Thermolysis of Geminal Diazides: Reagent-free Synthesis of 3-Hydroxypyridines

Hellmuth Erhardt ${ }^{[1]}$, Kevin A. Kunz ${ }^{[1]}$, Stefan F. Kirsch ${ }^{[1] *}$
${ }^{[1]}$ Organic Chemistry, Bergische Universität Wuppertal, Gaußstaße 20, 42119, Wuppertal, Germany

Supporting Information

General informations 1
Experimental data. 5
Synthesis of the starting materials 5
Synthesis of the 3-hydroxypyridines 36
Modifications of 3-hydroxypyridines 46
Literature 51
Spectra ($\left.{ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}, \mathrm{IR}\right)$ 52

General remarks: All commercial reagents were used as received. Thin-layer chromatography (TLC) was conducted with precoated glass-backed plates (silica gel 60 F 254) and visualized by exposure to UV light (254 nm) or stained with ceric ammonium molybdate (CAM), kalium permanganate stain $\left(\mathrm{KMnO}_{4}\right)$, or by putting the TLC plates in an iodine-chamber. Flash chromatography was performed with silica gel $(43-60 \mu \mathrm{~m})$; the eluent used is reported in parentheses. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded at 400 MHz or 600 MHz spectrometers. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded at 101 MHz or 151 MHz . Chemical shifts are reported in ppm relative to the solvent signal. Multiplicity is indicated as follows: s (singlet); d (doublet); t (triplet); q (quartet); p (pentet); hept (heptet); dd (doublet of doublets); dt (doublet of triplets); qd (quartet of doublets); pd (pentet of doublets); ddd (doublet of doublet of doublets); tt (triplet of triplets); m (multiplet). IR spectra were recorded using ATR technique. High resolution mass spectra of the derivatized geminal diazides were obtained using ESI ionization
methods on a MicroTOF. The NMR data for the β-ketocarbonyl compounds are always reported for the predominant keto form.

Microwave Experiments: All microwave irradiation experiments were carried out in a Bioatage Initiator ${ }^{+}$microwave system, operating at a frequency of 2.45 GHz with an irradiation power from 0 to 400 W . The reactions were carried out in 20 mL glass tubes, sealed with Teflon septum under continuous stirring with a magnetic stirrer. The reaction mixture was irradiated at the indicated temperature and time. Then, the mixture was cooled to ambient temperature with pressurized air.

Cautionary note

Organic azides are potentially explosive compounds and should be handled with appropriate care and safety equipment.

General procedure \mathbf{A} for the nucleophilic substitution at C 1 of β-ketoesters/amides:

Diisopropylamine (2.20 eq.) was dissolved in dry tetrahydrofuran $(c=0.25 \mathrm{M}$) and the solution cooled to $0{ }^{\circ} \mathrm{C}$. n-Butyllithium (2.20 eq., 2.5 M solution in n-hexane) was slowly added and the reaction mixture was stirred at room temperature for 30 minutes and afterwards cooled to $0{ }^{\circ} \mathrm{C} . \beta-$ ketoester/amide was dissolved in dry tetrahydrofuran (in a threefold volume with respect to the β ketoester/amide) and slowly added to the solution. The reaction mixture was stirred for 15 minutes after which alkyl/allyl halide (1.20 eq.) was added. The solution was allowed to stir at $0^{\circ} \mathrm{C}$ for 30 minutes and at room temperature for 90 minutes. A saturated, aqueous solution of ammonium chloride was added and the separated aqueous layer extracted with ethyl acetate (2x). The combined organic layers were washed with brine, dried over magnesium sulfate and the solvent was evaporated in vacuo. Column chromatography afforded the pure products.

General procedure \mathbf{B} for the azidation of β-ketoesters/amides:

The respective β-ketoester/amide was dissolved in a 2:1 mixture of dimethylsulfoxide and water ($\mathrm{c}=$ 0.1 M). Sodium azide (4.0 eq.), sodium bicarbonate (3.0 eq.) and iodine (2.05 eq .) were added to the solution and the mixture was stirred at room temperature until thin layer chromatography indicated complete consumption of the starting material. A saturated, aqueous solution of sodium thiosulfate was added and the aqueous layer extracted with ethyl acetate (3x). The combined organic layers were washed with brine, dried over magnesium sulfate and the solvent was evaporated in vacuo. Column chromatography afforded the geminal diazides.

General procedure \mathbf{C} for the reaction of geminal diazides with cyclooctyne:

Geminal diazide was dissolved in chloroform $(c=0.1 \mathrm{M})$ and treated with cyclooctyne (2.20 eq.). The solution was stirred at room temperature until thin layer chromatography indicated complete consumption of the starting material. Afterwards, the solvent was removed in vacuo and the product obtained after column chromatography.

This reaction was performed to obtain more stable derivatives of the geminal diazides $\mathbf{1}$: We were not able to obtain the accurate masses of the diazido compounds. Upon derivatization with cyclooctyne, full characterization was easily possible, and accurate masses of the derivatives having the bistriazole units were obtained through standard ESI ionization.

General procedure \mathbf{D} for the thermolysis of geminal diazides:

Geminal diazide was dissolved in xylene (mixture of isomers, 0.05 M) and the solution was heated at $140{ }^{\circ} \mathrm{C}$ under microwave irradiation until thin layer chromatography indicated complete consumption of the starting material (typically after two hours if not indicated otherwise). The reaction mixture was allowed to cool to room temperature and the solution was concentrated in vacuo to a volume of approximately 2 mL . The crude product was directly subjected to column chromatography, whereby excess of xylene was removed by eluting the column with cyclohexane or petrolether.

Experimental data

Synthesis of the starting materials

ethyl 3-oxohept-6-enoate

Following the general procedure \mathbf{A} with allyl bromide (5.00 mL of ethyl acetoacetate), the product was obtained as a yellowish liquid $(4.881 \mathrm{~g}, 28.68 \mathrm{mmol}, 73 \%)$ upon purification by column chromatography $(\mathrm{CH}: E t O A c=100: 0 \rightarrow 90: 10)$. The analytical data corresponds with the previously published data. ${ }^{[1]}$

TLC: $\mathrm{R}_{\mathrm{f}}=0.31$ (PE:EtOAc / 90:10, $\left[\mathrm{KMnO}_{4}\right]$); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 5.79$ (ddt, $J=17.1,10.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{dq}, J=17.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{dq}, J=10.2,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.19(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{~s}, 2 \mathrm{H}), 2.64(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.37-2.31(\mathrm{~m}, 2 \mathrm{H}), 1.27$ ($\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 202.1,167.3,136.7,115.7,61.5$, 49.5, 42.5, 27.5, 14.2; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3080,2982,2931,1740,1715,1642,1411,1367$, 1314, 1325, 1154, 1095, 1030, 914, 842, 803, 738, 636, 583, 559, 443; HRMS (ESI): [m/z] calculated for $\left[\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na}\right]$ 193.0835, found 193.0836.

ethyl 2,2-diazido-3-oxohept-6-enoate (1a)

