Pyrimidine-Based Inhibitors of Dynamin I GTPase Activity: Inhibition of Dynamin I GTPase's PH Domain

Luke R. Odell, Mohammed K. Abdel-Hamid, Timothy A. Hill, Ngoc Chau, Kelly A. Young, Fiona M Deane, Jennette A. Sakoff, Sofia Andersson, James A. Daniel, Phillip J. Robinson, and Adam McCluskey

Electronic Supporting Information

Molecular Modelling Images

Figure S1

Figure S2

Table S1. Inhibition dynI GTPase activity by chloroaminopyrimidines 10a – 26b.

Table S2 – CEREP ExpresS Profile

Experimental Details for aminopyrimidine synthesis

¹H and ¹³C NMR spectra.

Figure S1. Ribbon representation of dynI PH domain showing potential small-molecule binding sites as colour coded spheres; pink (site 1), green (site 2) and brown (site 3). The predicted binding clusters for the docked **1** poses are rendered in line representation. Site 2 shows major clustering of docked poses (~ 96 %) followed by site 1 (3%) and site 3 (0.7%).

Figure S2. A representation of the predicted binding pose of 42 (stick, colour coded by atom type) within the Site-2 binding site of dynI PH domain (selected residues and backbone are shown and labelled). Surface representation; red: exposed, green: cavity. The alkyl side chain of 42 is pointed towards a hydrophobic grove while the aminopyrimidine moiety projects towards the hydrophilic region of the binding site. Potential hydrogen bond interactions are shown as dashed lines.

 $\label{eq:Table S1.} \textbf{Inhibition dynI GTP} as activity by chloroaminopyrimidines \ 10a-26b.$

	R	Dyn I IC ₅₀ (μM)		R	Dyn I IC ₅₀ (μM)
10a	NHCH ₂ CH ₃	_ <i>a</i>	10b	NHCH ₂ CH ₃	-
11a	NHCH ₂ CH ₂ CH ₃	-	11b	NHCH ₂ CH ₂ CH ₃	-
12a	NHCH ₂ (CH ₂) ₂ CH ₃	-	12b	NHCH ₂ (CH ₂) ₂ CH ₃	-
13a	NHCH ₂ (CH ₂) ₄ CH ₃	-	13b	NHCH ₂ (CH ₂) ₄ CH ₃	-
14a	NHCH ₂ (CH ₂) ₆ CH ₃	-	14b	NHCH ₂ (CH ₂) ₆ CH ₃	-
15a	NHCH ₂ (CH ₂) ₈ CH ₃	-	15b	NHCH ₂ (CH ₂) ₈ CH ₃	-
16a	NHCH ₂ (CH ₂) ₁₂ CH ₃	>>300	16b	NHCH ₂ (CH ₂) ₁₂ CH ₃	-
16a	NHCH(CH ₃)CH ₂ CH ₃	-	17b	NHCH(CH ₃)CH ₂ CH ₃	-
18a	Page N	-	18b	Z _t N	-
19a	ès. N	-	19b	rest. N	-
20a	ÿ ^s N OCH ₃		20b	KN OCH3	
21a	32 ₆ N	-	21b	P. N	-
22a	N(CH ₃) ₂	-	22b	N(CH ₃) ₂	-
23a	NHCH ₂ CH ₂ CH ₂ N(CH ₃) ₂	327 ± 14.0	23b	NHCH ₂ CH ₂ CH ₂ N(CH ₃) ₂	264 ± 40.8
24a	NHCH ₂ CH ₂ NH ₂	-	24b	NHCH ₂ CH ₂ NH ₂	-
25a	NHCH ₂ CH ₂ NHBoc	-	25b	NHCH ₂ CH ₂ NHBoc	-
26a	-{	-	26b	-\$-N\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-

^a no activity at 300 μM drug concentration

Table S2. CEREP ExpresS Panel Screening of 1 at 10 μM drug concentration.

Assay		% Inhibition of Control Specifi Binding	c Reference Compound	IC ₅₀ Ref (nM)	K _i Ref (nM)
Adenosine	A_1^a	3	DPCPX	0.75	0.47
	$\mathbf{A_{2A}}^{a}$	-17	NECA	19	16
	${\rm A_3}^a$	-9	IB-MECA	0.38	0.23
Adrenergic	alpha 1 ^b	10	prazosin	0.23	0.06
	alpha 2 ^b	35	yohimbine	0.56	24
	-	75			
	beta 1 (h) ^c	19	atenolol	180	130
	beta 2 (h) ^c		ICI 118551	0.41	0.14
Angiotensin-II	AT1 (h) a	6	saralasin	1.0	0.51
GABA	BZD (central) ^c	-26	diazepam	11	8.8
Bradykinin	B2 (h) ^c	-11	NPC 567	11	5.5
		31			
Cannaboid	CB1 (h)°		CP 55940	0.28	0.24
Cholecystokinin	CCK1 (CCKA) (h) ^c	86	CCK-8s	0.095	0.071
Oopamine	D1 (h) ^a	80	SCH 23390	0.16	0.063
т		99			
	D2S (h) ^a	14	(+)-butaclamol	0.81	0.27
Endothelin		14	14	0.040	0.020
GABA (non-selecti adioligand)	ive) (agonist	-4	-4	-4	28
GAL2 (h) ^c		31	31	31	0.57
XCR2 (IL-8B) (h)	, c	48	IL-8	0.046	0.022
		-2			
CCR1 (h) ^c		102	MIP-1 alpha	0.035	0.024
H1 (h) ^a		102	pyrilamine	1.9	0.71
H2 (h) a		106	cimetidine	500	490
ЛС4 (h) ^c		96	NDP-alpha -MSH	0.16	0.14
		42			
MT1 (ML1A) (h) ^c		91	melatonin	0.53	0.43
11 (h) ^a			pirenzepine	27	24
12 (h) a		83	methoctramine	21	15
M3 (h) ^a		104	4-DAMP	0.31	0.22
IK2 (h) c		93	[Nleu10]-NKA (4-10)	3.6	2.0
NK3 (h) a		2	SB 222200	9.3	5.0
1 (h) ^c		50	NPY	0.076	0.054
72 (h) ^c		40	NPY	0.071	0.029
ITS1 (NT1) (h) ^c		62	neurotensin	0.20	0.17
elta 2 (DOP) (h) ^c		46	DPDPE	1.2	0.69
appa (KOP) ^c		97	U 50488	0.68	0.45
nu (MOP) (h) c		50	DAMGO	0.90	0.37
NOP (ORL1) (h) c		31	nociceptin	0.42	0.14
EP4 (h) ^c		33	PGE2	0.30	0.11

5-HT1A (h) ^c	87	8-OH-DPAT	0.47	0.29
5-HT1B ^a	87	serotonin	45	27
5-HT2A (h) ^c	93	ketanserin	0.52	0.28
5-HT2B (h) ^c	94	(±)DOI	3.2	1.6
5-HT3 (h) ^a	38	MDL 72222	5.8	4.1
5-HT5a (h) ^c	99	serotonin	260	130
5-HT6 (h) ^c	91	serotonin	130	61
5-HT7 (h) ^c	98	serotonin	0.47	0.17
sst (non-selective) (agonist radioligand)	34	somatostatin-14	0.19	0.12
VPAC1 (VIP1) ^c	-6	VIP	0.096	0.053
$V1a(h)^c$	18	[d(CH2)51,Tyr(Me)2]-AVP	1.3	0.79
Ca2+ channel (L, verapamil site)				
(phenylalkylamine) ^a	57	D 600	21	11
KV channel ^a	7	alpha -dendrotoxin	0.65	0.52
SKCa channel ^a	1	apamin	0.021	0.011
Na+ channel (site 2) ^a	84	veratridine	7200	6500
Cl- channel (GABA-gated) ^a	0	picrotoxinin	360	300
norepinephrine transporter (h) ^a	96	protriptyline	2.9	2.1
dopamine transporter (h) ^a	105	BTCP	12	6.2
5-HT transporter (h) ^a	86	imipramine	1.6	0.72

^a antagonist radio-ligand; ^b non-selective, antagonist radio-ligand

Chemistry

(4-Chloro-6-methylpyrimidin-2-yl)ethylamine (10a) and (2-Chloro-6-methylpyrimidin-4-yl)ethylamine (10b) S1

Synthesized using the general procedure as for **4a,b** from 2,4-dichloro-6-methylpyrimidine and propylamine. The obtained residue was purified by flash chromatography using 1:9 ethyl acetate:hexanes to yield the corresponding isomers.

(10a) Yield 254 mg, 35%, mp 90-91°C; ¹H NMR (CDCl₃): δ 1.72 (t, 3H, J = 7.2 Hz), 2.25

 $(s, 3H), 3.42 (q, 2H, J = 7.1 Hz), 5.46 (br s, 1H), 6.37 (s, 1H); {}^{13}C NMR (CDCl_3): \delta 14.2, 23.1, 35.6, 108.2, 160.5, 161.7, 168.8.$

(10b) Yield 397 mg, 54%, mp 73-74°C; ¹H NMR (CDCl₃): δ 1.10 (t, 3H, J = 7.1 Hz), 2.18 (s, 3H), 3.24 (p, 2H, J = 7.0 Hz), 5.85 (br s, 1H), 5.99 (s, 1H); ¹³C NMR (CDCl₃): δ 13.6, 22.9, 35.6, 99.5 (br), 159.4, 163.5, 165.2 (br).

(4-Chloro-6-methylpyrimidin-2-yl)propylamine (11a) and (2-Chloro-6-methylpyrimidin-4-yl)propylamine (11b) S2

Synthesized using the general procedure as for **4a,b** from 2,4-dichloro-6-methylpyrimidine and propylamine. Purified by flash chromatography EtOAc:Triethylamine (95:5).

