was removed, and the mixture was stirred for 6 h at room temperature. The reaction mixture was filtered, and the filtrate was concentrated under reduced pressure to afford **S1** as a colorless oil, which was used in the subsequent step without further purification.

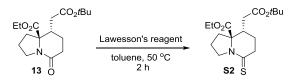
To a solution of **S1** in benzene (400 mL) was added *tert*-butyl 2-(triphenyl- λ^5 -phosphanylidene)acetate (61.1 g, 162 mmol) at room temperature. The reaction mixture was heated to reflux for 12 h and then cooled to room temperature. The mixture was thrice extracted with saturated aqueous Na₂CO₃. The combined aqueous layers were thrice washed with EtOAc, and then acidified with 1N HCl (pH = 2). The aqueous solution was thrice extracted with EtOAc. The combined organic layers were dried over MgSO₄ and concentrated in vacuo to afford known compound **10** (17.5 g, 70%, 2 steps) as a colorless oil, which was used in the subsequent step without further purification.


Ethyl (*E*)-(6-(*tert*-butoxy)-6-oxohex-4-enoyl)-L-prolinate (9)

To a solution of acid **10** (7.95 g, 39.7 mmol) in CH₂Cl₂ (50 mL) were added EDCI (9.25 g, 59.6 mmol), HOBt (8.05 g, 59.6 mmol) and DIPEA (27.7 mL, 159 mmol) at 0 °C. The resulting mixture was stirred for 10 min, and then a solution of L-proline ethyl ester¹ (12, 8.56 g, 47.6 mmol) in CH₂Cl₂ (50 mL) was added at 0 °C. The reaction mixture was stirred at room temperature for 3 h and then, diluted with CH₂Cl₂. The combined organic layers were washed with 1N HCl, saturated NaHCO₃, and brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc, 1:1) to yield 9 (9.69 g, 75%) as a colorless oil: $[\alpha]^{20}D$ –41.6 (c 1.00, CHCl₃); ¹H NMR (CDCl₃, 800 MHz; two rotamers in a 4:1 ratio) δ 6.86–6.78 (m, 1H), 5.75–5.70 (m, 1H), 4.43 (dd, J = 8.84 Hz, 3.80 Hz, 0.8H), 4.43 (dd, J = 8.64 Hz, 2.56 Hz, 0.2H), 4.19-4.11 (m, 2H), 3.62-3.57 (m, 1H), 3.54-3.51 (m, 0.2H), 3.46-3.43 (m, 0.8H), 2.54-2.47 (m, 2H), 2.46-2.43 (m, 1H), 2.41-2.35 (m, 0.8H), 2.30-2.26 (m, 0.2H), 2.25-2.19 (m, 0.2H), 2.17-2.12 (m, 0.8H), 2.06-2.01 (m, 1H), 1.97-1.92 (m, 1.6H), 1.88-1.85 (m, 0.4H) 1.43 (s, 9H), 1.25 (t, J = 7.12 Hz, 0.6H), 1.23 (t, J = 7.16 Hz, 2.4H); ¹³C NMR (200 MHz, CDCl₃; rotamer 1/ rotamer 2) δ 172.2, 170.2, 165.8, 146.22/146.2, 123.6, 80.1, 61.6/61.0, 59.4/58.8, 46.9/46.4, 32.6/32.5, 31.4/29.15, 28.1 (3C), 27.1/26.8, 24.7/22.5, 14.14/14.10; IR (neat, cm⁻¹) v_{max} 2980, 1743, 1712, 1652, 1432, 1369, 1320, 1294, 1257, 1243, 1186, 1149; HRMS (FAB) calcd. for $C_{17}H_{28}NO_5$ ([M+H]⁺) 326.1967, found 326.1961.

B-2. Intramolecular Michael addition of 9

Representative procedure for the intramolecular Michael addition of 9


To a solution of NaO'Bu (17.0 mg, 0.169 mmol) in DMF (8 mL) was added a solution of **9** (50.0 mg, 0.154 mmol) in DMF (7 mL) dropwise at room temperature, and the mixture was stirred for 10 min at

¹ Nazarova, L. S.; Rozonov, Yu. B.; Likhosherstov, A. M.; Morozova, T. V.; Skoldinov, A. P.; Kaverina N. V.; Markin, V. A. *Pharm. Chem. J.* **1984**, *18*, 811.

room temperature. The reaction was quenched by the addition of a saturated NH₄Cl aqueous solution and concentrated in vacuo. The residue was dissolved in EtOAc and water, and extracted twice with EtOAc. The organic extracts were dried over MgSO₄ and concentrated under reduced pressure. The yield was determined by ¹H NMR analysis of the crude reaction mixture using CH₂Br₂ as internal standard.

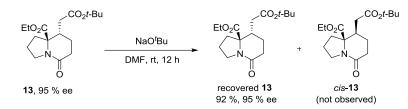
13: $[\alpha]^{22}{}_{D}$ –38.6 (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 4.19 (q, *J* = 6.21 Hz, 2H), 3.60–3.53 (m, 2H), 2.97–2.92 (m, 1H), 2.41–2.31 (m, 3H), 2.22–2.18 (m, 1H), 2.08 (dd, *J* = 15.5 Hz, 8.22 Hz, 1H), 1.86–1.58 (m, 5H), 1.43 (s, 9H), 1.25 (t, *J* = 7.12 Hz, 3H); ¹³C NMR (200 MHz, CDCl₃) δ 173.6, 171.1, 168.7, 81.1, 72.3, 61.9, 45.1, 33.8, 33.5, 33.1, 27.9 (3C), 26.8, 23.5, 20.4, 14.1; IR (neat, cm⁻¹) ν_{max} 2979, 1729, 1650, 1447, 1412, 1369, 1269, 1226, 1208, 1090, 1023; HRMS (FAB): calcd. for C₁₇H₂₈NO₅ ([M+H]⁺) 326.1967, found 326.1958.

Representative procedure for synthesis of thioamide derivative S2

Crude product **13** (10.0 mg) was dissolved in toluene (0.5 mL) and Lawesson's reagent (12.0 mg, 0.0307 mmol) was added. The reaction mixture was heated to 50 °C for 2 h and then cooled to room temperature. The mixture was concentrated, and the residue was purified by flash column chromatography on silica gel (hexane/EtOAc, 3:1) to yield **S2** (7.0 mg) as a yellow oil. The enantiomeric purity of **S2** was determined by chiral HPLC analysis. The spectral data for **S2** was in good agreement with **15**, with the exception of optical rotation (see page S10).

S2: $[\alpha]^{20}_{D}$ –20.2 (*c* 0.5, CHCl₃).

Table S1. Additional conditions tested to optimize the intramolecular Michael addition of 9 (see


Table 1 in the main text).^{*a*}

^{*a*}Reactions were performed with **9** (50 mg, 0.15 mmol) at a substrate concentration of 0.01 M. ^{*b*}Yield was estimated from the ¹H analysis. ^{*c*}Enantiomeric excess was determined by chiral HPLC analysis of thioamide derivative from **13**.

B-3 Exploratory studies to determine the mechanism of Michael addition.

B-3-a. Re-exposure of Michael product 13

Michael product **13** (9.0 mg, 0.028 mol, 95% ee), which was synthetized at -20 °C, was dissolved in DMF (2.8 mL) and NaO'Bu (3.0 mg, 0.030 mmol) was added. The reaction mixture was stirred for 12 h at room temperature. The reaction was quenched by the addition of a saturated NH₄Cl aqueous solution and concentrated in vacuo. The residue was dissolved in EtOAc and water, and extracted twice with EtOAc. The organic extracts were dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc, 3:1) to yield **13** (8.3 mg, 92%) as a yellow oil. The enantiomeric purity of obtained product **13** was determined to be 95% by chiral HPLC analysis after the conversion to the thioamide derivative.

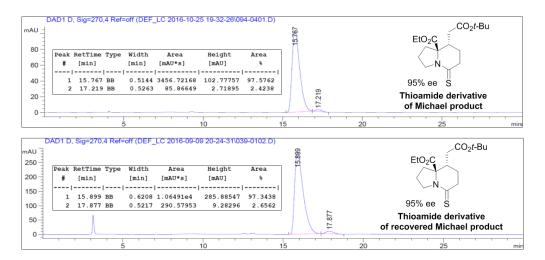
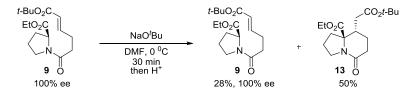



Figure S1. Chiral HPLC chromatograms of thioamide derivatives.