Following the general procedure B (805 mg of ethyl 3-oxohept-6-enoate, $0.1 \mathrm{M}, 1 \mathrm{~h}$), the product was obtained as a yellowish liquid ($728 \mathrm{mg}, 2.89 \mathrm{mmol}, 61 \%$) upon purification by column chromatography ($\mathrm{CH}: E t O A c=100: 0 \rightarrow 90: 10$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.67$ (PE:EtOAc / 90:10, $\left[\mathrm{KMnO}_{4}\right]$); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 5.78$ (ddt, $J=17.1,10.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{dq}, J=17.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{dq}, J=10.2,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.37(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.39-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{t}, J=7.1$
$\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 197.6,164.4,136.1,116.2,83.2,64.3,36.9$, 27.3, 14.2; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3082,2984,2926,2855,2113,1744,1643,1446,1398,1369$, 1222, 1097, 1047, 1016, 998, 947, 918, 853, 759, 719, 623, 555, 451.

ethyl 2,2-bis(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-3-oxohept-6-enoate

$\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{3}$ $468.59 \mathrm{~g} / \mathrm{mol}$

Following the general procedure $\mathbf{C}(24 \mathrm{mg}$ of $\mathbf{1 a}, 16 \mathrm{~h})$, the product was obtained as a yellowish liquid ($35 \mathrm{mg}, 0.07 \mathrm{mmol}, 78 \%$) upon purification by column chromatography $(\mathrm{CH}: \mathrm{EtOAc}=75: 25)$.

TLC: $\mathrm{R}_{\mathrm{f}}=0.23$ (PE:EtOAc / 90:10, [UV, KMnO_{4}) ; ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] $5.85(\mathrm{ddt}, J=16.9,10.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dq}, J=17.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dq}, J=10.2,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.51(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.01-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.91-2.83(\mathrm{~m}, 4 \mathrm{H}), 2.66-2.54(\mathrm{~m}$, $2 \mathrm{H}), 2.23-2.12(\mathrm{~m}, 4 \mathrm{H}), 1.77-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.40-1.30(\mathrm{~m}, 12 \mathrm{H})$; ${ }^{13} \mathbf{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}] 191.8,161.8,146.1,136.7,136.6,115.8,86.3,64.9$, 41.0, 29.5, 27.6, 26.2, 25.7, 25.1, 24.4, 22.0, 13.9; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 2928,2856,1747$, 1444, 1371, 1255, 1014, 911, 848, 459; HRMS (ESI): [m/z] calculated for [$\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{Na}$] 491.2747 found 491.2741 .
ethyl 4-methyl-3-oxohept-6-enoate

Following the general procedure A with methyl iodide (1.310 g of ethyl 3-oxohept-6-enoate), the product was obtained as a yellow liquid ($861 \mathrm{mg}, 4.56 \mathrm{mmol}, 77 \%$) upon purification by column chromatography $(\mathrm{CH}: \mathrm{EtOAc}=90: 10)$.

TLC: $\mathrm{R}_{\mathrm{f}}=0.87$ (PE:EtOAc / 80:20, $\left[\mathrm{KMnO}_{4}\right]$); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 5.80-$ $5.64(\mathrm{~m}, 1 \mathrm{H}), 5.11-5.00(\mathrm{~m}, 2 \mathrm{H}), 4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}) 3.47$ (s, 2H), 2.73 (sext, $J=6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.49-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ [ppm] 205.8, 167.3, 135.2, 117.4, 61.5, 48.1, 46.3, 36.9, 15.8, 14.3; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3079,2979,2936,2911,2878,1743,1712,1642,1626$, 1458, 1413, 1368, 1307, 1231, 1154, 1114, 1096, 1025, 917, 841, 804, 652, 632; HRMS (ESI): [m/z] calculated for [$\left.\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}\right]$ 207.0997, found 207.0992.

ethyl 2,2-diazido-4-methyl-3-oxohept-6-enoate (1b)

Following the general procedure $\mathbf{B}(163 \mathrm{mg}$ of ethyl 4-methyl-3-oxohept-6-enoate, $0.1 \mathrm{M}, 4$ h), the product was obtained as a colorless liquid ($145 \mathrm{mg}, 0.54 \mathrm{mmol}, 61 \%$) upon purification by column chromatography ($\mathrm{CH}: \mathrm{EtOAc}=90: 10 \rightarrow 96: 4$).

TLC: $\mathrm{Rf}_{\mathrm{f}}=0.48$ (PE:EtOAc / 90:10, [UV, $\left.\mathrm{KMnO}_{4}\right]$); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] $5.73-5.63(\mathrm{~m}, 1 \mathrm{H}), 5.10-5.02(\mathrm{~m}, 2 \mathrm{H}), 4.36(\mathrm{qd}, J=7.1,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.03-2.94(\mathrm{~m}, 1 \mathrm{H})$, $2.47-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C - N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 201.7,164.4,134.7,117.8,83.3,64.2,41.5,37.6$, 17.0, 14.2; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]$ 2977, 2105, 1423, 1373, 1347, 1192, 1125, 1055, 1013, 994, 682, 637.

$\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{~N}_{6} \mathrm{O}_{3}$
$482.62 \mathrm{~g} / \mathrm{mol}$
Following the general procedure \mathbf{C} (29 mg of ethyl 2,2-diazido-4-methyl-3-oxohept-6-enoate, 16 h), the product was obtained as a yellow liquid ($18 \mathrm{mg}, 0.03 \mathrm{mmol}, 29 \%$) upon purification by column chromatography $(\mathrm{CH}: \mathrm{EtOAc}=75: 25)$.

TLC: $\mathrm{R}_{\mathrm{f}}=0.34$ (PE:EtOAc / 70:30, [UV, KMnO_{4}) ; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]$ $5.81-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.05(\mathrm{~m}, 2 \mathrm{H}), 4.57-4.47(\mathrm{~m}, 2 \mathrm{H}), 3.09-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.91-$ $2.84(\mathrm{~m}, 5 \mathrm{H}), 2.37-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.11(\mathrm{~m}, 3 \mathrm{H}), 1.76-1.70(\mathrm{~m}, 5 \mathrm{H}), 1.42(\mathrm{t}, \mathrm{J}=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.41-1.30(\mathrm{~m}, 12 \mathrm{H}), 1.35(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] 196.9, 161.5, 146.1, 146.1, 136.6, 136.5, 135.4, 117.7, 86.8, 64.9, 45.0, 39.4, 27.68, 27.66, 26.3, 26.2, 25.7, 25.12, 25.09, 24.4, 22.1, 18.8, 14.3, 13.8; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 2929$, 2857, 2252, 1763, 1741, 1640, 1567, 1457, 1443, 1371, 1254, 1240, 1144, 1133, 1016, 939, 906, 849, 720; HRMS (ESI): [m/z] calculated for [$\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{Na}$] 505.2903, found 505.2898.