HN Cl (11a) Yield 136 mg, 25% pale yellow oil; ¹H NMR (CDCl₃): δ 0.96 (t, 3H, J = 7.4 Hz), 1.62 (m, 2H), 2.28 (s, 3H), 3.37 (q, 2H, J = 7.0 Hz), 5.19 (br s, 1H), 6.41 (s, 1H); ¹³C NMR (CDCl₃): δ 10.7, 22.2, 23.2, 42.7, 108.4, 160.5, 161.8, 168.9.

(11b) Yield 176 mg, 31% pale yellow oil; ¹H NMR (CDCl₃): δ 0.82 (t, 3H, J = 7.4 Hz), 1.48 (m, 2H), 2.31 (s, 3H), 3.08 (q, 2H, J = 7.1 Hz), 5.72 (br s, 1H), 6.10 (s, 1H); ¹³C NMR (CDCl₃): δ 11.8, 22.8, 26.1, 43.7, 97.9 (br), 159.9, 164.0, 168.4.

(4-Chloro-6-methylpyrimidin-2-yl)butylamine (12a) and (2-Chloro-6-methylpyrimidin-4-yl)butylamine (12b) s3

Synthesized using the general procedure as for **4a,b** from 2,4-dichloro-6-methylpyrimidine and butylamine. Purified by flash chromatography EtOAc:Triethylamine (95:5).

(12a) Yield 326 mg, 38%, mp 42-43°C; ¹H NMR (CDCl₃): δ 0.88 (t, 3H, J = 7.0 Hz), 1.35 (m, 2H), 1.52 (m, 2H), 2.24 (s, 3H), 3.38 (q, 2H, J = 7.1 Hz), 5.47 (br s, 1H), 6.35 (s, 1H); ¹³C NMR (CDCl₃): δ 13.0, 19.4, 23.1, 31.1, 40.5, 108.2, 160.5, 161.8, 168.8.

(12b) Yield 507 mg, 59%, mp 56-57°C; 1 H NMR (CDCl₃): δ 0.80 (t, 3H, J = 7.0 Hz), 1.25 (m, 2H), 1.45 (m, 2H), 2.17 (s, 3H), 3.17 (q, 2H, J = 7.1 Hz), 5.81 (br s, 1H), 5.98 (s, 1H); 13 C NMR (CDCl₃): δ 12.9, 19.2, 22.9, 30.5, 40.6, 98.9 (br), 159.4, 163.7, 166.6 (br).

(4-Chloro-6-methylpyrimidin-2-yl)hexylamine (13a) and (2-Chloro-6-methylpyrimidin-4-yl)hexylamine (13b) S2

Synthesized using the general procedure as for **4a**,**b** from 2,4-dichloro-6-methylpyrimidine and hexylamine. Purified by flash chromatography EtOAc:Triethylamine (95:5).

(13a) Yield 230 mg, 23%, mp 36-37°C; 1 H NMR (CDCl₃): δ 0.85 (t, 3H, J = 7.2 Hz),

1.23 (m, 6H), 1.55 (p, 2H, J = 7.3 Hz), 2.25 (s, 3H), 3.37 (q, 2H, J = 7 Hz), 5.42 (br s, 1H), 6.37 (s, 1H); 13 C NMR (CDCl₃): δ 13.3, 21.9, 23.1, 25.8, 28.9, 30.9, 40.8, 108.1, 160.5, 161.8, 168.8.

(13b) Yield 246 mg, 25% pale yellow oil. 1 H NMR (CDCl₃): δ 0.73 (t, 3H, J = 6.7 Hz), 1.18 (m, 6H), 1.45 (m, 2H), 2.14 (s, 3H), 3.17 (q, 2H, J = 6.5 Hz), 5.91 (br s, 1H), 5.97 (s, 1H); 13 C NMR (CDCl₃): δ 13.3, 21.9, 22.8, 25.7, 28.4, 30.7, 40.9 (br), 99.4 (br), 159.4, 163.7, 166.5 (br).

(4-Chloro-6-methylpyrimidin-2-yl)octylamine (14a) and (2-Chloro-6-methylpyrimidin-4-yl)octylamine (14b) ^{S4}

Synthesized using the general procedure as for **4a**,**b** from 2,4-dichloro-6-methylpyrimidine and octylamine. Purified by flash chromatography EtOAc:Triethylamine (95:5).

(14a) Yield 266 mg, 22% mp 37-38°C; ¹H NMR (CDCl₃): δ 0.85 (t, 3H, J = 7.3 Hz),

1.48 (m, 10H), 1.55 (m, 2H), 2.23 (s, 3H), 3.37 (q, 2H, J = 7.0 Hz), 5.38 (br s, 1H), 6.37 (s, 1H); ¹³C NMR (CDCl₃): δ 13.3, 21.9, 26.2, 28.6, 28.8, 28.9, 29.0, 31.2, 40.8, 108.1, 160.5, 161.8, 168.8.

(14b) Yield 176 mg, 31%, mp 36-38°C; 1 H NMR (CDCl₃): $\delta\delta$ 0.77 (t, 3H, J = 7.0 Hz), 1.15 (m, 10H), 1.48 (m, 2H), 2.19 (s, 3H), 3.17 (q, 2H, J = 6.5 Hz), 5.81 (br s, 1H), 5.99 (s, 1H); 13 C NMR (CDCl₃): δ 13.3, 21.9, 22.9, 26.1, 28.4, 28.7, 28.9, 31.0, 40.9, 99.4 (br), 159.5, 163.7, 166.7 (br).

(4-Chloro-6-methylpyrimidin-2-yl)decylamine (15a) and (2-Chloro-6-methylpyrimidin-4-yl)decylamine (15b)

Synthesized using the general procedure as for **4a,b** from 2,4-dichloro-6-methylpyrimidine and decylamine. Purified by flash chromatography EtOAc:Triethylamine (95:5).

(15a) Yield 266 mg, 32%, mp 46-48°C; ¹H NMR (CDCl₃): δ 0.85 (t, 3H, J = 7.3 Hz),

1.48 (m, 14H), 1.53 (m, 2H), 2.21 (s, 3H), 3.37 (q, 2H, J = 6.8 Hz), 5.42 (br s, 1H), 6.37 (s, 1H); 13 C NMR (CDCl₃): δ 13.3, 22.0, 28.6, 28.7, 28.8 (2 x C), 28.9 (2 x C), 31.2, 40.8, 108.3, 160.5, 161.8, 168.8; HRMS calculated for $C_{15}H_{26}CIN_3$, 283.1815; found 283.1820.

(15b) Yield 231 mg, 28%, mp 29-31°C; 1 H NMR (CDCl₃): δ 0.77 (t, 3H, J = 6.8 Hz), 1.28 (m, 14H), 1.44 (m, 2H), 2.19 (s, 3H), 3.17 (q, 2H, J = 6.6 Hz), 5.75 (br s, 1H), 6.08 (s, 1H); 13 C NMR (CDCl₃): δ 13.3, 21.9, 22.9, 28.6, 28.7, 28.8 (2 x C), 28.9 (2 x C), 31.0, 40.9, 98.8 (br), 161.1, 163.7, 165.8 (br); HRMS calculated for $C_{15}H_{26}$ ClN₃, 283.1815; found 283.1818.

(4-Chloro-6-methylpyrimidin-2-yl)tetradecylamine (16a) and (2-Chloro-6-methylpyrimidin-4-yl)tetradecylamine (16b)

Synthesized using the general procedure as for **4a**,**b** from 2,4-dichloro-6-methylpyrimidine and tetradecylamine. Purified by flash chromatography EtOAc:Triethylamine (95:5).

(16a) Yield 801 mg, 48%, mp 61-63°C; ¹H NMR (CDCl₃): δ 0.87 (t, 3H, J = 6.4 Hz), 1.42 (s, 22H), 1.56 (m, 2H), 2.26 (s, 3H), 3.38 (q, 2H, J = 6.9 Hz), 5.33 (br s, 1H), 6.38 (s, 1H); ¹³C NMR (CDCl₃): δ 13.3, 22.1, 23.4, 26.3, 28.7, 28.9 (3 x C), 29.0 (3 x C), 29.1 (2 x C's), 31.3, 40.9, 108.2, 160.5, 161.8, 168.7; HRMS calculated for C₁₉H₃₄³⁵ClN₃, 339.2441; found 339.2439.

(16b) Yield 724 mg, 44%, mp 102-104°C; 1 H NMR (CDCl₃): δ 0.85 (t, 3H, J = 6.4 Hz), 1.22 (s, 22H), 1.62 (m, 2H), 2.43 (s, 3H), 3.42 (q, 2H, J = 6.9 Hz), 6.76 (br s, 1H), 7.59 (br s, 1H); 13 C NMR (CDCl₃): δ 13.3, 19.4 (br), 21.8, 26.2, 28.1, 28.5, 28.6, 28.8 (2 x C), 28.9 (3 x C), 31.3, 41.3, 102.5 (br), 153.0 (br.), 155.6 (br), 162.4; HRMS calculated for $C_{19}H_{34}^{35}ClN_3$, 339.2441; found 339.2444.

sec-Butyl-(4-chloro-6-methylpyrimidin-2-yl)amine (17a) and sec-Butyl-(2-chloro-6-methylpyrimidin-4-yl)amine (17b)

Synthesized using the general procedure as for **4a**,**b** from 2,4-dichloro-6-methylpyrimidine and sec-butylamine. Purified by flash chromatography EtOAc:Triethylamine (95:5).