B-3-b. Incomplete reaction of intramolecular Michael addition

To a solution of NaO'Bu (17.0 mg, 0.169 mmol) in DMF (8 mL) was added a solution of **9** (50.0 mg, 0.154 mmol, 100% ee) in DMF (7 mL) dropwise at 0 °C, and the mixture was stirred for 30 min at 0 °C. The reaction was quenched by the addition of a saturated NH₄Cl aqueous solution and concentrated in vacuo. The residue was dissolved in EtOAc and water, and extracted twice with EtOAc. The organic extracts were dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc, 3:1) to yield **9** (14.0 mg, 28%, 100% ee) and **13** (25.0 mg, 50%). The enantiomeric purity of **9** was determined using chiral HPLC analysis.

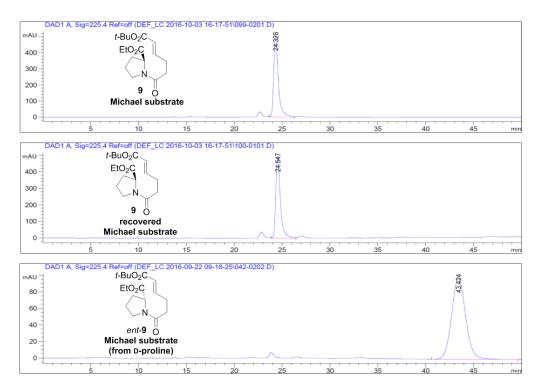
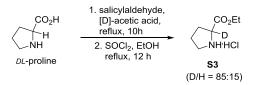



Figure S2. Chiral HPLC chromatograms of Michael substrates.

B-3-c. Deuterium study of intramolecular Michael addition

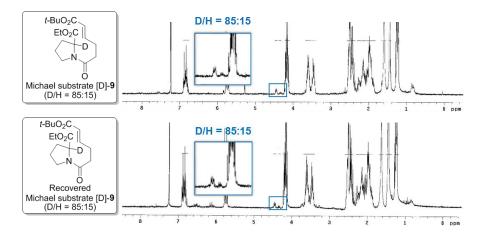
Preparation of S3

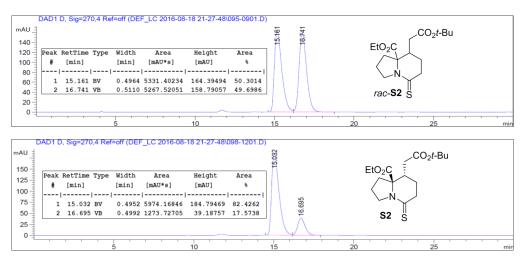
To a solution of DL-proline (2.00 g, 17.4 mmol) in [D]-acetic acid (37 mL) was added salicylaldehyde (0.164 mL, 1.54 mmol), and the mixture was heated to reflux for 10 h. The reaction mixture was concentrated under reduced pressure. To afford known compound [D]-proline as a colorless oil, which was used in the subsequent step without further purification.

To a solution of [D]-proline in EtOH (44 mL) was added SOCl₂ (1.41 mL, 19.3 mmol) dropwise at 0 °C, and the mixture was heated to reflux for 12 h. The reaction mixture was concentrated under reduced pressure. To afford **S3** (D/H = 85:15) as a light yellow oil, which was used in the subsequent step without further purification.

The intramolecular Michael addition of [D]-9.

[D]-9 was prepared according to the procedure described above for 9 using S3 instead of 12. To a solution of NaO'Bu (4.0 mg, 0.051 mmol) in DMF (2.6 mL) was added a solution of [D]-9 (15.0 mg, 0.0461 mmol, D/H = 85:15) in DMF (2 mL) dropwise at 0 °C, and the mixture was stirred for 30 min at 0 °C. The reaction was quenched by the addition of a saturated NH₄Cl aqueous solution and concentrated in vacuo. The residue was dissolved in EtOAc and water, and extracted twice with EtOAc. The organic extracts were dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc, 3:1) to yield [D]-9 (5.0 mg, 33%, D/H = 85:15) and *rac*-13 (7.0 mg, 47%).




Figure S3. ¹H NMR spectra of [D]-9 and recovered [D]-9 after the Michael reaction.

B-3-d. The intramolecular Michael addition of 9 in the presence of protic solvent

To a solution of NaO'Bu (17.0 mg, 0.169 mmol) in DMF (8 mL) was added a solution of **9** (50.0 mg, 0.154 mmol) in DMF (7 mL) dropwise at room temperature, and the mixture was stirred for 10 min at

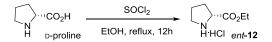
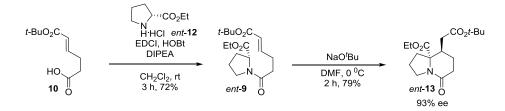

room temperature. The reaction was quenched by the addition of a saturated NH₄Cl aqueous solution and concentrated in vacuo. The residue was dissolved in EtOAc and water, and extracted twice with EtOAc. The organic extracts were dried over MgSO₄ and concentrated under reduced pressure. The yield was determined by ¹H NMR analysis of the crude reaction mixture using CH₂Br₂ as internal standard (72%). Enantiomeric excess was determined by chiral HPLC analysis of thioamide derivative **S2** (65% ee).

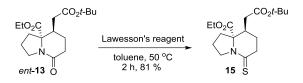
Figure S4. Chiral HPLC chromatograms of *rac*-**S2** and **S2** which was synthesized with NaO'Bu at rt in DMF/'BuOH (1:1).

B-4 Synthesis of lepadiformine C (1)


Ethyl D-prolinate hydrochloride (ent-12)

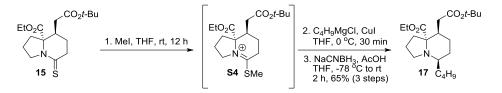
To a solution of D-proline (10.0 g, 86.9 mmol) in EtOH (200 mL) was added SOCl₂ (7.00 mL, 96.0 mmol) dropwise at 0 °C, and the mixture was heated to reflux for 12 h. The reaction mixture was concentrated under reduced pressure. To afford *ent*-**12** as a light yellow oil, which was used in the subsequent step without further purification.

Ethyl (8R,8aS)-8-(2-(tert-butoxy)-2-oxoethyl)-5-oxohexahydroindolizine-8a(1H)-carboxylate


(ent-13)

Ent-9 was prepared according to the procedure described above for **9** using *ent-*12¹ instead of 12 (9.30g, 72%). The spectral data for *ent-***9** were in good agreement with **9** excepting optical rotation (See pase S3): *ent-***9**: $[\alpha]^{20}_{D}$ 52.7 (*c* 1.0, CHCl₃).

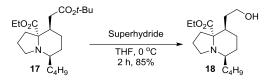
To a solution of NaO'Bu (844 mg, 8.78 mmol) in DMF (400 mL) was added a solution of **9** (2.60 g, 8.00 mmol) in DMF (400 mL) dropwise, and the mixture was stirred for 2 h at 0 °C. The reaction was quenched by the addition of a saturated NH₄Cl aqueous solution and concentrated in vacuo. The residue was dissolved in EtOAc and water, and extracted twice with EtOAc. The organic extracts were dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (EtOAc/CH₂Cl₂, 1:1) to yield *ent*-**13** (2.05 g, 79%) as a light yellow oil. Enantiomeric excess was determined by chiral HPLC analysis of thioamide derivative (93% ee). The spectral data for *ent*-**13** were in good agreement with **13** with the exception of optical rotation (see pase S4): *ent*-**13**: $[\alpha]^{20}_{D}$ 38.2 (*c* 0.1, CHCl₃).