ethyl 4-allyl-3-oxononanoate

Following the general procedure A with 1-bromo pentane (303 mg of ethyl 3-oxohept-6enoate), the product was obtained as an orange liquid ($146 \mathrm{mg}, 0.60 \mathrm{mmol}, 34 \%$) upon purification by column chromatography ($\mathrm{CH}: \mathrm{EtOAc}=100: 0 \rightarrow 85: 15$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.56$ (PE:EtOAc / 90:10, [UV, KMnO_{4}) ; ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] $5.80-5.63(\mathrm{~m}, 1 \mathrm{H}), 5.10-4.98(\mathrm{~m}, 2 \mathrm{H}), 4.19(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{~s}, 2 \mathrm{H}), 2.67(\mathrm{tt}, J=$ $7.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.37$ $(\mathrm{m}, 1 \mathrm{H}), 1.32-1.21(\mathrm{~m}, 6 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}$ ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}] 205.8,167.2,135.3,117.3,61.4,52.2,49.0,35.5,32.0,30.9$, 26.9, 22.6, 14.3, 14.1; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 2959,2929,2858,1742,1717,1642,1465,1411$, 1367, 1313, 1235, 1204, 1154, 1031, 915, 587; HRMS (ESI): [m/z] calculated for [$\left.\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na}\right]$ 263.1623, found 263.1618.
ethyl 4-allyl-2,2-diazido-3-oxononanoate (1c)

$\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{3}$
$322.36 \mathrm{~g} / \mathrm{mol}$

Following the general procedure $\mathbf{B}(140 \mathrm{mg}$ of ethyl 4-allyl-3-oxononanoate, $0.1 \mathrm{M}, 1 \mathrm{~h})$, the product was obtained as a yellow liquid ($115 \mathrm{mg}, 0.35 \mathrm{mmol}, 61 \%$) upon purification by column chromatography $(\mathrm{CH}: E t O A c=90: 10 \rightarrow 96: 4)$.

TLC: $\mathrm{R}_{\mathrm{f}}=0.54$ (PE:EtOAc / 90:10, [UV, $\left.\mathrm{KMnO}_{4}\right]$); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]$ 5.67 (ddt, $J=17.2,10.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-5.02(\mathrm{~m}, 1 \mathrm{H}), 5.06-5.00(\mathrm{~m}, 1 \mathrm{H}), 4.35(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.03-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.18(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{t}, \mathrm{J}=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.30-1.22(\mathrm{~m}, 8 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]$ $201.5,164.4,134.8,117.7,83.3,64.2,46.7,35.8,31.9,31.3,26.7,22.6,14.14,14.10$; IR (ATR): $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]$ 2957, 2930, 2860, 2120, 1754, 1738, 1642, 1446, 1369, 1223, 1152, 1097, 1054, 1020, 919, 855, 833, 778, 727, 620, 547.

Following the general procedure \mathbf{C} (15 mg of ethyl 4-allyl-2,2-diazido-3-oxononanoate, 1 h), the product was obtained as a yellow liquid ($8 \mathrm{mg}, 0.01 \mathrm{mmol}, 30 \%$) upon purification by column chromatography $(\mathrm{CH}: E t O A c=90: 10)$.

TLC: $\mathrm{R}_{\mathrm{f}}=0.14$ (PE:EtOAc / 90:10, [UV, $\left.\mathrm{KMnO}_{4}\right]$); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] 5.85 (ddt, $J=17.2,10.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.16-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.60-4.45(\mathrm{~m}, 2 \mathrm{H}), 3.15-3.09$ $(\mathrm{m}, 1 \mathrm{H}), 2.94-2.86(\mathrm{~m}, 4 \mathrm{H}), 2.75-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.16(\mathrm{~m}, 4 \mathrm{H}), 1.81-1.70(\mathrm{~m}, 4 \mathrm{H})$, $1.44(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.46-1.33(\mathrm{~m}, 12 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.36-1.21(\mathrm{~m}, 8 \mathrm{H})$; ${ }^{13} \mathbf{C - N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 195.5,161.6,146.08,146.06,136.6,136.5,135.3$, $117.5,86.9,64.9,49.5,36.2,32.10,32.08,27.7,26.33,26.29,26.0,25.72,25.70,25.20$, 25.17, 24.5, 22.7, 22.2, 14.4, 14.2, 13.8; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3926,2856,1763,1739,1457$, 1444, 1255, 1238, 1131, 1016, 941, 723; HRMS (ESI): [m/z] calculated for [$\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{Na}$] 561.3529 , found 561.3524 .

ethyl 4-(2-(benzyloxy)ethyl)-3-oxohept-6-enoate

Following the general procedure A with ((bromomethoxy)methyl)benzene (307 mg of ethyl 3-oxohept-6-enoate), the product was obtained as a colorless liquid ($317 \mathrm{mg}, 1.04 \mathrm{mmol}, 57 \%$) upon purification by column chromatography ($\mathrm{PE}: E t O A c=100: 0 \rightarrow 90: 10$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.21$ (PE:EtOAc / 90:10, [UV, $\left.\mathrm{KMnO}_{4}\right]$); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] $7.37-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.71(\mathrm{ddt}, J=16.2,10.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-5.01(\mathrm{~m}, 2 \mathrm{H}), 4.45(\mathrm{~d}, J=$
$2.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.92-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.43-$ $2.34(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}] 205.6,167.2,138.4,135.0,128.5,127.9$, $127.82,127.78,117.6,73.1,67.8,61.3,49.3,49.0,35.8,31.1,14.3$; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3065$, 2980, 2936, 2870, 1802, 1739, 1710, 1641, 1496, 1453, 1410, 1367, 1309, 1235, 1204, 1156, 1097, 1073, 1026, 918, 843, 807, 739, 714, 699, 648, 609, 462; HRMS (ESI): [m/z] calculated for [$\left.\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}\right] 327.1572$ found 327.1567 .
ethyl 2,2-diazido-4-(2-(benzyloxy)ethyl)-3-oxohept-6-enoate (1d)

Following the general procedure B (301 mg of ethyl 4-(2-benzyloxy)ethyl)-3-oxohept-6enoate, $0.1 \mathrm{M}, 1 \mathrm{~h}$), the product was obtained as a yellowish liquid ($182 \mathrm{mg}, 0.60 \mathrm{mmol}, 61 \%$) upon purification by column chromatography $(\mathrm{CH}: \mathrm{EtOAc}=100: 0 \rightarrow 80: 20)$.

TLC: $\mathrm{R}_{\mathrm{f}}=0.42$ (PE:EtOAc / 90:10, [UV, $\left.\mathrm{KMnO}_{4}\right]$); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] $7.34-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.72-5.61(\mathrm{~m}, 1 \mathrm{H}), 5.08-5.02(\mathrm{~m}, 2 \mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.30$ $(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.48-3.37(\mathrm{~m}, 2 \mathrm{H}), 3.26-3.19(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.26-$ $2.20(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR (101 MHz, CDCl_{3}): $\delta[\mathrm{ppm}] 201.3,164.4,138.4,134.4,128.5,127.9,127.81,127.76,118.0$, 83.1, 73.0, 67.4, 64.2, 43.7, 36.0, 31.2, 14.1; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3031,2981,2929,2861$, 2117, 1751, 1641, 1496, 1454, 1415, 1366, 1225, 1155, 1095, 1025, 916, 853, 736, 697, 612, 546, 462.
ethyl 4-(2-(benzyloxy)ethyl)-2,2-bis(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-3-oxohept-6-enoate

$\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}_{4}$
$602.77 \mathrm{~g} / \mathrm{mol}$