(17a) Yield 338 mg, 39% pale yellow oil. ¹H NMR (CDCl₃): δ 0.88 (t, 3H, J = 7.4 Hz), 1.13 (d, 3H, J = 6.5 Hz), 1.52 (m, 2H), 2.23 (s, 3H), 3.98 (m, 1H), 5.07 (br s, 1H),

 $6.35~(s,1H); \ ^{13}C~NMR~(CDCl_3): \delta~9.5, 19.5, 23.1, 29.0, 47.6, 108.2, 160.5, 161.3, 168.8; Analysed for:~C, 54.14;~H, 7.07;~Cl, 17.75;~N, 21.04, found~C, 54.23;~H, 7.15;~Cl, 17.44;~N, 20.74.$

(17b) Yield 508 mg, 58%, mp 91-93°C; ¹H NMR (CDCl₃): δ 0.74 (t, 3H, J = 7.4 Hz), 1.01 (d, 3H, J = 6.5 Hz), 1.39 (m, 2H), 2.10 (s, 3H), 3.61 (br s, 1H), 5.28 (br s, 1H), 5.94 (s, 1H); ¹³C NMR (CDCl₃): δ 9.4, 19.2, 22.9, 28.7, 47.7 (br), 99.9 (br), 159.5, 163.1, 166.4 (br); Analysed for: C, 54.14; H, 7.07; Cl, 17.75; N, 21.04, found C, 54.19; H, 7.25; Cl, 17.49; N, 20.86.

(4-Chloro-6-methylpyrimidin-2-yl)cyclohexylamine (18a) and (2-Chloro-6-methylpyrimidin-4-yl)cyclohexylamine (18b) S2

Synthesized using the general procedure as for **4a,b** from 2,4-dichloro-6-methylpyrimidine and cyclohexylamine. Purified by flash chromatography EtOAc:Triethylamine (95:5).

(18a) Yield 326 mg, 42% pale yellow oil. ¹H NMR (CDCl₃): δ 1.18 (m, 3H), 1.37 (m, 2H), 1.57 (m, 1H), 1.67 (m, 2H), 1.96 (m, 2H), 2.25 (s, 3H), 3.81 (m, 1H), 5.09 (br s,

1H), 6.36 (s, 1H); 13 C NMR (CDCl₃): δ 23.9, 24.7, 25.7, 33.0, 49.4, 108.6, 161.1, 161.3, 169.2; HRMS calculated for $C_{11}H_{16}ClN_3$, 225.1033; found 225.1021.

(18b) yield 386 mg, 49% pale yellow oil. 1 H NMR (CDCl₃): δ 1.36 (m, 3H), 1.37 (m, 2H), 1.62 (m, 1H), 1.72 (m, 2H), 1.96 (m, 2H), 2.31 (s, 3H), 3.51 (m, 1H), 5.32 (d, 1H), 6.08 (s, 1H); 13 C NMR (CDCl₃): δ 23.7, 24.5, 25.4, 32.7, 60.3, 100.1 (br), 160.1, 162.9, 166.4; HRMS calculated for $C_{11}H_{16}$ ClN₃, 225.1033; found 225.1030.

N-benzyl-4-chloro-6-methylpyrimidin-2-amine (19a) and N-benzyl-2-chloro-6-methylpyrimidin-4-amine (19b) S2

Synthesized using the general procedure as for **4a**,**b** from 2,4-dichloro-6-methylpyrimidine and benzylamine. Purified by flash chromatography EtOAc:Triethylamine (95:5).

(19a) Yield 142 mg, 19%, mp 136-138°C; 1 H NMR (CDCl₃): $\delta\delta$ 2.29 (s, 3H), 4.64 (d, 2H), 5.48 (br s, 1H), 6.48 (s, 1H), 7.31 (m, 5H); 13 C NMR (CDCl₃): δ 23.2,

44.9, 109.0, 126.7, 126.9, 128.0, 139.2, 160.7, 161.6, 169.0.

(**19b**) Yield 340 mg, 49%, mp 78-81°C; ¹H NMR (CDCl₃): δ 2.25 (s, 3H), 4.51 (d, 2H), 6.06 (s, 1H), 6.15 (br s, 1H), 7.29 (m, 5H); ¹³C NMR (CDCl₃): δ 23.1, 44.9, 99.9 (br), 126.7, 127.1, 128.3, 136.8, 159.6, 163.8, 171.1 (br).

4-Chloro-N-(4-methoxybenzyl)-6-methylpyrimidin-2-amine (20a) and 2-Chloro-N-(4-methoxybenzyl)-6-methylpyrimidin-4-amine (20b)

Synthesized using the general procedure as for **4a,b** from 2,4-dichloro-6-methylpyrimidine and 4-methoxybenzylamine. Purified by flash chromatography EtOAc:Triethylamine (95:5).

(19a) Yield 142 mg, 23%, mp 145-147°C; 1 H NMR (CDCl₃): δ 2.27 (s, 3H), 3.72 (s, 3H), 4.54 (d, 2H), 6.28 (br s, 1H), 6.58 (s, 1H),

 $6.91\ (d,2H),\, 7.11\ (d,2H);\ ^{13}C\ NMR\ (CDCl_3):\ \delta\ 22.8,\, 45.3,\, 55.7,\, 101.7,\, 118.9,\, 128.4,\, 130.2,\, 154.1,\, 160.7,\, 162.3,\, 170.4;\, HRMS\ calculated\ for\ C_{13}H_{14}ClN_3O,\, 263.0825;\, found\ 263.0833.$

(19b) Yield 340 mg, 48%, mp 101-103°C; ${}^{1}H$ NMR (CDCl₃): δ 2.25 (s, 3H), 3.71 (s, 3H), 4.31 (d, 2H), 6.36 (s, 1H), 6.15 (br s, 1H), 6.90 (d, 2H), 7.13 (d, 2H); ${}^{13}C$ NMR (CDCl₃): δ 23.2, 44.9, 56.1, 100.9 (br), 119.1, 127.7, 128.1, 158.3, 160.8, 161.6, 171.1 (br); HRMS calculated for $C_{13}H_{14}ClN_{3}O$, 263.0825; found 263.0836.

$(4-Chloro-6-methylpyrimidin-2-yl)(1-cyclopropylmethylpropyl) amine (21a) \ and \ (2-Chloro-6-methylpyrimidin-4-yl) cyclopropylmethylpropylamine (21b) \ ^{S5}$

Synthesized using the general procedure as for **4a,b** from 2,4-dichloro-6-methylpyrimidine and cyclopropylmethylpropylamine. Purified by flash chromatography EtOAc:Triethylamine (95:5).

(21a) Yield 387 mg, 30% pale yellow oil. ¹H NMR (CDCl₃): δ 0.28 (q, 2H, J = 5.0 Hz), 0.46 (q, 2H, J = 6.5 Hz), 0.90 (t, 3H, J = 7.4 Hz), 1.06 (m, 1H), 1.62 (m, 2H),

2.25 (s, 3H), 3.48 (d, 2H, J = 6.7 Hz), 3.58 (t, 2H, J = 7.5 Hz), 6.30 (s, 1H); $^{13}\text{C NMR (CDCl}_3)$: δ 3.5, 9.9, 11.4, 20.8, 24.0, 49.3, 51.8, 107.3, 160.7, 161.7, 168.7.

(21b) Yield 690 mg, 53% pale yellow oil. 1 H NMR (CDCl₃): δ 0.21 (q, 2H, J = 5.0 Hz), 0.46 (q, 2H, J = 6.5 Hz), 0.87 (t, 3H, J = 7.4 Hz), 0.97 (m, 1H), 1.56 (m, 2H), 2.29 (s, 3H), 3.34 (d, 2H, J = 6.7 Hz), 3.40 (t, 2H, J = 7.5 Hz), 6.10 (s, 1H); 13 C NMR (CDCl₃): δ 3.6, 9.4, 11.2, 20.3, 23.8, 49.9, 52.8, 99.4, 160.0, 162.8, 166.7.

(4-Chloro-6-methylpyrimidin-2-yl)-dimethylamine (22a) and (2-Chloro-6-methylpyrimidin-4-yl)dimethylamine (22b) S6

Synthesized using the general procedure as for **4a**,**b** from 2,4-dichloro-6-methylpyrimidine and *N*,*N*-dimethylamine. Purified by flash chromatography EtOAc:Triethylamine (95:5).

(22a) yield 187 mg, 29% pale yellow oil. ¹H NMR (CDCl₃): δ 2.25 (s, 3H), 3.17 (s, 6H), 6.34 (s, 1H); ¹³C NMR (CDCl₃): δ 23.3, 36.3, 106.8, 160.2, 161.6, 168.3.

(22b) yield 378 mg, 59% pale yellow oil. ¹H NMR (CDCl₃): δ 2.25 (s, 3H), 3.02 (s, 6H), 6.09 (s, 1H); ¹³C NMR (CDCl₃): δ 23.2, 36.6, 98.7, 159.4, 163.2, 166.4.

 N^{I} -(4-Chloro-6-methylpyrimidin-2-yl)- N^{3} , N^{3} -dimethylpropane-1,3-diamine (23a) and 2-Chloro-4-(2-dimethylaminopropylamine)-6-methylpyrimidine (23b) S^{7}

Synthesized using the general procedure as for 4a,b from 2,4-dichloro-6-methylpyrimidine and N^I , N^I -dimethylpropane-1,3-diamine. Purified by flash chromatography EtOAc:Triethylamine (95:5).

(23a) yield 141 mg, 17% pale yellow oil. ¹H NMR (CDCl₃): δ 1.74 (m,

2H), 2.25 (s, 6H), 2.35 (s, 3H), 2.37 (t, 2H, J = 6.2 Hz), 3.40 (q, 2H, J = 5.9 Hz), 5.84 (br s, 1H), 6.37 (s, 1H); 13 C NMR (CDCl₃): δ 26.1, 29.8, 39.9, 44.8, 57.2, 108.2, 160.5, 161.8, 168.8.

(23b) yield 253 mg, 30% pale yellow oil. 1 H NMR (CDCl₃): δ 1.57 (m, 2H), 1.92 (s, 3H), 2.12 (s, 6H), 2.36 (m, 2H), 3.12 (br m, 2H), 5.84 (br s, 1H), 5.95 (s, 1H); 13 C NMR (CDCl₃): δ 22.9, 24.4, 38.6 (br), 43.6, 56.1, 101.2 (br), 159.1, 163.4, 165.8 (br).