Ethyl (8*R*,8a*S*)-8-(2-(tert-butoxy)-2-oxoethyl)-5-thioxohexahydroindolizine-8a(1*H*)-carboxylate (15)

To a solution of *ent*-**13** (2.00 g, 6.15 mmol) in toluene (60 mL) was added Lawesson's reagent (1.49 g, 3.69 mmol). The reaction mixture was heated to 50 °C for 2 h and then cooled to room temperature. The mixture was concentrated, and the residue was purified by flash column chromatography on silica gel (hexane/EtOAc, 3:1) to yield **15** (1.70 g, 81%) as a yellow oil: $[\alpha]^{20}_{D}$ 19.8 (*c* 0.5, CHCl₃); ¹H

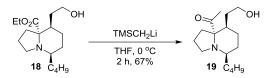
NMR (CDCl₃, 800 MHz) δ 4.23–4.17 (m, 2H), 3.92 (dd, J = 9.64 Hz, 5.16 Hz, 2H), 3.04 (ddd, J = 10.4 Hz, 7.82 Hz, 3.86 Hz, 1H), 3.00–2.97 (m, 1H), 2.91–2.86 (m, 1H), 2.34 (dd, J = 15.8 Hz, 6.40 Hz, 1H), 2.31 (ddd, J = 6.44 Hz, 1.04 Hz, 1H), 2.05 (dd, J = 15.8 Hz, 8.04 Hz, 1H), 1.95–1.91 (m, 1H), 1.88–1.84 (m, 1H), 1.72–1.63 (m, 3H), 1.42 (s, 9H), 1.25 (t, J = 7.12 Hz, 3H); ¹³C NMR (CDCl₃, 200 MHz) δ 197.3, 171.9, 170.8, 81.3, 74.2, 62.3, 53.1, 36.2, 34.2, 33.6, 33.2, 28.0(3C), 23.4, 19.8, 14.1; IR (neat, cm⁻¹) υ_{max} 2976, 2936, 1726, 1477, 1454, 1413, 1368, 1267, 1209, 1148, 1107, 1070, 1015, 844; HRMS (FAB) calcd. for C₁₇H₂₈NO₄S ([M+H]⁺) 342.1739, found 342.1729.

Ethyl (5*R*,8*R*,8a*S*)-8-(2-(tert-butoxy)-2-oxoethyl)-5-butylhexahydroindolizine-8a(1*H*)carboxylate (17)

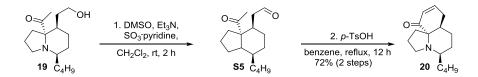


To a solution of **15** (1.00 g, 2.93 mmol) in THF (15 mL) was added iodomethane (0.910 mL, 14.6 mmol), and the mixture was stirred for 12 h at room temperature. The mixture was evaporated to dryness in vacuo to yield iminium salt **S4** as a yellow oil.

To a slurry of copper iodide (558 mg, 2.93 mmol) in anhydrous THF (14 mL) was added a solution of butylmagnesium chloride (2.20 mL, 4.39 mmol, 2.0 M solution in THF) at 0 °C under a N₂ atmosphere. The resulting mixture was stirred for 30 min at 0 °C, and then a solution of iminium salt **S4** in anhydrous THF (15 mL) was added at 0 °C. The reaction mixture was stirred for 30 min at 0 °C and then cooled to -78 °C. NaCNBH₃ (184 mg, 2.93 mmol) was added to the mixture at -78 °C. The reaction mixture was stirred for 15 min and then glacial AcOH (3.00 mL) was added at -78 °C. After 15 min, the resulting mixture was allowed to slowly warm to rt and stirred for 2 h at room temperature. The reaction was quenched by the slow addition of a saturated Na₂CO₃ aqueous solution at 0 °C, and stirred for 30 min at room temperature. Then, the mixture was extracted twice with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (hexane/EtOAc, 10:1) to yield **17** (700 mg,

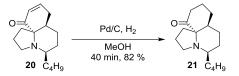

65%) as a light yellow oil: $[α]^{24}D - 11.9$ (*c* 0.5, CHCl₃); ¹H NMR (CDCl₃, 800 MHz) δ 4.15–4.09 (m, 2H), 3.06–3.04 (m, 1H), 3.00–2.97 (m, 1H), 2.91–2.89 (m, 1H), 2.82–2.79 (m, 1H), 2.49 (dd, *J* = 15.9 Hz, 6.68 Hz, 1H), 2.20 (dd, *J* = 15.9 Hz, 6.92 Hz, 1H), 1.80–1.76 (m, 1H), 1.69–1.53 (m, 5H), 1.43 (s, 9H), 1.40–1.34 (m, 2H), 1.32–1.15 (m, 9H), 0.87 (t, *J* = 7.08 Hz, 3H); ¹³C NMR (CDCl₃, 200 MHz) δ 175.6, 173.2, 80.0, 71.4, 59.9, 54.8, 47.3, 34.7, 34.5, 33.3, 33.0, 28.1(C3), 27.2, 27.0, 25.5, 23.2, 20.2, 14.3, 14.1; IR (neat, cm⁻¹) $υ_{max}$ 2958, 2924, 2862, 1728, 1368, 1149, 1098; HRMS (FAB) calcd. for C₂₁H₃₈NO₄ ([M+H]⁺) 368.2801, found 368.2796.

Ethyl (5R,8R,8aS)-5-butyl-8-(2-hydroxyethyl)hexahydroindolizine-8a(1H)-carboxylate (18)


To a solution of this acid **17** (500 mg, 1.36 mmol) in THF (14 mL) was added Superhydride (3.40 mL, 3.40 mmol, 1.0 M solution in THF) at 0 °C, and the resulting mixture was stirred for 2 h at 0 °C. The reaction was quenched by the addition of a saturated NH₄Cl aqueous solution, and extracted twice with EtOAc. The organic extracts were dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (EtOAc/acetone, 1:1) to yield **18** (344 mg, 85%) as a light yellow oil: $[\alpha]^{20}_{D}$ –24.5 (*c* 0.5, CHCl₃); ¹H NMR (CDCl₃, 800 MHz) δ 4.12 (dd, *J* = 14.2 Hz, 7.12 Hz, 2H), 3.73–3.70 (m, 1H), 3.61 (td, *J* = 11.3 Hz, 5.72 Hz, 1H), 3.19 (brs, 1H, OH), 3.06 (td, *J* = 8.48 Hz, 5.44 Hz, 1H), 3.04–3.01 (m, 1H), 2.95 (td, *J* = 9.14 Hz, 4.88 Hz, 1H), 2.47 (td, *J* = 9.63 Hz, 4.90 Hz, 1H), 2.00 (td, *J* = 12.5 Hz, 9.90 Hz, 1H), 1.84 (td, *J* = 14.6 Hz, 6.53 Hz, 1H), 1.79–1.76 (m, 1H), 1.52–1.71 (m, 1H), 1.67–1.59 (m, 5H), 1.51 (ddd, *J* = 12.9 Hz, 8.58 Hz, 4.02 Hz, 1H), 1.43–1.38 (m, 1H), 1.32–1.25 (m, 4H), 1.24 (t, *J* = 7.12 Hz, 3H), 1.21–1.17 (m, 1H), 0.87 (t, *J* = 7.16 Hz, 3H); ¹³C NMR (CDCl₃, 200 MHz) δ 175.9, 71.7, 61.1, 60.0, 54.7, 47.4, 34.8, 33.7, 32.2, 31.4, 27.5, 26.5, 25.7, 23.1, 20.2, 14.3, 14.1; IR (neat, cm⁻¹) υ_{max} 3387, 3342, 2933, 2861, 1725, 1461, 1379, 1175, 1144, 1097, 1052, 1022; HRMS (FAB) calcd. for C₁₇H₃₂NO₃ ([M+H]⁺) 298.2382, found 298.2379.

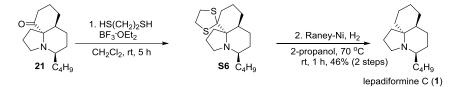
1-((5R,8R,8aS)-5-butyl-8-(2-hydroxyethyl)hexahydroindolizin-8a(1H)-yl)ethan-1-one (19)

To a solution of this acid **18** (300 mg, 1.01 mmol) in THF (10 mL) was added (Trimethylsilyl)methyllithium (2.02 mL, 2.02 mmol, 1.0 M solution in pentane) at 0 °C, and the resulting mixture was stirred for 2 h at 0 °C. The reaction was quenched by the slow addition of MeOH at 0 °C, and stirred for 1 h at room temperature. Then, the mixture was diluted with water, and extracted twice with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/acetone, 1:1) to yield **19** (180 mg, 62%) as a light yellow oil: $[\alpha]^{20}_{\rm D}$ –33.2 (*c* 0.5, CHCl₃); ¹H NMR (CDCl₃, 400 MHz) δ 3.64–3.52 (m, 2H), 2.94–2.80 (m, 3H), 2.27–2.22 (m, 1H), 2.14 (s, 3H), 1.85–1.63 (m, 3H), 1.60–1.37 (m, 7H), 1.31–1.18 (m, 6H), 0.846 (t, *J* = 6.72 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 213.3, 74.7, 61.0, 52.2, 46.3, 34.6, 33.1, 31.3, 29.9, 28.2, 25.1, 24.5, 24.1, 22.9, 22.7, 14.1; IR (neat, cm⁻¹) υ_{max} 2932, 2860, 1702, 1461, 1348, 1158, 1141, 1091, 1055; HRMS (FAB) calcd. for C₁₆H₃₀NO₂ ([M+H]⁺) 268.2277, found 268.2287.


