
SUPPORTING INFORMATION

Adsorption Microcalorimetry of CO₂ in Confined Aminopolymers

Matthew E. Potter, a Simon H. Pang, Christopher W. Jones*a

a) School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, GA, 30332, USA

Figure S1: Graphical representation of low molecular weight PEI used in this study.

Figure S2: Pore size distribution showing primarily pore with diameters between 70 - 80 Å calculated using the BdB-FHH model.

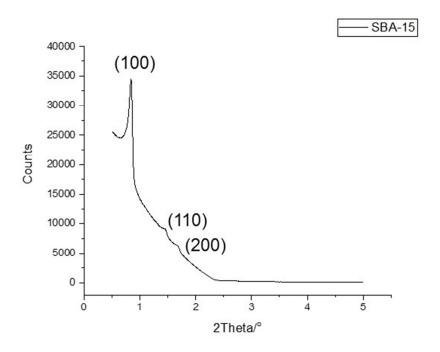
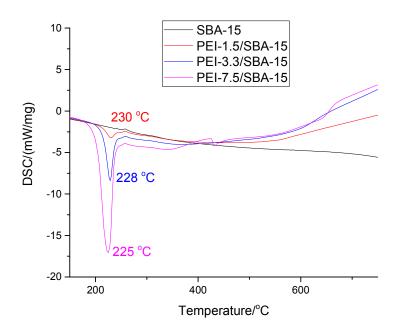
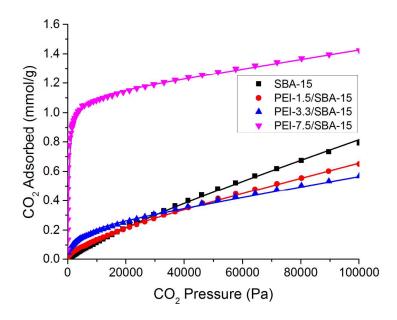




Figure S3: Powder XRD pattern confirming the ordered structure of the bare SBA-15.

Figure S4: Differential scanning calorimetry curves of the thermogravimetric data collected. Labels correspond to the minima of the appropriate samples showing increased PEI leads to a lower minimum in the DSC curve.

Figure S5: Dual-mode sorption fits and parameters fit to CO₂ adsorption isotherms on PEI/SBA-15. Adsorption was fit by a combination of Langmuir and Henry adsorption (coefficients reported in Table S1):

$$Q = S_{max} \frac{k_L P_{CO_2}}{1 + k_L P_{CO_2}} + k_H P_{CO_2}$$

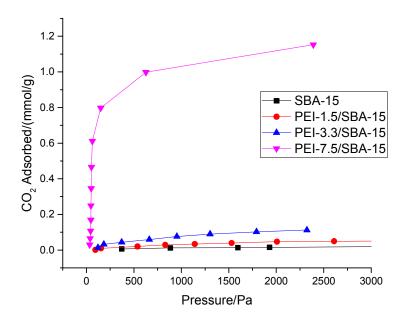

The Langmuir adsorption coefficient (k_L) and total number of sites available for chemisorption (S_{max}) both increased as PEI loading was increased, indicating that higher loadings of PEI provided additional sites for chemisorption. However, the Henry's law constant (k_H) decreased with increased PEI loading, suggesting that physisorption was correlated with available pore volume and surface area (see Table S2).

Table S1: Langmuir and Henry coefficients for dual-mode fits shown in Figure S4.

	S_{max}	k _∟ (Pa ⁻¹)	k _H (mmol g ⁻¹ Pa ⁻¹)	
	(mmol g ⁻¹)			
SBA-15	0.18	0.42 × 10 ⁻⁴	6.7 × 10 ⁻⁶	
PEI-1.5/SBA-15	0.17	1.3 × 10 ⁻⁴	5.0×10^{-6}	
PEI-3.3/SBA-15	0.22	3.5 × 10 ⁻⁴	3.5 × 10⁻ ⁶	
PEI-7.5/SBA-15	1.1	22×10^{-4}	3.2 × 10 ⁻⁶	

Table S2: Henry coefficients normalized for surface area and pore volume.

	Surface	Pore volume	k _H (mmol	k _H /SA (mmol	k _H /PV (mmol
	area (m² g ⁻¹)	$(cm^3 g^{-1})$	g ⁻¹ Pa ⁻¹)	Pa ⁻¹ m ⁻²)	Pa ⁻¹ cm ⁻³)
SBA-15	789	0.93	6.7 × 10 ⁻⁶	8.5 x 10 ⁻⁹	7.2 x 10 ⁻⁶
PEI-1.5/SBA-15	512	0.77	5.0×10^{-6}	9.8 x 10 ⁻⁹	6.5 x 10 ⁻⁶
PEI-3.3/SBA-15	361	0.65	3.5×10^{-6}	9.7 x 10 ⁻⁹	5.4 x 10 ⁻⁶
PEI-7.5/SBA-15	236	0.51	3.2 × 10 ⁻⁶	14 x 10 ⁻⁹	6.3 x 10 ⁻⁶

Figure S6: CO_2 adsorbed as a function CO_2 pressure for the tandem volumetric uptake - microcalorimetry experiments.