N'-(4-Chloro-6-methylpyrimidin-2-yl)-ethane-1,2-diamine (24a) and N'-(2-chloro-6-methylpyrimidin-4-yl)ethane-1,2-diamine (24b)

Synthesized using the general procedure as for **4a,b** from 2,4-dichloro-6-methylpyrimidine and ethylenediamine. Purified by flash chromatography EtOAc:Triethylamine (95:5).

(24a) Yield 106 mg, 88%, mp >300°C; ${}^{1}H$ NMR (CDCl₃): δ 1.82 (br s, 2H),

2.21 (s, 3H), 2.83 (t, 2H, J = 5.8 Hz), 3.42 (q, 2H, J = 5.8 Hz), 5.98 (br s, 1H), 6.35 (s, 1H); ¹³C NMR (CDCl₃): δ 23.1, 40.7, 43.5, 108.9, 160.4, 161.9, 168.9; HRMS calculated for $C_7H_{11}ClN_4$, 186.0672; found 186.0677.

(24b) Yield 98 mg, 81%, mp 260-264°C; ¹H NMR (CD₃OD): δ 2.45 (s, 3H), 3.23 (m, 2H), 3.89 (t, 2H, J = 6.1 Hz), 6.75 (s, 1H); ¹³C NMR (CD₃OD): δ 17.3, 37.8, 38.3, 103.3 (br), 152.6, 156.7, 163.7; HRMS calculated for C₇H₁₁ClN₄, 186.0672; found 186.0691.

[2-(4-Chloro-6-methylpyrimidin-2-ylamino)ethyl]carbamic acid *tert*-butyl ester (25a) and [2-(2-chloro-6-methylpyrimidin-4-ylamino)ethyl]carbamic acid *tert*-butyl ester (25b)

Synthesized using the general procedure as for **4a,b** from 2,4-dichloro-6-methylpyrimidine and *N*-Boc-*N*-ethylenediamine. Purified by flash chromatography EtOAc:Triethylamine (95:5).

(25a) Yield 377 mg, 42% mp 135-138°C; ¹H NMR (CDCl₃): δ 1.42 (s, 9H),

2.25 (s, 3H), 3.34 (q, 2H, J = 5.9 Hz), 3.54 (q, 2H, J = 5.8 Hz), 5.12 (br s, 1H), 5.69 (br s, 1H), 6.43 (s, 1H). ¹³C NMR (CDCl₃): δ 23.1, 27.8, 40.3, 41.0, 78.8, 108.9, 155.6, 160.6, 161.8, 168.9; HRMS calculated for $C_{12}H_{19}ClN_4O_2$, 286.1197; found 286.1211.

(25b) Yield 502 mg, 53% mp 116-118°C; ${}^{1}H$ NMR (CDCl₃): δ 1.21 (s, 9H), 2.06 (s, 3H), 3.17 (m, 2H), 3.34 (m, 2H), 5.54 (br s, 1H), 5.97 (s, 1H), 6.50 (br s, 1H); ${}^{13}C$ NMR (CDCl₃): δ 22.1, 27.5, 39.5, 40.9, 78.7, 102.3 (br), 156.1, 159.2, 163.7, 165.9; HRMS calculated for $C_{12}H_{19}ClN_4O_2$, 286.1197; found 286.1208.

4-Chloro-6-methyl-2-(4-methylpiperazin-1-yl)pyrimidine (26a) and 2-chloro-5-methyl-4-(4-methylpiperazin-1-yl)pyrimidine (26b)

Synthesized using the general procedure as for **4a,b** from 2,4-dichloro-6-methylpyrimidine and *N*-methylpiperazine. Purified by flash chromatography EtOAc:Triethylamine (95:5).

(26a) Yield 278 mg, 41% mp 145-148°C; ¹H NMR (CDCl₃): δ 2.19 (s, 3H), 2.33 (s, 3H), 3.35 (t, 4H), 3.75 (t, 2H), 6.27 (s, 1H). ¹³C NMR (CDCl₃): δ 28.8, 43.7, 46.1, 54.8,

108.2, 160.9, 161.3, 169.0; HRMS calculated for $C_{10}H_{15}ClN_4$, 226.0985; found 226.1001.

(26b) Yield 312 mg, 51% mp 118-119°C; 1 H NMR (CDCl₃): δ 2.19 (s, 3H), 2.32 (s, 3H), 3.35 (t, 4H), 3.54 (t, 2H), 6.13 (s, 1H). 13 C NMR (CDCl₃): δ 23.7, 43.9, 45.9, 54.4, 99.6, 160.2, 163.2, 167.7; HRMS calculated for $C_{10}H_{15}CIN_4$, 226.0985; found 226.0988.

N^2 -(2-(dimethylamino)ethyl)-6-methyl- N^4 -propylpyrimidine-2,4-diamine (27a)

Synthesized using the general procedure as for **5a** from 2-chloro-6-methyl-*N*-propylpyrimidin-4-amine (**10a**) and *N*, *N*-dimethylethylenediamine. The residue was purified by dry column flash chromatography using EtOAc followed by 1:1 CHCl₃:CH₃OH to yield the target compound.

(27a) yield 52 mg, 51% pale yellow oil; ¹H NMR (CDCl₃): δ 0.92 (t, 3H, J = 7.4 Hz), 1.56 (m, 2H), 2.14 (s, 3H), 2.20 (s, 6H), 2.43 (t, 2H, J = 6.3 Hz), 3.19 (q, 2H, J = 6.7 Hz), 3.40 (m, 2H), 4.78 (br s, 1H), 5.21 (br s,

1H), 5.50 (s, 1H); 13 C NMR (CDCl₃): δ 10.8, 22.2, 23.1, 38.4, 42.5, 44.6, 58.0, 91.5 (br), 161.6, 163.3, 165.0; HRMS calculated for $C_{11}H_{21}N_5$, 223.1797; found 223.1790.

N^4 -(2-Dimethylaminoethyl)-6-methyl- N^2 -propylpyrimidine-2,4-diamine (27b)

Synthesized using the general procedure as for **5b** from 4-chloro-6-methyl-*N*-propylpyrimidin-2-amine (**10b**) and *N*,*N*-dimethylethylenediamine. The residue was purified by short column chromatography using EtOAc followed by 1:1 CHCl₃:CH₃OH to yield the target compound.

HN (27b) yield 52 mg, 51% pale yellow oil; ¹H NMR (CDCl₃): δ 0.90 (t, 3H, J = 7.4 Hz), 1.61 (m, 2H), 2.19 (s, 6H), 2.21 (s, 3H), 2.36 (t, 2H, J = 6 Hz), 3.29 (m, 4H), 5.32 (br s, 1H), 5.50 (s, 1H); ¹³C NMR (CDCl₃): δ 10.8, 22.4, 34.9, 37.9, 42.5, 44.4, 57.3, 92.2 (br), 160.5, 161.1, 163.0; HRMS calculated for C₁₁H₂₁N₅, 223.1797; found 223.1806.

N^4 -Butyl- N^2 -(2-dimethylaminoethyl)-6-methylpyrimidine-2,4-diamine (28a)

Synthesized using the general procedure as for **5a** from *N*-butyl-2-chloro-6-methylpyrimidin-4-amine (**11a**) and *N*,*N*-dimethylethylenediamine. The residue was purified by short column chromatography using EtOAc followed by 1:1 CHCl₃:CH₃OH to yield the target compound.

(28a) yield 280 mg, 82% pale yellow oil; ¹H NMR (CDCl₃): δ 0.73 (t, 3H, J = 7.3 Hz), 1.18 (m, 2H), 1.33 (q, 2H, J = 6.6 Hz), 1.96 (s, 3H), 2.04 (s, 6H), 2.27 (t, 2H, J = 6.5 Hz), 3.08 (q, 2H, J = 6.8 Hz), 3.25

(t, 2H, J = 6.4 Hz), 4.13 (br s, 1H), 5.17 (br s, 1H), 5.38 (s, 1H); 13 C NMR (CDCl₃): δ 13.0, 19.3, 22.7, 35.2, 38.2, 40.1, 44.5, 57.8, 91.8 (br), 161.5, 163.1, 164.0 (br); HRMS calculated for $C_{12}H_{23}N_5$, 237.1953; found 237.1959.

N^2 -Butyl- N^4 -(2-dimethylaminoethyl)-6-methylpyrimidine-2,4-diamine (28b)

Synthesized using the general procedure as for **5b** from *N*-butyl-4-chloro-6-methylpyrimidin-2-amine (**11b**) and *N*,*N*-dimethylethylenediamine. The residue was purified by dry column flash chromatography using EtOAc followed by 1:1 CHCl₃:CH₃OH to yield the target compound.

(28b) yield 191 mg, 85% pale yellow oil; ¹H NMR (CDCl₃): δ 0.81 (t, 3H, J = 7.3 Hz), 1.25 (m, 2H),

1.41 (p, 2H, J = 6.7 Hz) 2.02 (s, 3H), 2.11 (s, 6H), 2.35 (t, 2H, J = 6.2 Hz), 3.24 (m, 4H), 4.08 (br s, 1H), 5.06 (br s, 1H), 5.53 (s, 1H); 13 C NMR (CDCl₃): δ 13.1, 19.4, 22.7, 31.4, 37.8, 40.3, 44.5, 57.5, 92.1 (br), 161.5, 163.0, 163.9; HRMS calculated for $C_{12}H_{23}N_5$, 237.1953; found 237.1965.

N^4 -Butyl- N^2 -(2-dimethylaminoethyl)-6-methylpyrimidine-2,4-diamine (29a)

Synthesized using the general procedure as for **5a** from *N*-butyl-2-chloro-6-methylpyrimidin-4-amine (**12a**) and *N*,*N*-dimethylethylenediamine. The residue was purified by dry column flash chromatography using EtOAc followed by 1:1 CHCl₃:CH₃OH to yield the target compound.