(5R,7aR,11aS)-5-butyl-2,3,6,7,7a,8-hexahydro-1H-pyrrolo[2,1-j]quinolin-11(5H)-one (20)

To a solution of **19** (120 mg, 0.449 mmol) in CH_2Cl_2 (9 mL) were added DMSO (0.700 mL, 9.86 mmol), SO₃ pyridine (547 mg, 3.36 mmol) and Et₃N (0.940 mL, 6.74 mmol) at 0 °C, and the resulting mixture was stirred for 2 h at room temperature. The reaction was quenched by the slow addition of a saturated NaHCO₃ aqueous solution, water and brine at 0 °C and the mixture was extracted once with EtOAc. The organic layer was dried over MgSO₄ and concentrated in vacuo to afford **S5** as a brown oil, which was used in the subsequent step without further purification.

To a solution of crude **S5** in dry benzene (6 mL) was added *p*-TsOH (77.0 mg, 0.449 mmol) at room temperature. The reaction mixture was heated to reflux under a Dean-Stark trap for 12 h. The reaction mixture was then allowed to cool to room temperature, and the solvent was removed under reduced pressure. The residue was diluted with CH₂Cl₂ and washed with saturated NaHCO₃ aqueous solution and water. The organic layer was dried over MgSO₄ and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (CH₂Cl₂/MeOH, 5:1) to afford **20** (80.0 mg, 72%) as a light brown oil: $[\alpha]^{20}$ _D -77.7 (*c* 0.5, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ 6.74 (ddd, *J* = 9.98 Hz, 5.62 Hz, 2.02 Hz, 1H), 5.89 (dd, *J* = 10.0 Hz, 2.36 Hz, 1H), 3.03 (t, *J* = 7.24 Hz, 1H), 2.86 (s, 1H), 2.70 (ddd, *J* = 12.1 Hz, 7.72 Hz, 4.96 Hz, 1H), 2.34–2.31 (m, 1H), 2.21 (td, *J* = 19.0 Hz, 4.48 Hz, 1H), 2.11–2.01 (m, 1H), 1.97 (td, *J* = 12.9 Hz, 6.72 Hz, 1H), 1.71–1.56 (m, 4H), 1.54–1.48 (m, 3H), 1.28–1.21 (m, 6H), 0.83 (t, *J* = 8.48 Hz, 3H); ¹³C NMR (CDCl₃, 200 MHz) δ 203.0, 147.0, 128.4, 71.2, 51.3, 47.3, 35.8, 34.5, 31.7, 29.0, 28.5, 22.8, 22.6, 22.3, 21.1, 14.0; IR (neat, cm⁻¹) ν_{max} 2932, 2862, 1692, 1461, 1380, 1148; HRMS (FAB) calcd. for C₁₆H₂₆NO ([M+H]⁺) 248.2014, found 248.2012.


(5R,7aS,11aS)-5-butyloctahydro-1H-pyrrolo[2,1-j]quinolin-11(5H)-one (21)

To a solution of **20** (40.0 mg, 0.162 mmol) in MeOH (1.5 mL) was added HCl 2.0 M in ether solution (2.0 mL) at 0 °C, and the resulting mixture was stirred for 15 min at room temperature. The mixture was evaporated to dryness in vacuo to yield HCl salt of **20** as a light brown oil. To a solution of HCl salt of **20** was added 10% Pd/C (40.0 mg, 100% wt. of **20**). The flask was evacuated, filled with H₂, and stirred at room temperature for 40 min. The mixture was then filtered through Celite, and the filtrate was concentrated. The residue was diluted with CH₂Cl₂ and washed with saturated NaHCO₃ aqueous solution and water. The organic layer was dried over MgSO₄ and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (CH₂Cl₂/MeOH, 7:1) to afford the **21** (33.0 mg, 82%) as a brown oil: $[\alpha]^{20}$ –33.1 (*c* 0.5, CHCl₃); ¹H NMR (CDCl₃, 800

MHz) δ 2.99 (t, J = 7.68 Hz, 1H), 2.88–2.87 (m, 1H), 2.68 (ddd, J = 11.8 Hz, 8.44 Hz, 5.40 Hz, 1H), 2.59 (ddd, J = 15.1 Hz, 12.9 Hz, 7.42 Hz, 1H), 2.39–2.36 (m, 1H), 1.97–1.88 (m, 4H), 1.71–1.64 (m, 3H), 1.59–1.55 (m, 2H), 1.54–1.46 (m, 4H), 1.30–1.24 (m, 4H), 1.23–1.20 (m, 2H), 0.86 (t, J = 7.00 Hz, 3H); ¹³C NMR (CDCl₃, 200 MHz) δ 212.0, 75.1, 51.6, 46.8, 39.3, 38.2, 34.4, 31.3, 29.1, 28.4, 25.6, 23.0, 22.89 22.86, 21.7, 14.1; IR (neat, cm⁻¹) υ_{max} 3414, 2955, 2934, 2869, 1715, 1642, 1460, 1180, 1122, 1034, 1012, 684, 657; HRMS (FAB) calcd. for C₁₆H₂₈NO ([M+H]⁺) 250.2171, found 250.2179.

Lepadiformine C (1)

To a solution of **21** (30.0 mg, 0.120 mmol) in CH_2Cl_2 (0.1 mL) were added 1,2-ethanedithiol (0.154 mL, 1.80 mmol) and BF₃·OEt₂ (0.178 mL, 1.44 mmol) at 0 °C, and the resulting mixture was stirred for 5 h at room temperature. The mixture was diluted with toluene and evaporated to dryness in vacuo. The mixture was filtered through a short pad of silica using CH_2Cl_2 , and the filtrate was concentrated in vacuo to afford **S6** as a yellow oil, which was used in the subsequent step without further purification.

To a solution of **S6** was added Raney-Nickel (0.8 mL). The flask was evacuated, filled with H₂, and stirred at 70 °C for 1 h. The mixture was then filtered through PTFE filter, and the filtrate was concentrated and purified by flash column chromatography on silica gel (CH₂Cl₂/MeOH, 7:1) to yield lepadiformine C (**1**) (13.0 mg, 46%) as a colorless oil. The free base **1** was dissolved in MeOH (0.5 mL). To this solution was added HCl 2.0 M in ether solution (2 mL) at 0 °C, and the resulting mixture was stirred for 20 min at room temperature. The solution was then evaporated to dryness in vacuo to afford **1**·HCl as a white gum. The spectral data matched those previously reported in the literature: $[\alpha]^{20}_{D}$ –10.7 (*c* 0.3, CHCl₃); ¹H NMR (CDCl₃, 600 MHz) δ 3.67 (td, *J* = 11.4 Hz, 5.96 Hz, 1H), 3.52–3.49 (m, 1H), 2.85 (ddd, *J* = 18.3 Hz, 11.7 Hz, 6.65 Hz, 1H), 2.43–2.40 (m, 1H), 2.20 (d, *J* = 13.7 Hz,

1H), 2.11–2.06 (m, 1H), 2.05–1.91 (m, 5H), 1.86–1.84 (m, 1H), 1.75–1.72 (m, 1H), 1.69–1.63 (m, 2H), 1.60–1.46 (m, 2H), 1.41–1.20 (m, 8H), 1.20–1.04 (m, 1H), 0.88 (t, J = 7.11 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 74.8, 55.4, 47.0, 37.8, 35.5, 30.8, 29.9, 28.4, 27.7, 25.2, 23.8, 22.4, 22.4, 20.9, 20.0, 13.9; IR (neat, cm⁻¹) υ_{max} 2935, 2866, 2708, 2631, 2579, 2524, 2490, 1467, 1449, 1347; HRMS (FAB) calcd. for C₁₆H₃₀N ([M+H]⁺) 236.2378, found 236.2377.