Following the general procedure \mathbf{C} (24 mg of ethyl 2,2-diazido-4-(2-benzyloxy)ethyl)-3-oxohept-6-enoat, 1 h), the product was obtained as a yellow liquid ($13 \mathrm{mg}, 0.02 \mathrm{mmol}, 34 \%$) upon purification by column chromatography ($\mathrm{CH}: \mathrm{EtOAc}=90: 10 \rightarrow 70: 30$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.08$ (PE:EtOAc / 90:10, [UV, $\left.\mathrm{KMnO}_{4}\right]$); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] $7.34-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.88-5.76(\mathrm{~m}, 1 \mathrm{H}), 5.11-5.03(\mathrm{~m}, 2 \mathrm{H}), 4.52-4.43(\mathrm{~m}, 4 \mathrm{H}), 3.61-$ $3.51(\mathrm{~m}, 2 \mathrm{H}), 3.28-3.22(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.85(\mathrm{~m}, 4 \mathrm{H}), 2.74-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.54(\mathrm{~m}$, $1 \mathrm{H}), 2.29-2.11(\mathrm{~m}, 4 \mathrm{H}), 2.07-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.44-1.31(\mathrm{~m}, 12 \mathrm{H})$, $1.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 195.5,161.4,146.14,146.09$, 138.6, 136.7, 136.5, 135.1, 128.4, 127.8, 127.7, 117.7, 86.9, 73.0, 67.5, 65.0, 46.6, 36.6, 32.1, $27.68,27.65,26.3,25.73,25.71,25.2,24.5,22.1,13.7$; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 2927,2856,1763$, 1739, 1454, 1370, 1255, 12399, 1096, 1015, 942, 916, 884, 848, 735, 698; HRMS (ESI): [m/z] calculated for [$\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{Na}$] 625.3478, found 625.3473.

ethyl 4-benzyl-3-oxononanoate

$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}$
$260.32 \mathrm{~g} / \mathrm{mol}$
Following the general procedure A with benzyl bromide (500 mg of ethyl 3-oxohept-6enoate), the product was obtained as a yellowish liquid ($458 \mathrm{mg}, 1.76 \mathrm{mmol}, 60 \%$) upon purification by column chromatography ($\mathrm{CH}: \mathrm{EtOAc}=100: 0 \rightarrow 90: 10$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.57$ (PE:EtOAc / 90:10, $\left[\mathrm{KMnO}_{4}\right]$); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 7.29-$ $7.21(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 2 \mathrm{H}), 5.77-7.65(\mathrm{~m}, 1 \mathrm{H}), 5.08-5.04(\mathrm{~m}$, $1 \mathrm{H}), 5.04-4.98(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.23(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.05-2.97(\mathrm{~m}, 1 \mathrm{H})$, $2.93-2.86(\mathrm{~m} 1 \mathrm{H}), 2.77-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{t}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 205.5,166.9,139.1,134.9,129.1,128.7$, 126.6, 117.8, 61.4, 53.7, 50.2, 37.3, 36.6, 14.2; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3078,3028,2981,2931$, $2860,1743,1711,1641,1497,1444,1420,1367,1305,1232,1150,1095,1074,1029,994$, 916, 842, 803, 751, 699, 651, 558, 499; HRMS (ESI): [m/z] calculated for [$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}$] 283.1305 , found 283.1308 .

ethyl 2,2-diazido-4-benzyl-3-oxohept-6-enoate (1e)

Following the general procedure B (400 mg of ethyl 4-benzyl-3-oxononanoate, $0.1 \mathrm{M}, 1 \mathrm{~h}$), the product was obtained as a yellowish liquid ($211 \mathrm{mg}, 0.62 \mathrm{mmol}, 40 \%$) upon purification by column chromatography ($\mathrm{CH}: \mathrm{EtOAc}=90: 10 \rightarrow 90: 10$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.78$ (PE:EtOAc / 90:10, $\left[\mathrm{KMnO}_{4}\right]$); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 7.32-$ $7.25(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.13(\mathrm{~m}, 2 \mathrm{H}), 5.72-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.08-5.08(\mathrm{~m}$, $1 \mathrm{H}), 5.06-5.04(\mathrm{~m}, 1 \mathrm{H}), 4.23-4.17(\mathrm{~m}, 1 \mathrm{H}), 4.17-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.36-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.00$ (dd, $J=13.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=13.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.18$ (m, 1H), 1.26 (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 200.7,164.1,138.6$, $134.3,129.3,128.6,126.8,118.2,83.4,64.2,48.8,37.2,36.7,14.1$; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3080$, 3029, 2983, 2929, 2860, 2118, 1752, 1738, 1641, 1604, 1497, 1454, 1368, 1223, 1096, 1059, 1021, 919, 853, 747, 699, 621, 545, 504.
ethyl enoate

Following the general procedure $\mathbf{C}(48 \mathrm{mg}$ of ethyl 2,2-diazido-4-benzyl-3-oxohept-6-enoate, 1 h), the product was obtained as a yellow liquid ($32 \mathrm{mg}, 0.05 \mathrm{mmol}, 66 \%$) upon purification by column chromatography $(\mathrm{CH}: \mathrm{EtOAc}=75: 25)$.

TLC: $\mathrm{R}_{\mathrm{f}}=0.72\left(\mathrm{PE}: E t O A c / 70: 30,\left[\mathrm{KMnO}_{4}\right]\right) ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 7.30-$ $7.25(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 3 \mathrm{H}), 5.80-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.08-4.99(\mathrm{~m}, 2 \mathrm{H}), 4.57-4.40(\mathrm{~m}$, $2 \mathrm{H}), 3.50-3.38(\mathrm{~m}, 2 \mathrm{H}), 2.98-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.87(\mathrm{~m}, 4 \mathrm{H}), 2.48-2.12(\mathrm{~m}, 6 \mathrm{H}), 1.79$ $-1.71(\mathrm{~m}, 4 \mathrm{H}), 1.43-1.36(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]$ 194.6, 161.5, $146.2,146.1,138.9,136.7,136.6,134.3,129.7,128.5,126.6,118.1,87.0,65.0,51.4,37.3$, $35.0,27.68,27.65,26.32,26.26,25.71,25.70,25.19,25.15,24.48,24.46,22.2,13.8 ;$ IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 2931,2857,2252,1763,1741,1560,1507,1496,1474,1455,1443,1395$, $1371,1399,1255,1172,1144,1083,1013,968,949,918,881,848,821,793,745,701,655$, $628,567,504,461,429$; HRMS (ESI): [m/z] calculated for [$\left.\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{~N}_{6} \mathrm{Na}\right] 581.3216$, found 581.3211.