(29a) yield 280 mg, 82% pale yellow oil; ¹H NMR (CDCl₃): δ 0.73 (t, 3H, J = 7.3 Hz), 1.18 (m, 2H), 1.33 (q, 2H, J = 6.6 Hz), 1.96 (s, 3H), 2.04 (s, 6H), 2.27 (t, 2H, J = 6.5 Hz), 3.08 (q, 2H, J = 6.8 Hz),

3.25 (t, 2H, J = 6.4 Hz), 4.13 (br s, 1H), 5.17 (br s, 1H), 5.38 (s, 1H); ¹³C NMR (CDCl₃): δ 13.0, 19.3, 22.7, 35.2, 38.2, 40.1, 44.5, 57.8, 91.8 (br), 161.5, 163.1, 164.0 (br); HRMS calculated for $C_{13}H_{25}N_5$, 251.2110; found 251.2119.

N^2 -Butyl- N^4 -(2-dimethylaminoethyl)-6-methylpyrimidine-2,4-diamine (29b)

Synthesized using the general procedure as for **5b** from *N*-butyl-4-chloro-6-methylpyrimidin-2-amine (**12b**) and *N*,*N*-dimethylethylenediamine. The residue was purified by dry column flash chromatography using EtOAc followed by 1:1 CHCl₃:CH₃OH to yield the target compound.

(29b) yield 191 mg, 85% pale yellow oil; ¹H NMR (CDCl₃): δ 0.81 (t, 3H, J = 7.3 Hz), 1.25 (m, 2H),

1.41 (p, 2H, J = 6.7 Hz) 2.02 (s, 3H), 2.11 (s, 6H), 2.35 (t, 2H, J = 6.2 Hz), 3.24 (m, 4H), 4.08 (br s, 1H), 5.06 (br s, 1H), 5.53 (s, 1H); ¹³C NMR (CDCl₃): δ 13.1, 19.4, 22.7, 31.4, 37.8, 40.3, 44.5, 57.5, 92.1 (br), 161.5, 163.0, 163.9; HRMS calculated for $C_{13}H_{25}N_5$, 251.2110; found 251.2120.

N^2 -(2-Dimethylaminoethyl)- N^4 -hexyl-6-methylpyrimidine-2,4-diamine (30a)

Synthesized using the general procedure as for **5a** from 2-chloro-*N*-hexyl-6-methylpyrimidin-4-amine (**13a**) and *N*,*N*-dimethylethylenediamine. The residue was purified by dry column flash chromatography using EtOAc followed by 1:1 CHCl₃:CH₃OH to yield the target compound.

(30a) yield 36 mg, 15% pale yellow oil; ¹H NMR (CDCl₃): δ 0.88 (t, 3H), 1.28 (m, 6H), 1.53 (m, 2H), 2.17 (s, 3H), 2.26 (s, 6H), 2.46 (t, 2H, J = 6.3 Hz), 3.20 (q, 2H, J = 5.9 Hz), 3.41 (m, 2H), 4.70 (br s, 1H),

5.30 (br s, 1H), 5.55 (s, 1H); 13 C NMR (CDCl₃): δ 13.3, 21.9, 23.0, 26.0, 29.0, 30.9, 38.4, 40.7, 44.6, 58.0, 91.6 (br), 161.4, 163.2, 164.7; HRMS calculated for $C_{15}H_{29}N_5$, 279.2423; found 279.2431.

N^4 -(2-Dimethylaminoethyl)- N^2 -hexyl-6-methylpyrimidine-2,4-diamine (30b)

Synthesized using the general procedure as for **5b** from 4-chloro-*N*-hexyl-6-methylpyrimidin-2-amine (**13b**) and *N*,*N*-dimethylethylenediamine. The residue was purified by dry column flash chromatography using EtOAc followed by 1:1 CHCl₃:CH₃OH to yield the target compound.

(30b) yield 29 mg, 43% pale yellow oil; ¹H NMR (CDCl₃): δ 0.86 (t, 3H, J = 6.4 Hz), 1.35 (m, 6H),

1.48 (m, 2H), 2.16 (s, 3H), 2.22 (s, 6H), 2.45 (t, 2H, J = 6.2 Hz), 3.28-3.36 (m, 4H), 4.96 (br s, 1H), 5.19 (br s, 1H), 5.52 (s, 1H); 13 C NMR (CDCl₃): δ 13.3, 21.9, 22.9, 26.1, 29.3, 31.0, 37.9, 40.6, 44.5, 57.5, 92.2 (br), 161.6, 163.1, 164.2; HRMS calculated for $C_{15}H_{29}N_5$, 279.2423; found 279.2429.

N^2 -(2-Dimethylaminoethyl)- N^4 -octyl-6-methylpyrimidine-2,4-diamine (31a)

Synthesized using the general procedure as for **5a** from 2-chloro-6-methyl-*N*-octylpyrimidin-4-amine (**14a**) and *N*,*N*-dimethylethylenediamine. The residue was purified by dry column flash chromatography using EtOAc followed by 1:1 CHCl₃:CH₃OH to yield the target compound.

(31a) yield 203 mg, 72% pale yellow oil; 1 H NMR (CDCl₃): δ 0.77 (t, 3H), 1.15 (m, 10H), 1.40 (m, 2H), 2.01 (s, 3H), 2.09 (s, 6H), 2.31 (t, 2H, J = 6.3 Hz), 3.10 (q, 2H, J = 6.2 Hz) 3.31 (m, 2H), 4.97 (br s, 1H), 5.21 (br s, 1H), 5.41 (s, 1H); 13 C NMR (CDCl₃): δ 13.3, 21.9, 23.0, 26.3, 28.5, 28.6, 28.9, 31.0, 38.3, 40.5, 44.5, 57.9, 91.6 (br), 161.5, 163.1, 164.6; HRMS calculated for $C_{17}H_{33}N_5$, 307.2736; found 307.2744.

N^4 -(2-Dimethylaminoethyl)- N^2 -octyl-6-methylpyrimidine-2,4-diamine (31b)

HN N

Synthesized using the general procedure as for **5b** from 4-chloro-6-methyl-*N*-octylpyrimidin-2-amine (**14b**) and *N*,*N*-dimethylethylenediamine. The residue was purified by dry column flash chromatography using EtOAc followed by 1:1 CHCl₃:CH₃OH to yield the target compound.

HN (31b) yield 57 mg, 35% pale yellow oil; ¹H NMR (CDCl₃): δ 0.86 (t, 3H), 1.38 (m, 10H), 1.50 (m, 2H), 2.16 (s, 3H), 2.22 (s, 6H), 2.45 (t, 2H, J = 5.8 Hz), 3.33 (m, 4H), 4.91 (br s, 1H), 5.15 (br s, 1H), 5.53 (s, 1H); ¹³C NMR (CDCl₃): δ 13.3, 22.0, 22.9, 26.4, 28.6, 28.7, 29.3, 31.2, 37.9, 40.7, 44.5, 57.4, 91.2 (br), 161.5, 163.0, 164.5; HRMS calculated for $C_{17}H_{33}N_5$, 307.2736; found 307.2746.

N^2 -(2-Dimethylaminoethyl)- N^4 -decyl-6-methylpyrimidine-2,4-diamine (32a)

HN N

Synthesized using the general procedure as for **5a** from 2-chloro-*N*-decyl-6-methylpyrimidin-4-amine (**15a**) and *N*,*N*-dimethylethylenediamine. The residue was purified by dry column flash chromatography using EtOAc followed by 1:1 CHCl₃:CH₃OH to yield the target compound.

(32a) yield 230 mg, 68% pale yellow oil; ¹H NMR (CDCl₃): δ 0.71 (t, 3H, J = 6.2 Hz), 1.13 (s, 14H), 1.39 (m, 2H), 1.98 (s, 3H), 2.08 (s, 6H), 2.33 (t, 2H, J = 6.3 Hz), 3.16 (m, 2H) 3.29 (t, 2H, J = 6.3 Hz), 5.39

(br s, 1H), 5.57 (s, 1H), 6.15 (br s, 1H); 13 C NMR (CDCl₃): δ 13.2, 21.9, 26.3, 28.5, 28.6, 28.7, 28.8 (2 x C), 28.9, 31.1, 38.2, 40.5, 44.4, 57.7, 93.0 (br), 159.0 (br), 159.8 (br), 162.9; HRMS calculated for $C_{19}H_{37}N_5$, 335.3049; found 335.3062.

N^4 -(2-Dimethylaminoethyl)- N^2 -decyl-6-methylpyrimidine-2,4-diamine (32b)

Synthesized using the general procedure as for **5b** from 4-chloro-*N*-decyl-6-methylpyrimidin-2-amine (**15b**) and *N*,*N*-dimethylethylenediamine. The residue was purified by dry column flash chromatography using EtOAc followed by 1:1 CHCl₃:CH₃OH to yield the target compound.

(32b) yield 217 mg, 80% pale yellow oil; ${}^{1}H$ NMR (CDCl₃): δ 0.81 (t, 3H, J = 7.0 Hz), 1.25 (m, 14H), 1.46 (m, 2H), 2.08 (s, 3H), 2.15 (s, 6H), 2.38 (t, 2H, J = 6.3 Hz), 3.16 (q, 2H, J = 6.3 Hz) 3.35 (t, 2H, J = 6.1 Hz), 4.97 (br s, 1H), 5.30 (br s, 1H), 5.47 (s, 1H); ${}^{13}C$ NMR (CDCl₃): δ 13.3, 21.9, 22.8, 26.3, 28.5, 28.6, 28.7, 28.8, 28.9, 31.2, 38.3, 40.6, 44.5, 57.9, 91.7 (br), 161.3, 163.2, 164.6 (br); HRMS calculated for $C_{19}H_{37}N_5$, 335.3049; found 335.3056.

N^2 -(2-Dimethylaminoethyl)-6-methyl- N^4 -tetradecylpyrimidine-2,4-diamine (33a)

Synthesized using the general procedure as for **5a** from 2-chloro-6-methyl-*N*-tetradecylpyrimidin-4-amine (**16a**) and *N*,*N*-dimethylethylenediamine. The residue was purified by dry column flash chromatography using EtOAc followed by 1:1 CHCl₃:CH₃OH to yield the target compound.