D. Computational study

General procedure for molecular energy calculations

Computational energy minimization was performed on system of **13** using the DMol3 program² in Material Studio 2017 (Accelrys software, Inc., San Diego, CA). A generalized gradient approximation (GGA) for the Perdew, Burke and Ernzerhof (PBE)³ exchange-correlation function was applied with double-numerical plus d-functions polarization (DNP), as implemented in DMol3. All molecules were modeled in the gas phase.

Geometry optimization and energy minimization of the compounds

The compounds were calculated to compare their energy levels using the method described above. This computational energy minimization demonstrated that *cis*-**S7** is thermodynamically more stable than *trans*-**S7**. The energy differences are 0.85 kcal/mol.

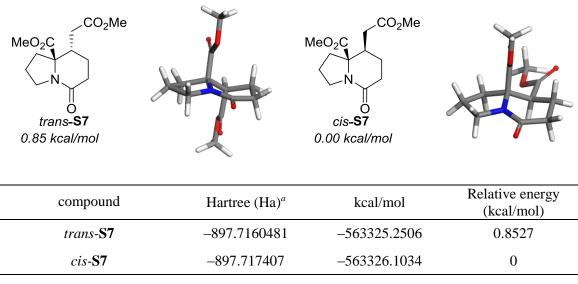


Table S2. Molecular energies of S7.

^a1Ha = 627.509391 kcal/mol.

^{2 (}a) Delley, B. J. Chem. Phys. 1990, 92, 508. (b) Delley, B. J. Chem. Phys. 2000, 113, 7756.

³ Perdew, J. P.; Burke K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.

Calculation input

All calculations are performed under following conditions. # Task parameters Calculate optimize Opt_energy_convergence 1.0000e-005 2.0000e-003 A Opt_gradient_convergence 5.0000e-003 A Opt_displacement_convergence Opt_iterations 50 Opt_max_displacement 0.3000 A Initial_hessian improved Scf_density_convergence 1.0000e-006 Scf_charge_mixing 2.0000e-001 Scf_diis 6 pulay Scf_iterations 50 # Electronic parameters Spin_polarization restricted Charge 0 Basis dnp Pseudopotential none Functional pbe hexadecapole Aux_density Integration_grid fine Occupation fermi Cutoff_Global 3.7000 angstrom # Calculated properties

Calculation output

trans	-S7						
Atom	Х	Y	Z	Atom	Х	Y	Ζ
С	17.42437	-9.30988	15.04145	Н	19.63313	-12.8365	16.19837
С	16.83511	-10.1331	13.88153	Н	17.90105	-14.3736	15.50367
Ν	17.27417	-11.5079	14.14083	Н	19.35119	-14.7681	14.58815
С	18.03841	-11.6579	15.3721	Н	17.0592	-14.6212	13.25905
С	18.49242	-10.2066	15.69173	Н	18.4724	-13.8674	12.53692
С	19.18986	-12.6804	15.20679	0	15.8876	-12.3721	16.23664
С	18.56926	-14.0041	14.71053	0	17.62482	-12.2836	17.6981
С	17.79216	-13.8149	13.39923	С	15.04909	-12.8033	17.33767
С	17.0556	-12.4912	13.20971	Н	15.02925	-12.0362	18.12255
0	16.35774	-12.2859	12.21394	Н	15.43008	-13.7402	17.76251
Н	16.63614	-9.06756	15.7692	0	20.16244	-11.8362	13.1233
Н	17.84677	-8.3591	14.69465	0	21.49614	-12.2308	14.92271
Н	15.73847	-10.0773	13.8377	С	22.62363	-11.829	14.10728
Н	17.21703	-9.82458	12.89712	Н	14.05592	-12.9467	16.90283
С	17.17794	-12.142	16.5731	Н	23.49997	-11.9365	14.75405
Н	19.46836	-10.0325	15.21712	Н	22.5062	-10.7883	13.78026
Н	18.611	-10.0503	16.77033	Н	22.70676	-12.4749	13.22415
С	20.29082	-12.192	14.28051				

Total energy = -897.7160481 Ha

•	
C15	/
c_{is}	-07

Atom	Х	Y	Z	Atom	Х	Y	Z
С	16.10405	-12.9753	17.00904	Н	19.81128	-14.0222	17.18356
С	16.12808	-14.5106	16.91829	Н	19.54602	-15.3689	19.93848
Ν	17.33289	-14.9094	17.65763	Н	20.95075	-15.538	18.90515
С	18.01074	-13.7862	18.30757	Н	19.13484	-17.4319	18.68565
С	17.50272	-12.5635	17.50058	Н	19.74349	-16.7357	17.19517
С	19.55026	-14.0181	18.25451	0	16.765	-14.5778	20.23374
С	19.86432	-15.378	18.88566	Ο	17.91886	-12.6319	20.45202
С	19.17181	-16.4985	18.1082	С	16.34139	-14.4241	21.61247
С	17.75969	-16.2139	17.61353	Н	17.21288	-14.42	22.27788
0	17.06959	-17.0923	17.08992	Н	15.69941	-15.2866	21.81255
Н	15.33886	-12.6507	17.7301	0	21.02806	-13.0522	19.93328
Н	15.8566	-12.5105	16.04678	0	20.33603	-11.7655	18.19083
Н	15.23375	-14.9736	17.35963	С	21.05562	-10.66	18.78916
Н	16.20935	-14.8865	15.8879	Н	15.78885	-13.4844	21.73867
С	17.57632	-13.5925	19.78524	Н	20.60857	-10.4045	19.75781
Н	18.18346	-12.4107	16.65181	Н	20.95391	-9.83077	18.08217
Н	17.51269	-11.6499	18.10256	Н	22.11017	-10.9234	18.93584
С	20.37405	-12.9158	18.91796				

Total energy = -897.717407 Ha

E. Chiral HPLC chromatograms of S2

Using **S2**, we determined enantiomeric excess by chiral HPLC (see Table 1 in the main text). The chromatograms were compared with the chromatogram obtained from *rac*-**S2**, which was prepared from DL-proline.

HPLC conditions : CHIRALCEL OD-H (0.46 \times 25 cm, 5 μ m), hexane/2-propanol = 96:4, flow rate 1.0 mL/min, λ = 270 nm.

Ref. rac-S2

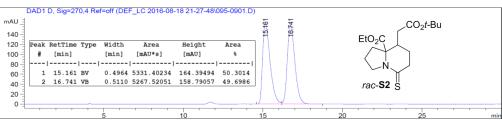


Table 1 (entry 1, NaO'Bu (1.1 equiv), rt, 10 min)

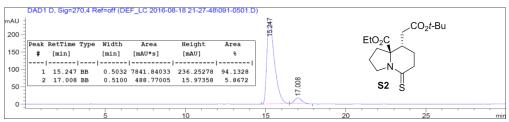


Table 1 (entry 2, KO'Bu (1.1 equiv), rt, 3 h)

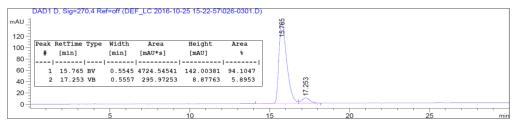


Table 1 (entry 4, NaO'Bu (3 equiv), rt, 10 min)

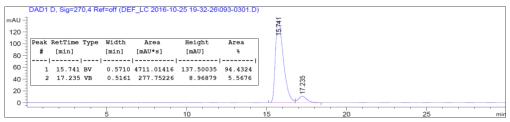


Table 1 (entry 5, NaO'Bu (0.5equiv), rt, 2 h)

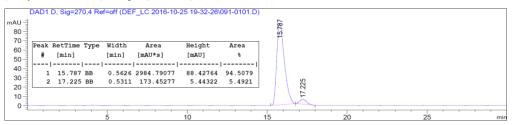


Table 1 (entry 6, NaO^tBu (1.1equiv), 0 ℃, 2 h)