ethyl 4-(4-fluorobenzyl)-3-oxohept-6-enoate

Following the general procedure A with 4-fluorobenzyl bromide (307 mg of ethyl 3-oxohept-6-enoate), the product was obtained as a yellow liquid ($282 \mathrm{mg}, 1.30 \mathrm{mmol}, 72 \%$) upon purification by column chromatography ($\mathrm{CH}: \mathrm{EtOAc}=100: 0 \rightarrow 85: 15$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.18$ (PE:EtOAc / 90:10, [UV, KMnO_{4})) ${ }^{\mathbf{1}} \mathbf{H - N M R ~ (4 0 0 ~ M H z , ~} \mathrm{CDCl}_{3}$): δ [ppm] $7.13-7.07(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.92(\mathrm{~m}, 2 \mathrm{H}), 5.78-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.10-5.04(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{qd}$, $J=7.1,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.27(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.04-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.74$ - $2.66(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.18(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ [ppm] 205.3, 166.8, 134.6, 130.6, 130.5, 118.0, 115.6, 115.4, 61.4, 53.7, $50.2,36.3,35.6,14.2$; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3078,2981,2932,2871,1743,1411,1642,1509$, 1445, 1417, 1367, 1307, 1220, 1157, 1094, 1030, 994, 919, 822, 761, 739, 646, 537, 498; HRMS (ESI): [m/z] calculated for [$\left.\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{FO}_{3} \mathrm{Na}\right]$ 301.1216, found 301.1210.

ethyl 2,2-diazido-4-(4-fluorobenzyl)-3-oxohept-6-enoate (1f)

Following the general procedure B (866 mg of ethyl 3-(4-fluorobenzyl)-3-oxohept-6-enoate, $0.1 \mathrm{M}, 1 \mathrm{~h}$), the product was obtained as a yellowish liquid ($423 \mathrm{mg}, 1.17 \mathrm{mmol}, 38 \%$) upon purification by column chromatography ($\mathrm{CH}: E t O A c=90: 10 \rightarrow 80: 20$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.61$ (PE:EtOAc / 90:10, [UV, $\left.\mathrm{KMnO}_{4}\right]$); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] $7.13-7.07(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.93(\mathrm{~m}, 2 \mathrm{H}), 5.68(\mathrm{ddt}, J=16.7,10.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-5.07$ $(\mathrm{m}, 1 \mathrm{H}), 5.07-5.03(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{dq}, J=9.0,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.33-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.93$ $(\mathrm{m}, 1 \mathrm{H}), 2.69-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}$, 3H); ${ }^{13} \mathbf{C - N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 200.6,164.1,134.1,130.8,130.7,118.3,115.5$, $115.3,83.3,64.3,48.8,36.3,35.7,14.1$; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 2985,2102,1676,1514,1410$, $1346,1272,1223,1195,1150,1018,965,860,805,780,696,637,587,518,486,416$.
ethyl

Following the general procedure \mathbf{C} (22 mg of ethyl 2,2-diazido-4-(4-fluorobenzyl)-3-oxohept6 -enoate, 1 h), the product was obtained as a yellow liquid ($11 \mathrm{mg}, 0.01 \mathrm{mmol}, 31 \%$) upon purification by column chromatography ($\mathrm{CH}: \mathrm{EtOAc}=90: 10 \rightarrow 70: 30$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.16$ (PE:EtOAc / 90:10, [UV, $\left.\mathrm{KMnO}_{4}\right]$); ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] $7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.99-6.93(\mathrm{~m}, 2 \mathrm{H}), 5.78-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.11-5.04(\mathrm{~m}, 1 \mathrm{H}), 5.01(\mathrm{dq}$, $J=17.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{dq}, J=10.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{dq}, J=10.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-$ $3.35(\mathrm{~m}, 2 \mathrm{H}), 2.98-2.84(\mathrm{~m}, 5 \mathrm{H}), 2.43-2.22(\mathrm{~m}, 4 \mathrm{H}), 2.23-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.70(\mathrm{~m}$, $4 \mathrm{H}), 1.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.51-1.31(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]$ 194.5, 161.4, 146.3, 146.2, 136.8, 136.5, 134.5, 134.1, 131.24, 131.16, 118.2, 115.4, 115.2, $87.0,65.1,51.5,36.4,35.0,25.7,24.5,22.2,13.8$; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 2927,2856,1763$, $1740,1509,1443,1371,1255,1221,1158,1144,1093,1014,941,921,881,844,815,793$, 545; HRMS (ESI): [m/z] calculated for [$\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{FN}_{6} \mathrm{O}_{3} \mathrm{Na}$] 599.3122, found 599.3116.

ethyl 3-oxo-4-phenylhept-6-enoate

Following the general procedure A with allyl bromide (956 mg of ethyl 3-oxo-4phenylbutanoat), the product was obtained as a colorless liquid ($783 \mathrm{mg}, 3.18 \mathrm{mmol}, 69 \%$) upon purification by column chromatography ($\mathrm{PE}: \mathrm{EtOAc}=100: 0 \rightarrow 80: 20$). The analytical data corresponds with the previously published data. ${ }^{[2]}$

TLC: $\mathrm{R}_{\mathrm{f}}=0.35$ (PE:EtOAc / 90:10, $\left[\mathrm{KMnO}_{4}\right]$); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 7.36-$ $7.26(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 2 \mathrm{H}), 5.66(\mathrm{ddt}, J=17.1,10.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-4.99(\mathrm{~m}, 1 \mathrm{H})$, $4.96(\mathrm{dq}, J=10.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.41(\mathrm{~d}, J=15.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{ddt}, J=14.3,7.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.40(\mathrm{~m}, 1 \mathrm{H})$, $1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 201.8,167.1,137.4,135.5$, 129.2, 128.7, 127.8, 117.0, 61.4, 58.9, 48.3, 36.3, 14.2; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3064,3029,2981$, 2937, 2913, 1742, 1713, 1642, 1494, 1454, 1409, 1367, 1311, 1234, 1148, 1096, 1075, 1030, 997, 916, 846, 749, 700, 644, 581, 540, 495, 450; HRMS (ESI): [m/z] calculated for [$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}$] 269.1148, found 269.1141.

ethyl 2,2-diazido-3-oxo-4-phenylhept-6-enoate (1g)

$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{3}$
$328.33 \mathrm{~g} / \mathrm{mol}$
Following the general procedure $\mathbf{B}(605 \mathrm{mg}$ of ethyl 3-oxo-4-phenylhept-6-enoate, $0.1 \mathrm{M}, 4$ h), the product was obtained as a colorless liquid ($445 \mathrm{mg}, 1.38 \mathrm{mmol}, 69 \%$) upon purification by column chromatography ($\mathrm{PE}: \mathrm{EtOAc}=100: 0 \rightarrow$ 95:5).

TLC: $\mathrm{R}_{\mathrm{f}}=0.64$ (PE:EtOAc / 90:10, $\left[\mathrm{KMnO}_{4}\right]$); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 7.35-$ $7.29(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 3 \mathrm{H}), 5.66-5.55(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{dq}, J=17.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.99$ $(\mathrm{dq}, J=10.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dq}, J=10.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dq}, J$ $=10.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.44(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (101 MHz, CDCl_{3}): δ [ppm] 197.8, 163.9, 136.4, 134.6, 129.0, 128.7, 128.0, 117.8, 83.3, 64.0, 53.4, 38.4, 13.8; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3066,3031,2983,2940,2117,1754,1739$, $1642,1600,1493,1455,1368,1223,1097,1056,1030,994,918,854,824,743,698,645$, 617, 553, 507, 462.
ethyl enoate

$\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{3}$
$544.69 \mathrm{~g} / \mathrm{mol}$
Following the general procedure \mathbf{C} (67 mg of ethyl 2,2-diazido-3-oxo-4-phenylhept-6-enoate, 16 h), the product was obtained as a viscous liquid ($102 \mathrm{mg}, 0.19 \mathrm{mmol}, 92 \%$) upon purification by column chromatography $(\mathrm{CH}: \mathrm{EtOAc}=80: 20)$.