(33a) yield 174 mg, 51%, mp 51-53°C; ¹H NMR (CDCl₃): δ 0.84 (t, 3H, J = 6.2 Hz), 1.25 (s, 22H), 1.50 (m, 2H), 2.10 (s, 3H), 2.19 (s, 6H), 2.42 (t, 2H, J = 6.2 Hz), 3.19, (q, 2H, J = 6.5 Hz), 3.38 (t, 2H, J =

6.2 Hz), 4.36 (br s, 1H), 5.21 (br s, 1H), 5.53 (s, 1H); 13 C NMR (CDCl₃): δ 13.3, 21.9, 22.1 (br), 26.4, 28.6, 28.7, 28.8, 28.9 (2 x C), 29.0 (4 x C), 31.3, 38.3, 40.7, 44.6, 57.9, 92.1 (br), 160.6, 162.9 (br), 163.1; HRMS calculated for $C_{23}H_{45}N_5$, 391.3675; found 391.3680.

N^4 -(2-Dimethylaminoethyl)-6-methyl- N^2 -tetradecylpyrimidine-2,4-diamine (33b)

Synthesized using the general procedure as for **5b** from 4-chloro-6-methyl-*N*-tetradecylpyrimidin-2-amine (**16b**) and *N*,*N*-dimethylethylenediamine. The residue was purified by dry column flash chromatography using EtOAc followed by 1:1 CHCl₃:CH₃OH to yield the target compound.

(33b) yield 271 mg, 87%, mp 65-66°C; ¹H NMR (CDCl₃): δ 0.84 (t, 3H, J = 7.0 Hz), 1.25 (s, 22H),

1.53 (m, 2H), 2.14 (s, 3H), 2.19 (s, 6H), 2.43 (t, 2H, J = 6.2 Hz), 3.32 (m, 4H), 4.92 (br s, 1H), 5.21 (br s, 1H), 5.50 (s, 1H); 13 C NMR (CDCl₃): δ 13.3, 22.0, 23.1, 26.4, 28.7, 28.8, 28.9 (3 x C), 29.0 (2 x C), 29.1, 29.3, 31.3, 37.9, 40.8, 44.5, 57.5, 92.1 (br), 161.7, 163.0, 164.4; HRMS calculated for $C_{23}H_{45}N_5$, 391.3675; found 391.3682.

N^2 -(2-Dimethylaminoethyl)-6-methyl- N^4 -octadecylpyrimidine-2,4-diamine (34a)

Synthesized using the general procedure as for **5a** from 2-chloro-6-methyl-*N*-octadecylpyrimidin-4-amine and *N*,*N*-dimethylethylenediamine. The residue was purified by dry column flash chromatography using EtOAc followed by 1:1 CHCl₃:CH₃OH to yield the target compound.

(34a) yield 177 mg, 71%, mp 64-66°C; ¹H NMR (CDCl₃): δ 0.84 (t, 3H, J = 6.8 Hz), 1.23 (s, 30H), 1.50 (m, 2H), 2.13 (s, 3H), 2.20 (s, 6H), 2.43 (t, 2H, J = 6.3 Hz), 3.19, (q, 2H, J = 6.2 Hz), 3.40 (t, 2H, J = 6.1

Hz), 4.98 (br s, 1H), 5.53 (br s, 2H); 13 C NMR (CDCl₃): δ 13.3, 21.9, 22.1 (br), 26.4, 28.4, 28.6, 28.7, 28.8 (2 x C), 28.9 (3 x C), 29.0 (2 C's), 29.1 (2C's), 29.2, 31.2, 38.4, 40.7, 44.6, 57.9, 91.9 (br), 160.9, 163.2, 163.1 (br); HRMS calculated for $C_{27}H_{53}N_{5}$, 447.4301; found 447.4312.

N^4 -(2-Dimethylaminoethyl)-6-methyl- N^2 -octadecylpyrimidine-2,4-diamine (34b)

Synthesized using the general procedure as for **5b** from 4-chloro-6-methyl-*N*-octadecylpyrimidin-2-amine and *N*,*N*-dimethylethylenediamine. The residue was purified by dry column flash chromatography using EtOAc followed by 1:1 CHCl₃:CH₃OH to yield the target compound.

HN (34b) Yield 259 mg, 76%, mp 60-62°C; ¹H NMR (CDCl₃): δ 0.83 (t, 3H, J = 6.5 Hz), 1.22 (s, 30H), 1.48 (m, 2H), 2.11 (s, 3H), 2.19 (s, 6H), 2.43 (t, 2H, J = 6.1 Hz), 3.30 (m, 4H), 5.08 (br s, 1H), 5.32 (br s, 1H), 5.49 (s, 1H); ¹³C NMR (CDCl₃): δ 13.4, 22.0, 23.1, 26.4, 28.7 (3 x C), 28.8 (2 x C), 28.9 (3 x C), 29.0 (2 x C), 29.1, 29.2, 29.3, 31.3, 37.9, 40.7, 44.5, 57.5, 92.2 (br), 161.4, 163.0, 163.8 (br); HRMS calculated for $C_{27}H_{53}N_5$, 447.4301; found 447.34305.

N^4 -sec-Butyl- N^2 -(2-dimethylaminoethyl)-6-methylpyrimidine-2,4-diamine (35a)

Synthesized using the general procedure as for **5a** from *N*-sec-butyl-2-chloro-6-methylpyrimidin-4-amine (**17a**) and *N*,*N*-dimethylethylenediamine. The residue was purified by dry column flash chromatography using EtOAc followed by 1:1 CHCl₃:CH₃OH to yield the target compound.

(35a) yield 161 mg, 86% pale yellow oil; 1 H NMR (CDCl₃): δ 0.91 (t, 3H, J = 7.4 Hz), 1.14 (d, 3H, J = 6.6 Hz), 1.52 (m, 2H), 2.08 (s, 3H), 2.27 (s, 6H), 2.52 (t, 2H, J = 6.8 Hz), 3.45 (t, 2H, J = 6.8 Hz), 3.92 (m,

1H), 5.63 (s, 1H); 13 C NMR (CDCl₃): δ 9.0, 18.7, 22.3, 28.7, 37.9, 43.7, 48.0, 57.9, 92.9 (br), 161.4, 163.0, 164.2; HRMS calculated for $C_{13}H_{25}N_5$, 251.2110; found 251.2124.

N^2 -sec-Butyl- N^4 -(2-dimethylaminoethyl)-6-methylpyrimidine-2,4-diamine (35b)

Synthesized using the general procedure as for **5b** from *N*-sec-butyl-4-chloro-6-methylpyrimidin-2-amine (**17b**) and *N*,*N*-dimethylethylenediamine. The residue was purified by dry column flash chromatography using EtOAc followed by 1:1 CHCl₃:CH₃OH to yield the target compound.

(35b) yield 224 mg, 89% pale yellow oil; ¹H NMR (CDCl₃): δ 0.78 (t, 3H, J = 7.4 Hz), 1.03 (d, 3H, J = 6.5 Hz), 1.25 (m, 2H), 1.99 (s, 3H), 2.09 (s, 6H), 2.33 (t, 2H, J = 6.2 Hz), 3.22 (q, 2H, J = 6 Hz), 3.85

(m, 1H), 4.72 (br s, 1H), 5.32 (br s, 1H), 5.40 (s, 1H); 13 C NMR (CDCl₃): δ 9.5, 19.8, 22.8, 29.1, 37.7, 44.5, 47.0, 57.5, 92.1 (br), 161.2, 163.0, 164.1; HRMS calculated for $C_{13}H_{25}N_5$, 251.2110; found 251.2111.

2-(2-Dimethylaminoethyl)-4-N-(didecylamino)-6-methylpyrimidine (36a)

Synthesized using the general procedure as for **5a** from 2-chloro-*N*,*N*-didecyl-6-methylpyrimidin-4-amine and *N*,*N*-dimethylethylenediamine. The residue was purified by dry column flash chromatography using EtOAc followed by 1:1 CHCl₃:CH₃OH to yield the target compound.

(36a) Yield 466 mg, 72% pale yellow oil; 1 H NMR (CDCl₃): δ 0.76 (t, 6H, J = 6.5 Hz), 1.19 (s, 28H), 1.47 (m, 4H), 2.12 (s, 3H), 2.18 (s, 6H), 2.45 (t, 2H, J = 6.9 Hz), 3.45 (m, 6H), 5.47 (s, 1H); 13 C NMR (CDCl₃): δ 13.3, 21.9, 22.1, 26.3, 27.0, 28.5, 28.7, 28.8 (2 x C), 31.2, 38.2, 44.5, 48.0, 57.4, 90.8, 156.8,

157.3, 163.4; HRMS calculated for C₂₉H₅₇N₅, 475.4614; found 475.4629.

4-(2-Dimethylaminoethyl)-2-N-(didecylamino)-6-methylpyrimidine (36b)

Synthesized using the general procedure as for **5b** from 4-chloro-*N*,*N*-didecyl-6-methylpyrimidin-2-amine and *N*,*N*-dimethylethylenediamine. The residue was purified by dry column flash chromatography using EtOAc followed by 1:1 CHCl₃:CH₃OH to yield the target compound.

(36b) Yield 150 mg, 56%, mp 66-68°C; ¹H NMR (CDCl₃): δ 0.90 (t, 6H, J = 6.6 Hz), 1.33 (s, 28H), 1.58 (m, 4H), 2.14 (s, 3H), 2.26 (s, 6H), 2.49 (t, 2H, J = 6.1 Hz), 3.38 (q, 2H, J = 5.5 Hz), 3.51

(t, 4H, J = 7 Hz), 5.49 (s, 1H); ¹³C NMR (CDCl₃): δ 13.4, 22.0, 23.4, 26.5, 27.5, 28.7, 28.9 (2 x C), 29.0, 31.3, 37.8, 44.6, 46.7, 57.8, 92.1, 161.0, 162.7, 164.4; HRMS calculated for $C_{29}H_{57}N_5$, 475.4614; found 475.4603.