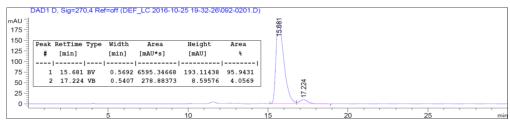
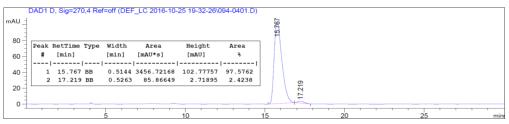
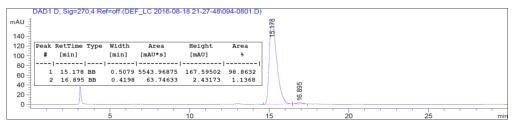
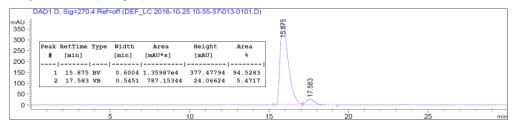
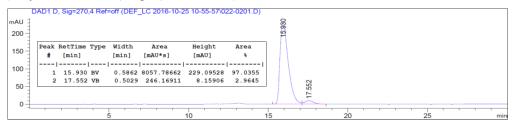
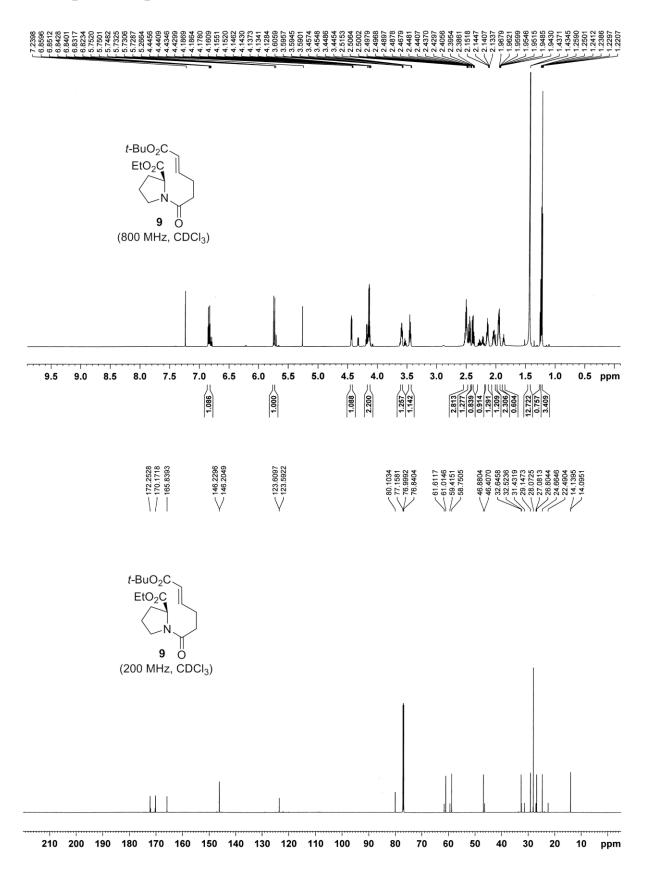
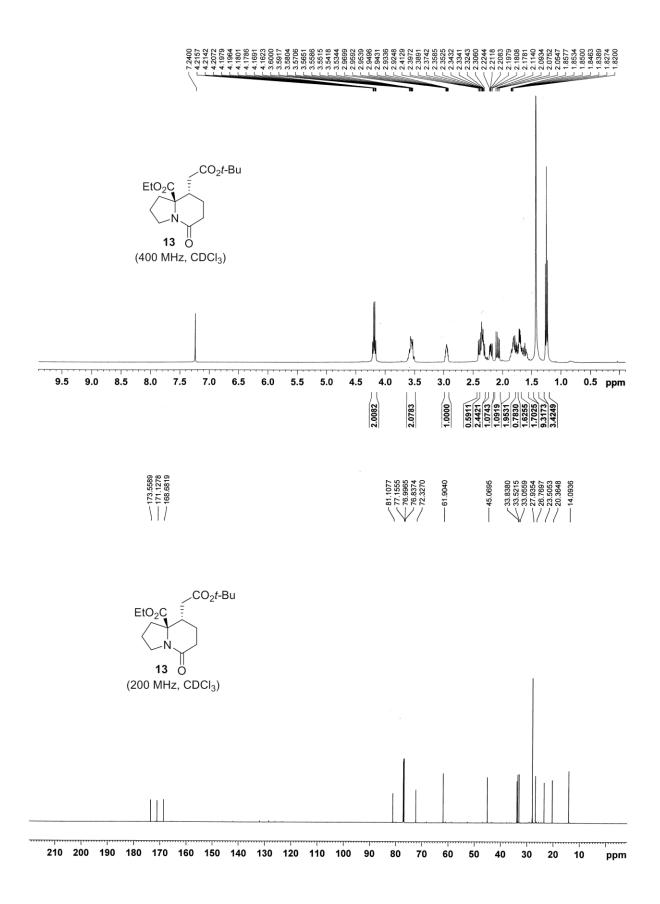


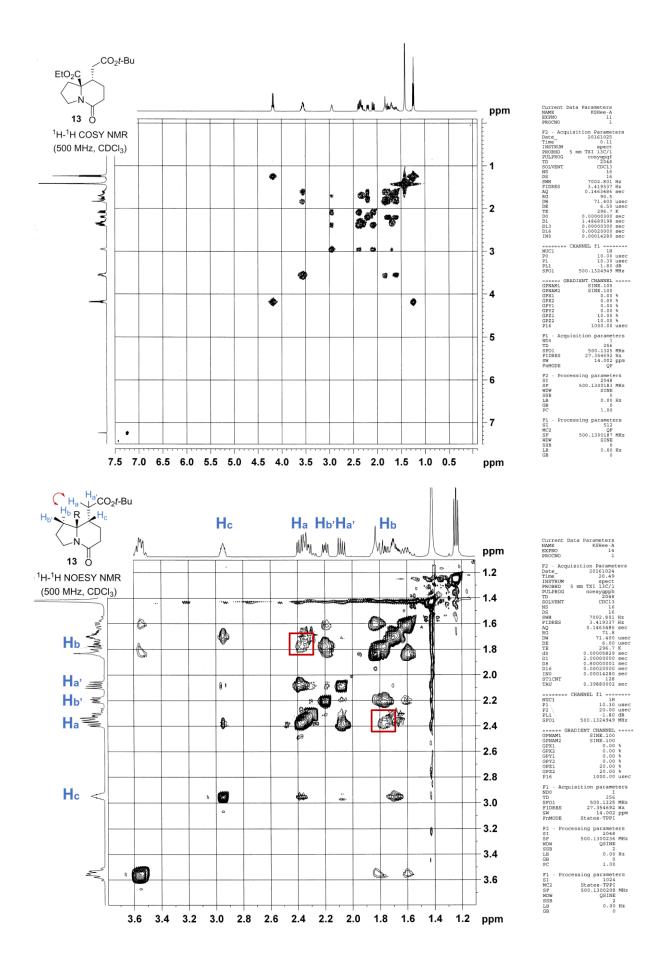
Table 1 (entry 7, NaO'Bu (1.1equiv), -20 °C, 12 h)