TLC: $\mathrm{R}_{\mathrm{f}}=0.34$ (PE:EtOAc / 80:20, [KMnO_{4}]); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 7.27-$ 7.20 (m, 5H), 5.49 (ddt, $J=17.1,10.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-4.93(\mathrm{~m}, 1 \mathrm{H}), 4.89-4.84(\mathrm{~m}, 1 \mathrm{H})$, $4.17(\mathrm{dq}, ~ J=10.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.25(\mathrm{~m}, 1 \mathrm{H}), 3.07-2.97(\mathrm{~m}$, $1 \mathrm{H}), 2.96-2,87(\mathrm{~m}, 2 \mathrm{H}), 2.87-2.77(\mathrm{~m}, 4 \mathrm{H}), 2.58-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.18$ $-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.54(\mathrm{~m}, 6 \mathrm{H}), 1.54-1.38(\mathrm{~m}, 5 \mathrm{H}), 1.37-1.26(\mathrm{~m}$, $4 \mathrm{H}), 1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 193.7,160.8,146.2$, $145.9,139.2,136.9,136.3,134.7,128.6,128.0,127.5,117.7,86.4,64.3,60.5,57.0,40.7$, 27.6, 25.6, 25.2, 24.42, 24.39, 22.0, 14.3, 13.0; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 2928,2856,1764,1740$, $1641,1568,1455,1443,1371,1237,1133,1116,1078,1045,1019,999,945,916,849,805$, 748, 722, 700, 649, 606, 561, 504, 462; HRMS (ESI): [m/z] calculated for [$\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{~N}_{6} \mathrm{Na}$] 567.3054, found 567.3055.
ethyl 4-([1,1'-biphenyl]-2-yl)-3-oxohept-6-enoate

$\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{3}$
$322.40 \mathrm{~g} / \mathrm{mol}$

Following the general procedure A allyl bromide (560 mg of ethyl 4-([1,1'-biphenyl]-2-yl)-3oxobutanoate), the product was obtained as a yellow liquid ($445 \mathrm{mg}, 31.38 \mathrm{mmol}, 69 \%$) upon purification by column chromatography ($\mathrm{PE}: \mathrm{EtOAc}=100: 0 \rightarrow 95: 5$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.49$ (PE:EtOAc / 90:10, [UV, $\left.\mathrm{KmnO}_{4}\right]$); ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] 7.49 - 7.37 (m, 3H), 7.38 - 7.26 (m, 5H), $7.23-7.16$ (m, 1H), 5.62 (ddt, $J=17.1,10.1,7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.00-4.88(\mathrm{~m}, 2 \mathrm{H}), 4.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{qd}, J=7.1,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.16(\mathrm{~d}$, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.87-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.37(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}] 201.7,166.9,142.9,141.0,135.6,135.2,130.8,129.5,128.5$, $128.4,127.58,127.56,127.5,17.0,61.3,54.3,48.3,36.5,14.1$; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3061$, 2980, 2935, 1742, 1714, 1641, 1478, 1307, 1246, 1147, 1032, 915, 752, 703, 556, 528; HRMS (ESI): [m/z] calculated for [$\left.\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}\right]$ 345.1467, found 345.1461.

ethyl 4-([1,1'-biphenyl]-2-yl)-2,2-diazido-3-oxohept-6-enoate (1h)

$\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{3}$
$404.42 \mathrm{~g} / \mathrm{mol}$
Following the general procedure B (445 mg of ethyl 4-([1,1'-biphenyl]-2-yl)-3-oxohept-6enoate, $0.1 \mathrm{M}, 1 \mathrm{~h}$), the product was obtained as a yellow liquid ($280 \mathrm{mg}, 0.69 \mathrm{mmol}, 50 \%$) upon purification by column chromatography ($\mathrm{PE}: E t O A c=100: 0 \rightarrow 85: 15$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.36$ (PE:EtOAc / 90:10, [UV, $\left.\mathrm{KmnO}_{4}\right]$); ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] $7.50-7.28(\mathrm{~m}, 8 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 5.57$ (ddt, $J=17.1,10.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-4.92$ (m, 2H), 4.41 (dd, $J=9.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dq}, J=10.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dq}, J=10.7,7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.88-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.35(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(101$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 198.4,163.7,142.8,140.9,134.8,133.9,131.1,129.4,128.3,127.8$, 127.7, 127.6, 127.3, 117.5, 83.0, 63.9, 49.2, 38.5, 13.9; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3062,2983,2123$, $1736,1641,1478,1438,1393,1372,1232,1097,1045,1010,918,850,775,754,703,634$, 607, 545, 507, 462.
ethyl 4-([1,1'-biphenyl]-2-yl)-2,2-bis(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-3-oxohept-6-enoate

$\mathrm{C}_{37} \mathrm{H}_{44} \mathrm{~N}_{6} \mathrm{O}_{3}$
$620.78 \mathrm{~g} / \mathrm{mol}$
Following the general procedure \mathbf{C} (21 mg of ethyl 4-([1,1'-biphenyl]-2-yl)-2,2-diazido-3-oxohept-6-enoate, 16 h), the product was obtained as a yellow liquid ($20 \mathrm{mg}, 0.03 \mathrm{mmol}, 61 \%$) upon purification by column chromatography $(\mathrm{CH}: \mathrm{EtOAc}=100: 0 \rightarrow 90: 10)$.

TLC: $\mathrm{R}_{\mathrm{f}}=0.38$ (PE:EtOAc / 80:20, [UV, $\left.\mathrm{KmnO}_{4}\right]$); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] 7.58 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ (td, $\mathrm{J}=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.17$ (m, 6H), $7.11-7.09$ (m, $1 \mathrm{H}), 5.53$ (ddt, $J=17.3,10.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.88-4.83(\mathrm{~m}, 2 \mathrm{H}), 4.19-4.10(\mathrm{~m}, 2 \mathrm{H}), 2.95-$ $2.79(\mathrm{~m}, 6 \mathrm{H}), 2.78-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.06(\mathrm{~m}$, $1 \mathrm{H}), 2.01-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.51(\mathrm{~m}, 8 \mathrm{H}), 1.49-1.40(\mathrm{~m}, 3 \mathrm{H}), 1.40-1.23(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathbf{C}-$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}] 193.9,160.8,146.0,145.9,136.9,136.6,136.2,135.1$, $130.5,129.8,127.9,127.8,127.2,127.0,117.3,86.5,64.3,51.6,41.6,27.8,27.7,26.6,26.4$, 25.72, 25.67, 25.23, 25.20, 24.4, 22.2, 22.0, 13.3; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 2927,2856,2236,1764$, 1736, 1477, 1440, 1256, 1238, 908, 727, 702, 646; HRMS (ESI): [m/z] calculated for $\left[\mathrm{C}_{3} \mathrm{H}_{45} \mathrm{~N}_{6} \mathrm{O}_{3}\right] 621.3553$, found 621.3548 .
ethyl 4-(2-bromophenyl)-3-oxohept-6-enoate