N^4 -Cyclohexyl- N^2 -(2-dimethylaminoethyl)-6-methylpyrimidine-2,4-diamine (37a)

Synthesized using the general procedure as for **5a** from 2-chloro-*N*-cyclohexyl-6-methylpyrimidin-4-amine (**18a**) and *N*,*N*-dimethylethylenediamine. The residue was purified by dry column flash chromatography using EtOAc followed by 1:1 CHCl₃:CH₃OH to yield the target compound.

(37a) Yield 162 mg, 74% pale yellow oil; ${}^{1}H$ NMR (CDCl₃): δ 1.15 (m, 6H), 1.55 (m, 2H), 1.92 (m, 2H), 2.02 (s, 3H), 2.09 (s, 6H), 2.32 (t, 2H, J = 6.3 Hz), 3.28 (m, 2H), 3.32-3.48 (m, 1H), 4.88 (br s, 1H),

5.28 (br s, 1H), 5.43 (s, 1H); 13 C NMR (CDCl₃): δ 22.8, 24.3, 25.1, 32.5, 38.3, 44.5, 48.9, 57.9, 92.0 (br), 161.3, 162.2, 163.9; HRMS calculated for $C_{15}H_{27}N_5$, 277.2266; found 277.2269.

N^2 -Cyclohexyl- N^4 -(2-dimethylaminoethyl)-6-methylpyrimidine-2,4-diamine (37b)

Synthesized using the general procedure as for **5b** from 4-chloro-*N*-cyclohexyl-6-methylpyrimidin-2-amine (**18b**) and *N*,*N*-dimethylethylenediamine. The residue was purified by dry column flash chromatography using EtOAc followed by 1:1 CHCl₃:CH₃OH to yield the target compound.

(37b) Yield 161 mg, 86% pale yellow oil; ¹H NMR (CDCl₃): δ 1.52 (m, 8H), 1.89 (m, 2H), 2.04 (s, 3H), 2.15 (s, 6H), 2.38 (t, 2H, J = 6.2 Hz), 3.25 (q, 2H, J = 6.0 Hz), 3.66 (m, 1H), 4.76 (br s, 1H), 5.25

(br s, 1H), 5.44 (s, 1H); 13 C NMR (CDCl₃): δ 22.4, 24.3, 25.3, 32.2, 38.5, 44.8, 49.2, 58.1, 92.2 (br), 161.5, 162.5, 164.0 (br); HRMS calculated for $C_{15}H_{27}N_5$, 277.2266; found 277.2273.

N^4 -Benzyl- N^2 -(2-dimethylaminoethyl)-6-methylpyrimidine-2,4-diamine (38a)

Synthesized using the general procedure as for **5a** from *N*-benzyl-2-chloro-6-methylpyrimidin-4-amine (**19a**) and *N*,*N*-dimethylethylenediamine. The residue was purified by dry column flash chromatography using EtOAc followed by 1:1 CHCl₃:CH₃OH to yield the target compound.

(38a) Yield 87 mg, 37% pale yellow oil; ¹H NMR (CDCl₃): δ 2.14 (s, 3H), 2.21 (s, 6H), 2.44 (t, 2H, J = 6.3 Hz), 3.45 (q, 2H), 4.48 (d, 2H, J = 5.8 Hz), 5.08 (br s, 1H), 5.32 (br s, 1H), 5.56 (s, 1H), 7.30 (m,

5H); 13 C NMR (CDCl₃): δ 23.1, 38.4, 44.6, 57.9, 92.0 (br), 126.6, 126.7, 128.0, 138.5, 161.7, 163.1, 165.2; HRMS calculated for $C_{16}H_{23}N_5$, 285.1953; found 285.1950.

N^2 -Benzyl- N^4 -(2-dimethylaminoethyl)-6-methylpyrimidine-2,4-diamine (38b)

Synthesized using the general procedure as for **5b** from *N*-benzyl-4-chloro-6-methylpyrimidin-2-amine (**19b**) and *N*,*N*-dimethylethylenediamine. The residue was purified by dry column flash chromatography using EtOAc followed by 1:1 CHCl₃:CH₃OH to yield the target compound.

(38b) yield 53 mg, 32% pale yellow oil; ${}^{1}H$ NMR (CDCl₃): δ 2.16 (s, 3H), 2.22 (s, 6H), 2.44 (t, 2H, J = 6.2 Hz), 3.28 (q, 2H, J = 6.4 Hz), 4.59 (d, 2H, J = 5.6 Hz), 5.19 (br s, 1H), 5.38 (br s, 1H), 5.57 (s, 1H), 7.28 (m, 5H); ${}^{13}C$ NMR (CDCl₃): δ 23.0, 37.9, 44.5, 44.8, 57.5, 92.7 (br), 126.2, 126.9, 127.8, 139.6, 161.5, 163.1, 164.6 (br); HRMS calculated for $C_{16}H_{23}N_5$, 285.1953; found 285.1960.

N^4 -Cyclopropylmethyl- N^2 -(2-dimethylaminoethyl)-6-methyl- N^4 -propylpyrimidine-2,4-diamine (39a)

Synthesized using the general procedure as for **5a** from 2-chloro-*N*-(cyclopropylmethyl)-6-methyl-*N*-propylpyrimidin-4-amine (**21a**) and *N*,*N*-dimethylethylenediamine. The residue was purified by dry column flash chromatography using EtOAc followed by 1:1 CHCl₃:CH₃OH to yield the target compound.

(39a) yield 285 mg, 85% pale yellow oil; ¹H NMR (CDCl₃): δ 0.05 (d, 2H, J = 7.4 Hz), 0.30 (d, 2H, J = 7.8 Hz), 0.72 (t, 3H, 7.3 Hz), 0.87 (m, 1H), 1.45 (m, 2H), 1.99 (s, 3H), 2.05 (s, 6H), 2.26 (t, 2H, J = 6.2 Hz), 3.28 (m, 6H), 5.20 (br s, 1H), 5.47 (s, 1H); ¹³C NMR (CDCl₃): δ 2.9, 9.2, 10.6, 20.1, 23.1, 38.3, 44.5, 49.1, 51.2, 58.0, 90.8, 161.2, 162.0, 164.1; HRMS calculated for C₁₆H₂₉N₅, 291.2423; found 291.2431.

N^2 -Cyclopropylmethyl- N^4 -(2-dimethylamin-ethyl)-6-methyl- N^2 -propylpyrimidine-2,4-diamine (39b)

Synthesized using the general procedure as for **5b** from 4-chloro-*N*-(cyclopropylmethyl)-6-methyl-*N*-propylpyrimidin-2-amine (**21b**) and *N*,*N*-dimethylethylenediamine. The residue was purified by dry column flash chromatography using EtOAc followed by 1:1 CHCl₃:CH₃OH to yield the target compound.

Yield 133 mg, 48% pale yellow oil; ¹H NMR (CDCl₃): δ 0.22 (q, 2H, J = 5 Hz), 0.41 (q, 2H, J = 6.5 Hz), 0.86 (t, 3H, 7.4 Hz), 1.08 (m, 1H), 1.62 (m, 2H), 2.10 (s, 3H), 2.18 (s, 6H), 2.45 (t, 2H, J = 6.2 Hz), 3.34 (q, 2H, J = 5.6 Hz), 3.44 (d, 2H, J = 6.7 Hz), 3.54 (t, 2H, J = 7.5 Hz), 4.92 (br s, 1H), 5.46 (s, 1H); ¹³C NMR (CDCl₃): δ 2.9, 9.7, 10.9, 20.5, 23.5, 37.8, 44.5, 48.4, 50.7, 57.8, 91.2, 161.3, 162.7, 164.6; HRMS calculated for C₁₆H₂₀N₅, 291.2423; found 291.2429.

N^4 -Decyl- N^2 -(2-dimethylaminoethyl)pyrimidine-2,4-diamine (40a) ^{S8}

To a solution of 2,4-dichloro-6-methylpyrimidine (0.65 g, 4.0 mmol) in THF (5 ml) was added decylamine (1.26g, 8 mmol, 2 eq). The resulting solution was stirred at 30 °C for 18 hours, filtered and concentrated *in vacuo*. The residue was purified by flash chromatography using 1:9 ethyl acetate:hexanes to yield a mixture of 2-chloro-N-decylpyrimidin-4-amine and 2-chloro-N-decylpyrimidin-4-amine. Isomers were separated by flash chromatography (EtOAc:Triethylamine, 95:5).

4-Chloro-*N*-decylpyrimidin-2-amine: yield 967mg, 68%, mp 80-82°C; ¹H NMR (CDCl₃): δ 0.80 (t, 3H, J = 6.2 Hz), 1.25 (s, 14H), 1.53 (m, 2H), 3.26 (m, 2H), 5.94 (br s, 1H), 6.18 (d, 1H, J = 5.9 Hz), 7.90 (d, 1H, J = 5.6 Hz); ¹³C NMR (CDCl₃): δ 13.3, 21.9, 26.2, 28.4, 28.6, 28.8 (3 x C), 31.2, 40.9, 100.1 (br), 156.0 (br), 160.0, 163.3.

2-Chloro-*N*-decylpyrimidin-4-amine: yield 384mg, 27%, mp 67-68°C; ¹H NMR (CDCl₃): δ 0.86 (t, 3H, J = 6.6 Hz), 1.33 (s, 14H), 1.57 (m, 2H), 3.38 (q, 2H, J = 7 Hz), 5.59 (br s, 1H), 6.48 (d, 1H, J = 5.3 Hz), 8.09 (d, 1H, J = 5.3 Hz); ¹³C NMR (CDCl₃): δ 13.4, 22.0, 26.3, 28.6, 28.7, 28.9 (3 x C), 31.2, 40.9, 108.9, 159.3, 160.7, 162.0.