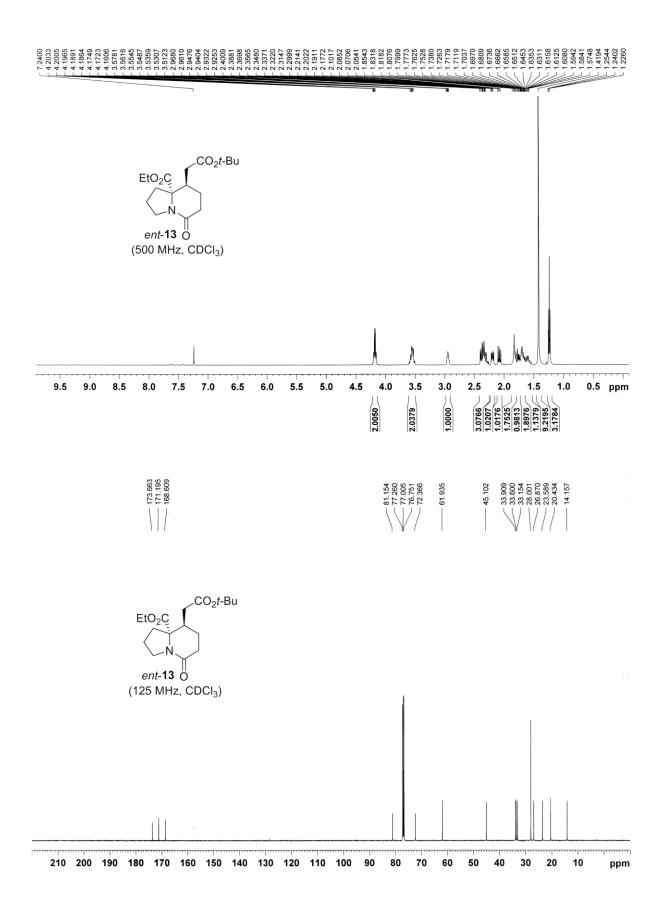




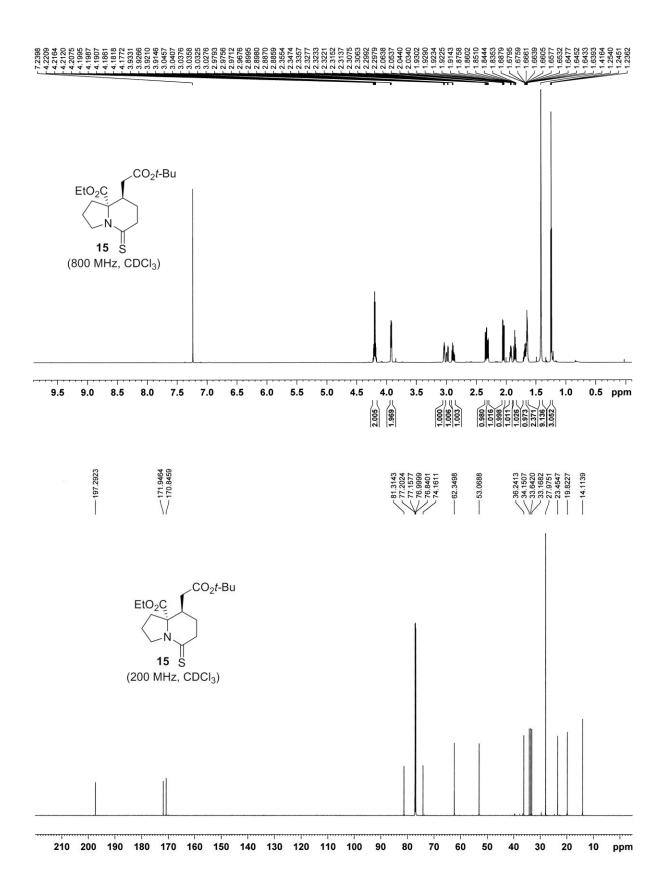

Table 1 (entry 8, NaO'Bu (1.1equiv), -40 °C, 72 h)

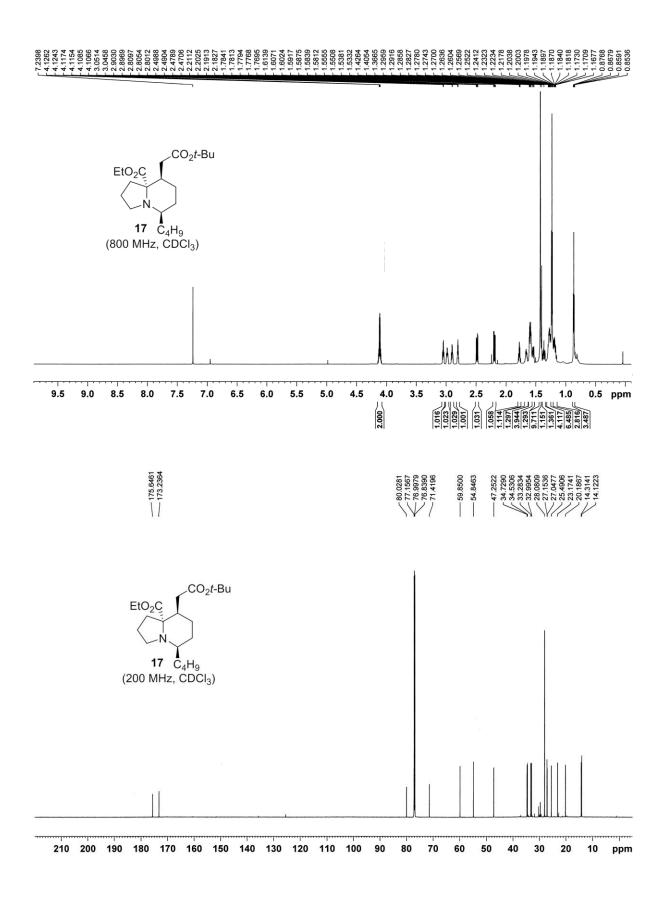

Table 1 (entry 9, NaOEt (1.1equiv), rt, 12 h)

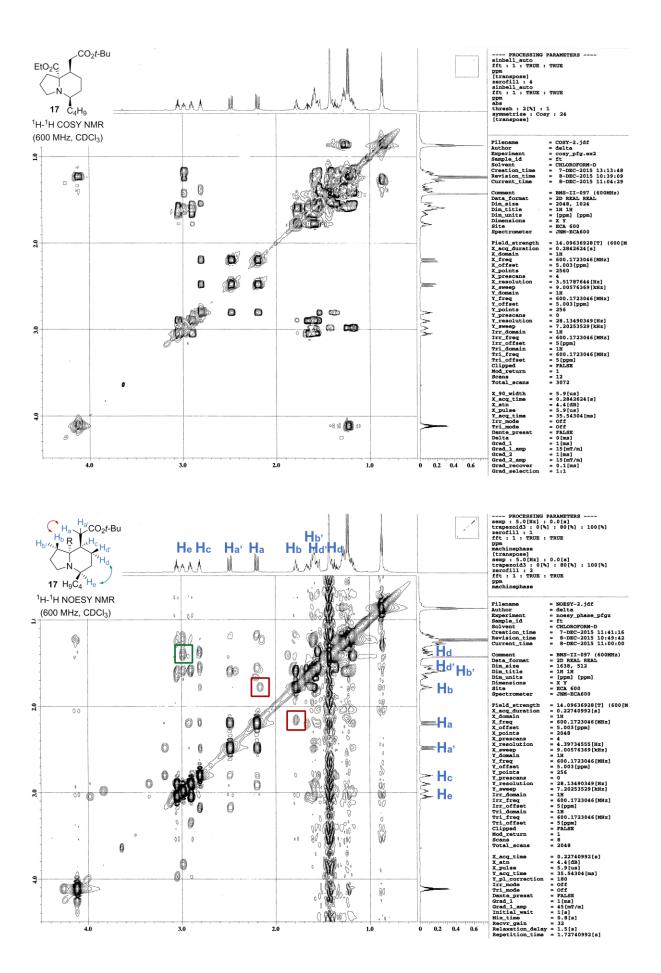


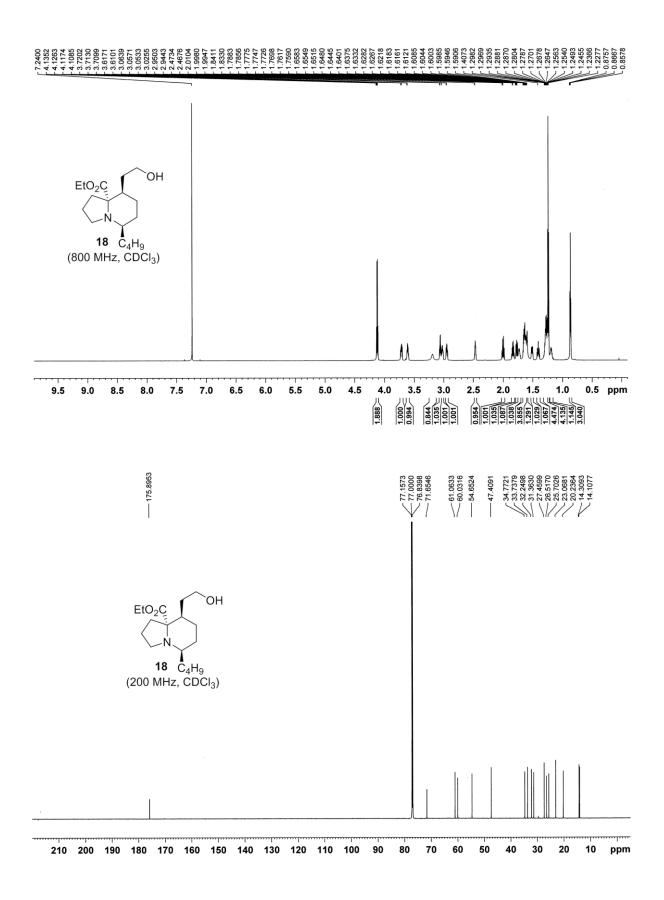

Table 1 (entry 10, NaHMDS (3 equiv), -78 °C, 1 h)