$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{BrO}_{3}$
$325.20 \mathrm{~g} / \mathrm{mol}$

Following the general procedure \mathbf{A} allyl bromide (3.000 g of ethyl 4-(2-bromophenyl)-3oxobutanoate), the product was obtained as an orange liquid ($2.073 \mathrm{~g}, 6.37 \mathrm{mmol}, 61 \%$) upon purification by column chromatography ($\mathrm{PE}: \mathrm{EtOAc}=100: 0 \rightarrow 94: 6$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.43$ (PE:EtOAc / 95:5, [UV, KmnO4]); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{CDCl} 3): \delta$ [ppm] 7.61-7.58 (m, 1H), 7.30-7.26 (m, 1H), 7.15-7.10 (m, 2H), 5.73-5.63 (m, 1H), 5.00 (ddd, J $=17.1,3.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{ddd}, J=10.2,2.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.11$ (qd, $J=7.2,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.77(\mathrm{~m}$, $1 \mathrm{H}), 2.43$ (dtt, $J=14.6,7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}$ (101 MHz , $\mathrm{CDCl} 3): \delta[\mathrm{ppm}] 201.6,166.9,137.0,134.8,133.5,129.32,129.26,128.2,125.6,117.3,61.4$, 57.0, 48.4, 35.8, 14.1; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3076,2981,2935,1743,1715,1642,1470,1438$, 1367, 1308, 1230, 1147, 1111, 1096, 995, 846, 751, 664, 582, 452; HRMS (ESI): [m/z] calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{NaBr}\right]$ 347.0253, found 347.0252.

ethyl 2,2-diazido-4-(2-bromophenyl)-3-oxohept-6-enoate (1i)

$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{BrN}_{6} \mathrm{O}_{3}$
$407.22 \mathrm{~g} / \mathrm{mol}$
Following the general procedure B (1.500 g of ethyl 4-(2-bromophenyl)-3-oxohept-6-enoate, $0.1 \mathrm{M}, 90 \mathrm{~min}$), the product was obtained as a yellow liquid ($1.321 \mathrm{~g}, 3.24 \mathrm{mmol}, 70 \%$) upon purification by column chromatography ($\mathrm{PE}: \mathrm{EtOAc}=100: 0 \rightarrow 85: 15$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.48$ (PE:EtOAc / 90:10, [UV, $\left.\mathrm{KmnO}_{4}\right]$); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] 7.60 (dd, $J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=8.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 1 \mathrm{H})$, 5.68 (ddt, $J=17.1,10.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.07-5.03(\mathrm{~m}, 1 \mathrm{H}), 5.02-4.99(\mathrm{~m}, 1 \mathrm{H}), 4.84(\mathrm{dd}, J=8.2,6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.16$ (dqd, $J=10.7,7.1,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dqd}, J=10.7,7.1,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.68(\mathrm{~m}$, $1 \mathrm{H}), 2.46-2.39(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{td}, J=7.2,0.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]$ 197.9, 163.7, 136.1, 134.0, 133.6, 129.3, 128.7, 127.9, 125.3, 118.1, 83.2, 64.2, 51.8, 38.1, 13.9; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3078,2984,2940,2115,1741,1642,1471,1439,1223,1021,99,821,653$, 452.
ethyl

Following the general procedure C (50 mg of ethyl 2,2,-diazido-4-(2-bromophenyl)-3-oxohept-6-enoate, 16 h), the product was obtained as a viscous liquid ($61 \mathrm{mg}, 0.10 \mathrm{mmol}$, 80%) upon purification by column chromatography $(\mathrm{CH}: E t O A c=100: 0 \rightarrow 80: 20)$.

TLC: $\mathrm{R}_{\mathrm{f}}=0.52$ (PE:EtOAc / 80:20, [UV, KmnO4]); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] $7.67(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{td}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.05 (ddd, $J=8.0,7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.64 (td, $J=17.0,10.1,7.3,1 \mathrm{H}$), 4.99 (dd, $J=10.1,3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.94-4.86(\mathrm{~m}, 2 \mathrm{H}), 4.29(\mathrm{dq}, \mathrm{J}=10.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.33(\mathrm{~m}, 2 \mathrm{H}), 2.95-2.82$ (m, 4H), 2.60-2.53 (m, 1H), 2.33 (ddd, $J=16.1,9.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.08$ (ddd, $J=16.2,7.6$, $3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.61(\mathrm{~m}, 8 \mathrm{H}), 1.51-1.21(\mathrm{~m}, 8 \mathrm{H}), 1.17-1.09(\mathrm{~m}, 1 \mathrm{H}), 0.98-0.93(\mathrm{~m}$, $1 \mathrm{H}), 0.80(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 139.8,160.4,146.4$, 146.0, 138.7, 137.1, 136.4, 133.8, 132.7, 128.7, 128.1, 125.0, 118.0, 86.8, 64.6. 54.0, 41.7, $27.63,27.58,26.21,26.16,25.8,25.7,25.2,25.1,24.5,22.1,22.0,12.9$; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]$ 2928, 2856, 1769, 1743, 1458, 1370, 1238, 1144, 1020, 850, 728, 659, 457; HRMS (ESI): $[\mathrm{m} / \mathrm{z}]$ calculated for $\left[\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{Br}\right]$ 623.2340, found 623.2359.

ethyl 3-oxooct-6-enoate

Following the general procedure $\mathbf{A}(3.000 \mathrm{~mL}$ of ethyl acetoacetate), the product was obtained as an amber colored liquid ($2.868 \mathrm{~g}, 15.57 \mathrm{mmol}, 66 \%$) upon purification by column chromatography (PE:EtOAc $=100: 0 \rightarrow 88: 12$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.36$ (PE:EtOAc / 90:10, $\left[\mathrm{KMnO}_{4}\right]$); ${ }^{1} \mathbf{H - N M R ~ (4 0 0 ~ M H z , ~} \mathrm{CDCl}_{3}$): δ [ppm] 5.49 $5.32(\mathrm{~m}, 2 \mathrm{H}), 4.16(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{~s}, 2 \mathrm{H}), 2.57(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.28-2.21(\mathrm{~m}$, $2 \mathrm{H}), 1.63-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]$ 202.4, 167.3, 129.1, 126.3, 61.4, 49.4, 42.9, 26.5, 17.9, 14.2; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 2982,2937$, 2920, 2858, 1741, 1714, 1647, 1444, 1410, 1367, 1310, 1234, 1188, 1150, 1095, 1032, 967, 843, 803, 739, 704, 650, 587, 507, 443, 431; HRMS (ESI): [m/z] calculated for [$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}$] 207.0992, found 207.0989.

ethyl 2,2-diazido-3-oxooct-6-enoate (1j)