The target compound **40a** was syntheszied using the general procedure as for **5a** from 4-chloro-*N*-decylpyrimidin-2-amine and *N*,*N*-dimethylethylenediamine. The residue was purified by dry column flash chromatography using EtOAc followed by 1:1 CHCl₃:CH₃OH to yield the target compound.

(40a) Yield 300mg, 85% pale yellow oil; 1 H NMR (CDCl₃): δ 0.75 (t, 3H, J = 6.4 Hz), 1.17 (s, 14H), 1.41 (m, 2H), 2.10 (s, 3H), 2.33 (t, 2H, J = 6.3 Hz), 3.09 (q, 2H, J = 5.9 Hz), 3.27 (t, 2H, J = 6.3 Hz) 4.39 (br s, 1H), 5.29 (s, 1H), 5.53 (d, 1H, J = 5.9 Hz), 7.60 (d, 1H, J = 5.9 Hz); 13 C NMR (CDCl₃): δ 13.3, 21.9, 26.3, 28.5, 28.6, 28.8 (2 x C), 28.9, 31.1, 38.3, 40.5, 44.5, 57.8, 93.5 (br), 154.5 (br), 161.3, 162.6; HRMS calculated for $C_{18}H_{35}N_5$, 321.2892; found 321.2883.

N^2 -Decyl- N^4 -(2-dimethylaminoethyl)pyrimidine-2,4-diamine (40b)

Synthesized using the general procedure as for **5b** from 2-chloro-*N*-decylpyrimidin-4-amine and *N*,*N*-dimethylethylenediamine. The residue was purified by dry column flash chromatography using EtOAc followed by 1:1 CHCl₃:CH₃OH to yield the target compound.

(40a) Yield 238 mg, 79% pale yellow oil; ¹H NMR (CDCl₃): δ 0.72 (t, 3H, J = 7.0 Hz), 1.15 (s, 14H), 1.50 (m, 2H), 2.08 (s, 6H), 2.31 (t, 3H, J = 6.1 Hz), 3.21 (m, 4H), 5.48 (d, 1H, J = 5.8 Hz), 5.63 (br s, 1H), 7.57 (d, 1H, J = 5.7 Hz); ¹³C NMR (CDCl₃): δ 13.3, 21.9, 26.3, 28.7, 28.8, 28.9 (2 x C), 29.2, 31.1, 37.6, 40.6, 44.4, 57.4, 93.7 (br), 154.3, 161.5, 162.5 (br); HRMS calculated for C₁₈H₃₅N₅, 321.2892; found 321.2899.

N^4 -Dodecyl- N^2 -(2-dimethylaminoethyl)pyrimidine-2,4-diamine (41a) ^{S8}

Synthesized using the general procedure as for **5a** from 4-chloro-*N*-dodecylpyrimidin-2-amine and *N*,*N*-dimethylethylenediamine. The residue was purified by dry column flash chromatography using EtOAc followed by 1:1 CHCl₃:CH₃OH to yield the target compound.

(41a) Yield 226 mg, 65%, mp 36-38° C; ¹H NMR (CDCl₃): δ 0.82 (t, 3H, J = 6.9 Hz), 1.32 (s, 18H), 1.49 (m, 2H), 2.18 (s, 6H), 2.42 (t, 2H, J = 6.2 Hz), 3.19 (q, 2H, J = 6.1 Hz), 3.38 (t, 2H, J = 6.2 Hz), 5.13 (br s, 1H), 5.48 (br s, 1H), 5.63 (d, 1H, J = 5.9 Hz), 7.68 (d, 1H, J = 5.9 Hz); ¹³C NMR (CDCl₃): δ 13.4, 22.0, 26.3, 28.6, 28.7, 28.9 (3 x C), 29.0, 31.2, 38.3, 40.6, 44.6, 57.9, 93.6 (br), 154.2 (br), 161.1, 162.6; HRMS calculated for $_{20}H_{39}N_5$, 349.3205; found 349.3210.

N^2 -Dodecyl- N^4 -(2-dimethylaminoethyl)-pyrimidine-2,4-diamine (41b)

Synthesized using the general procedure as for 5b from 2-chloro-N-dodecylpyrimidin-4-amine and *N,N*-dimethylethylenediamine. The residue was purified by dry column flash chromatography using EtOAc followed by 1:1 CHCl₃:CH₃OH to yield the target compound.

(41b) Yield 244 mg, 83% pale yellow oil; ¹H NMR (CDCl₃): δ 0.80 (t, 3H, J = 6.2 Hz), 1.23 (s, 18H), 1.49 (m, 2H), 2.17 (s, 6H), 2.43 (t, 2H, J = 6.1 Hz), 3.32 (m, 4H), 5.64 (d, 1H, J = 6.1 Hz), 5.78 (br s, 1H),

7.57 (d, 1H, J = 5.9 Hz); 13 C NMR (CDCl₃): δ 13.3, 21.9, 26.4, 28.6, 28.6, 28.7, 28.9 (3 x C), 29.1, 31.2, 37.7, 40.7, 44.4, 57.3, 94.2 (br), 151.3 (br), 160.2, 162.4 (br); HRMS calculated for $_{20}H_{39}N_5$, 349.3205; found 349.3213.

N-Decyl-N'-(2-dimethylaminoethyl)-pyrimidine-4,6-diamine (42)

Synthesized using the general procedure as for **5a** from 6-chloro-*N*-decylpyrimidin-4-amine and *N*,*N*-dimethylethylenediamine. The residue was purified by dry column flash chromatography using EtOAc followed by 1:1 CHCl₃:CH₃OH to yield the target compound.

(42) yield 289 mg, 75%, mp 61-63° C; ¹H NMR (CDCl₃): δ 0.63 (t, 3H, J = 6.6 Hz), 1.07 (s, 14H), 1.34 (m, 2H), 2.00 (s, 6H), 2.25 (t, 2H, J = 6.2 Hz), 2.88 (m, 2H), 3.16 (m, 2H), 5.01 (s, 1H), 5.67 (br s, 1H), 5.73 (br s, 1H), 7.78 (s, 1H); 13 C NMR (CDCl₃): δ 13.2, 21.8, 26.3, 28.4, 28.5, 28.7, 28.8, 28.9, 31.0, 38.2, 40.9, 44.3, 57.2, 78.8 (br), 156.8, 162.2, 162.3; HRMS calculated for C₁₈H₃₅N₅, 321.2892; found 321.2901

N-Dodecyl-N'-(2-dimethylaminoethyl)pyrimidine-4,6-diamine (43)

Synthesized using the general procedure as for **5** from 6-chloro-*N*-dodecylpyrimidin-4-amine and *N*,*N*-dimethylethylenediamine. The residue was purified by dry column flash chromatography using EtOAc followed by 1:1 CHCl₃:CH₃OH to yield the target compound.

(43) Yield 279 mg, 67%, mp 59-60° C; ¹H NMR (CDCl₃): δ 0.71 (t, 3H, J = 7.0 Hz), 1.13 (s, 18H), 1.37 (m, 2H), 2.06 (s, 6H), 2.32 (t, 2H, J = 6.2 Hz), 2.94 (m, 2H), 3.12 (m, 2H), 5.06 (s, 1H), 5.54 (br s, 1H), 5.60 (br s, 1H), 7.83 (s, 1H); 13 C NMR (CDCl₃): δ 13.2, 21.8, 26.3, 28.5 (2 x C), 28.6, 28.8 (2 x C), 28.9, 31.1, 38.2, 40.9, 44.3, 57.2, 78.9 (br), 156.9, 162.2, 162.3; HRMS calculated for C₂₀H₃₉N₅, 349.3205; found 349.3216.

References

- Sunley, R.; Snowling, G. Herbicidal pyrimidine derivatives. Ger. Offen. 1976 52 pp.
- S2. Garner, J.; Hill, T.; Odell, L.; Keller, P.; Morgan, J.; McCluskey, A. Identification of aminopyrimidine regioisomers via line broadening effects in 1H and 13C NMR spectroscopy. Aus. J. Chem., 2004, 57, 1079-1083.
- Winn, M.; Zydowsky, T. M.; Kerkman, D.; DeBernardis, J.; Rosenberg, S.; Shiosaki, K.; Basha, F.; A., T.; von Geldern, T.; Kester, J.; Boyd, S.; Yamamoto, D.; Fung, A. [[(Tetrazolylbiphenylyl)methyl]amino] pyridinecarboxylates as angiotensin II receptor antagonists. US 1993 98 pp.
- Marquais-Bienewald, S.; Hoelzl, W.; Preuss, A.; Mehlin, A. Synthesis of 2.4-bis(alkylamino)pyrimidines and their use as antimicrobials. PCT Int. Appl 2005 38 pp.
- **S5** McCluskey, A.; Keller, P. A.; Morgan, J.; Garner, J. Synthesis, molecular modeling and biological activity of methyl and thiomethyl substituted pyrimidines as corticotropin releasing hormone type 1 antagonists. Org. Biomol. Chem., 2003, 1, 3353-
- S6. Copar, A.; Stanovnik, B.; Tisler, M. Study on the preparation of heteroaryl substituted enamines. A simple synthesis of heteroaryl substituted acetaldoximes from enamines. J. Het. Chem., 1996, 33, 465-474.
- S7. Curd, F. H. S.; Davis, M. I.; Owen, E. C.; Rose, F. L.; Yuey, G. A. P. Synthetic antimalarials. VI. Some 4-arylamino-2aminoalkylamino-6-methylpyrimidines. J. Chem. Soc., 1946, 370-378.
- Grier, N.; Chen, A.; Dulaney, E. L.; Dybas, R. A.; Strelitz, R. A.; Witzel, B. E.; Jakubowski, J. A.; Tefft, E. R.; Weber, G. A. n-Dodecyl-substituted aminopyrimidinium salt derivatives as paint film antifungal agents. J. Coat. Tech., 1980, 52, 57-62.

Examples for NMR spectra