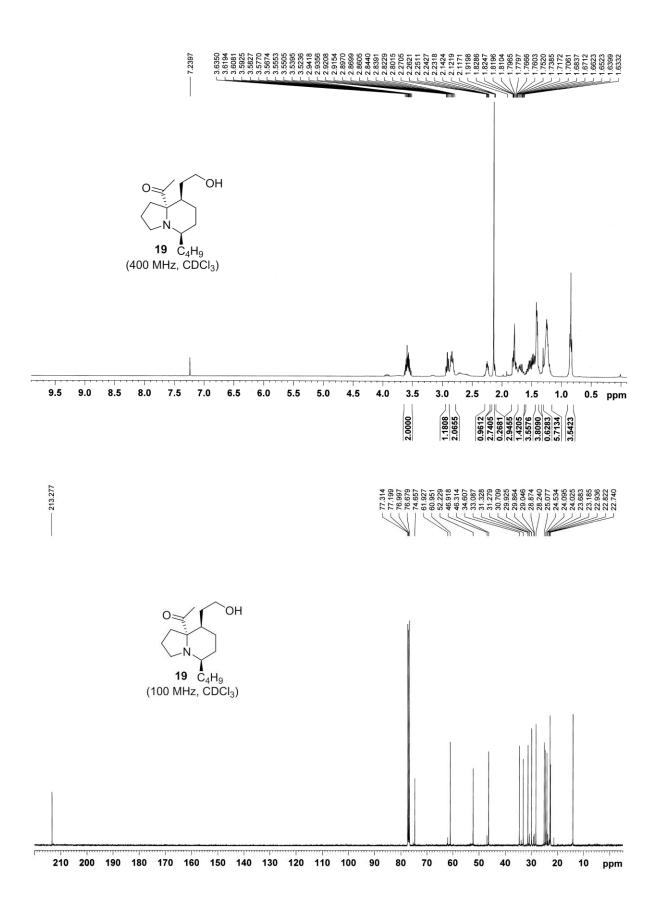


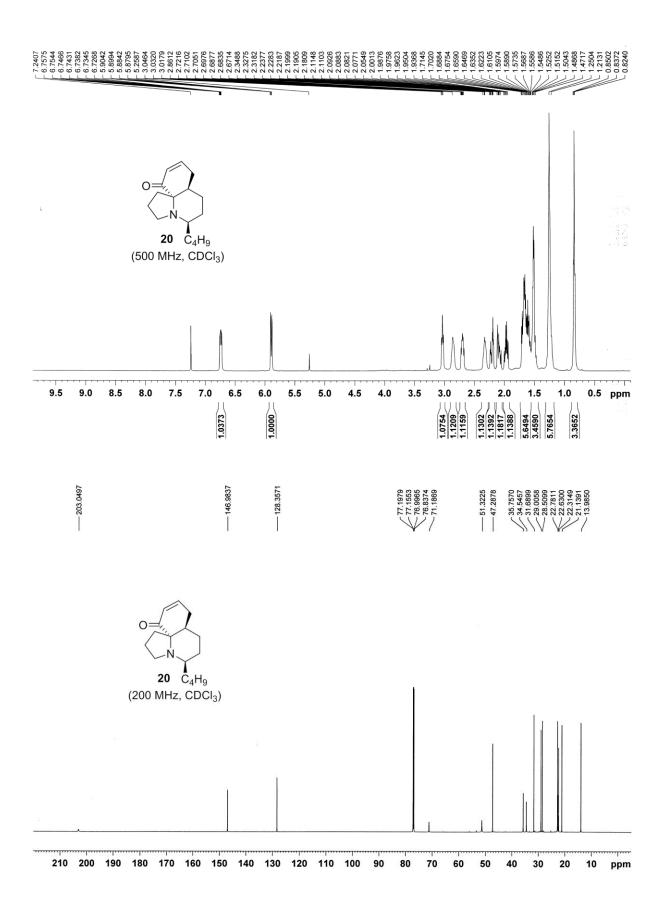

E. Copies of spectra

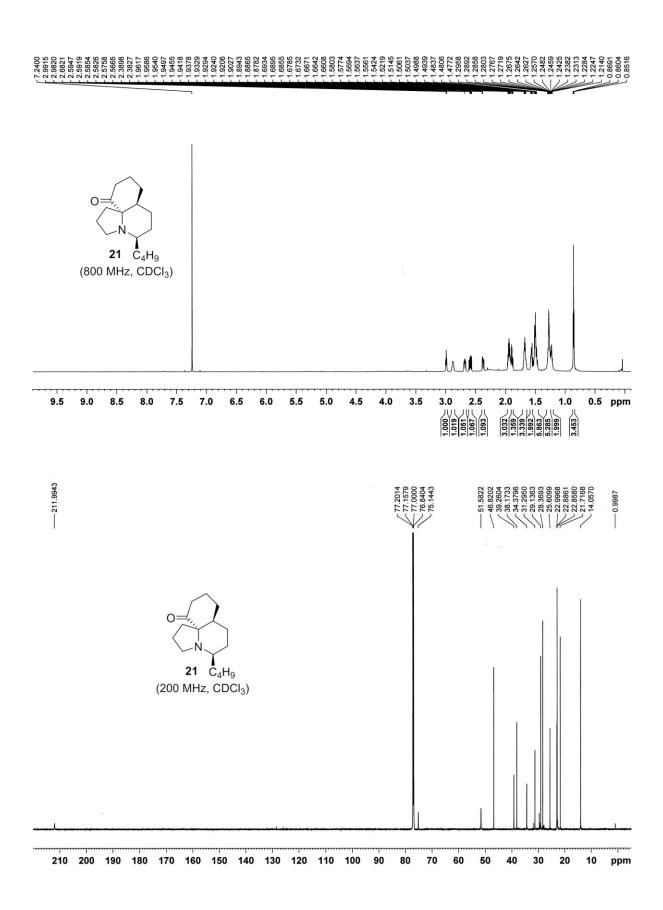


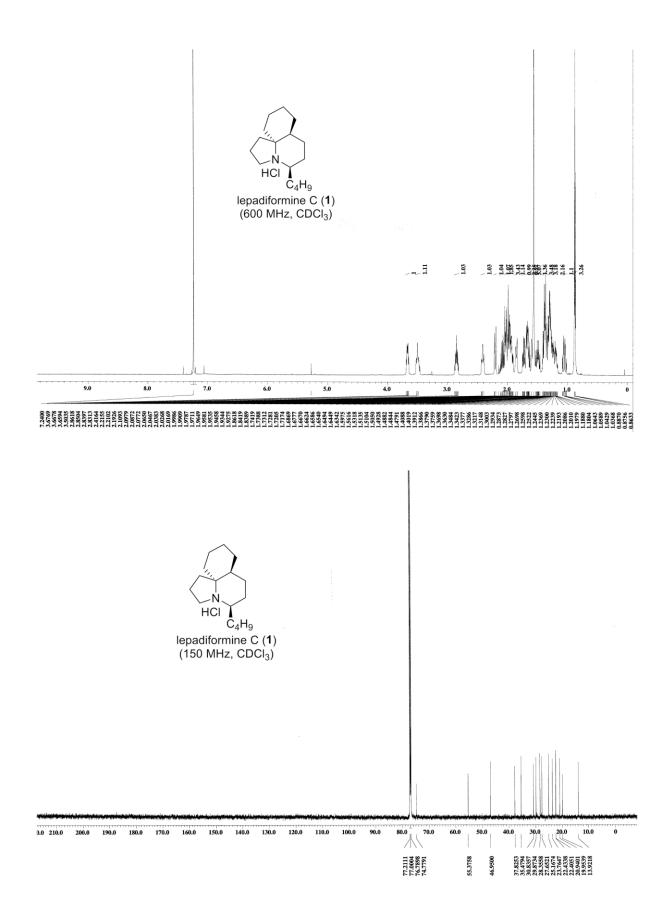












S31