Following the general procedure \mathbf{B} with crotyl bromide (500 mg of ethyl 3-oxooct-6-enoate, $0.1 \mathrm{M}, 45 \mathrm{~min}$), the product was obtained as a colorless liquid ($684 \mathrm{mg}, 8.14 \mathrm{mmol}, 60 \%$) upon purification by column chromatography ($\mathrm{PE}: \mathrm{EtOAc}=100: 0 \rightarrow 97: 3$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.85$ (PE:EtOAc / 90:10, $\left[\mathrm{KMnO}_{4}\right]$); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 5.53-$ $5.43(\mathrm{~m}, 1 \mathrm{H}), 5.41-5.32(\mathrm{~m}, 1 \mathrm{H}), 4.36(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.32-$ $2.25(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.34(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] 197.7, 164.4, 128.6, 126.9, 83.2, 64.2, 37.6, 26.4, 18.0, 14.1; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 2985$, 2969, 2940, 2920, 2858, 2113, 1744, 1446, 1398, 1369, 1222, 1097, 1046, 1014, 966, 853, 749, 699, 627, 555, 508, 447.
ethyl 2,2-bis(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-3-oxooct-6-enoate

Following the general procedure \mathbf{C} (100 mg of ethyl 2,2-diazido-3-oxooct-6-enoate, 4 h), the product was obtained as a viscous liquid ($147 \mathrm{mg}, 0.30 \mathrm{mmol}, 81 \%$) upon purification by column chromatography ($\mathrm{CH}: E t O A c=100: 0 \rightarrow 80: 20$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.62$ (PE:EtOAc / 80:20, [UV, $\left.\mathrm{KMnO}_{4}\right]$); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] $5.54-5.37(\mathrm{~m}, 2 \mathrm{H}), 4.50(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.95-2.84(\mathrm{~m}, 6 \mathrm{H}), 2.55-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.21$ - $2.13(\mathrm{~m}, 4 \mathrm{H}), 1.75-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.65-1-60(\mathrm{~m}, 3 \mathrm{H}), 1.41-1.28(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR (101 MHz, CDCl_{3}): $\delta[\mathrm{ppm}] 191.9,161.8,146.1,136.6,129.1,126.6,86.3,64.8,41.7,28.5$, 27.6, 26.2, 25.7, 25.0, 24.4, 22.0, 17.9, 13.8; IR (ATR): $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right] 2927,2856,1769,1566$, $1443,1341,1254,1173,1143,1128,1086,1045,1017,966,939,915,848,794,757,731$, 708, 687, 635, 607, 556, 502, 462; HRMS (ESI): [m/z] calculated for $\left[\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{~N}_{6} \mathrm{Na}\right.$] 505.2898, found 505.2904.

ethyl 4-benzyl-3-oxooct-6-enoate

$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3}$
$274.35 \mathrm{~g} / \mathrm{mol}$
Following the general procedure A with benzyl bromide (1.000 g of ethyl 3-oxooct-6-enoate), the product was obtained as a red liquid $(1.057 \mathrm{~g}, 3.85 \mathrm{mmol}, 71 \%)$ upon purification by column chromatography ($\mathrm{PE}: E t O A c=95: 5 \rightarrow 92: 8$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.51$ (PE:EtOAc / 90:10, [UV, KMnO_{4}]); ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] $7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 2 \mathrm{H}), 5.53-5.45(\mathrm{~m}, 1 \mathrm{H}), 5.38-$ $5.32(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{q}, \mathrm{J}=15.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.01-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.87$ (m, 1H), $2.74-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.63(\mathrm{~m}, 3 \mathrm{H})$, 1.23 (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 205.7,166.9,139.3$, 129.1, 128.6, 128.5, 127.2, 126.5, 61.3, 54.1, 50.2, 37.2, 34.5, 18.0, 14.2; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3086$, 3063, 3027, 2981, 2936, 2918, 2856, 1744, 1711, 1645, 1627, 1604, 1496, 1454, 1444, 1422, 1367, 1305, 1231, 1148, 1114, 1095, 1075, 1030, 967, 916, 841, 803, 750, 699, 655, 590, 561, 492; HRMS (ESI): [m/z] calculated for [$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}$] 297.1461, found 297.1462.

ethyl 2,2-diazido-4-benzyl-3-oxooct-6-enoate (1k)

$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{3}$
$356.38 \mathrm{~g} / \mathrm{mol}$

Following the general procedure \mathbf{B} (500 mg of ethyl 4-benzyl-3-oxooct-6-enoate, $0.1 \mathrm{M}, 2 \mathrm{~h}$), the product was obtained as a yellowish liquid ($459 \mathrm{mg}, 1.15 \mathrm{mmol}, 63 \%$) upon purification by column chromatography ($\mathrm{PE}: E t O A c=100: 0 \rightarrow 94: 6$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.80$ (PE:EtOAc / 90:10, [UV, $\left.\mathrm{KMnO}_{4}\right]$); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] $7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 2 \mathrm{H}), 5.53-5.42(\mathrm{~m}, 1 \mathrm{H}), 5.35-$ $5.25(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.33-3.25(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=13.7,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.67$ (dd, $J=13.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{dd}, J=6.8,1.4 \mathrm{~Hz}$, $3 \mathrm{H}), 1.26(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 200.8,164.1,138.9$, 129.3, 129.0, 128.6, 126.70, 126.66, 83.3, 64.2, 49.2, 37.1, 34.7, 18.1, 14.1; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-}\right.$ ${ }^{1}$] 3028, 2983, 2939, 2919, 2857, 2118, 1752, 1738, 1604, 1497, 1445, 1368, 1223, 1096, 1077, 1056, 1022, 966, 923, 854, 834, 746, 699, 545, 496.
ethyl 4-benzyl-2,2-bis(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-3-oxooct-6enoate

$\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{~N}_{6} \mathrm{O}_{3}$ $572.74 \mathrm{~g} / \mathrm{mol}$

Following the general procedure \mathbf{C} (53 mg of ethyl 2,2-diazido-4-benzyl-3-oxooct-6-enoate, 16 h), the product was obtained as a viscous liquid ($59 \mathrm{mg}, 0.10 \mathrm{mmol}, 69 \%$) upon purification by column chromatography $(\mathrm{CH}: \mathrm{EtOAc}=90: 10 \rightarrow 80: 20)$.

TLC: $\mathrm{R}_{\mathrm{f}}=0.37$ (PE:EtOAc / 80:20, [UV, KMnO_{4}]); ${ }^{\mathbf{1}} \mathbf{H - N M R ~ (6 0 0 ~ M H z , ~} \mathrm{CDCl}_{3}$): δ [ppm] $7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 1 \mathrm{H}), 5.45-5.38(\mathrm{~m}, 1 \mathrm{H}), 5.36-$ $5.30(\mathrm{~m}, 1 \mathrm{H}), 4.55-4.49(\mathrm{~m}, 1 \mathrm{H}), 4.47-4.39(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.35(\mathrm{~m}, 2 \mathrm{H}), 2.98-2.86(\mathrm{~m}$, $5 \mathrm{H}), 2.38-2.26(\mathrm{~m}, 4 \mathrm{H}), 2.25-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.63(\mathrm{dd}, J=6.3,1.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.46-1.33(\mathrm{~m}, 13 \mathrm{H}), 1.27-1.15(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] 194.7, 161.5, 146.2, 146.1, 139.1, 136.7, 136.5, 129.8, 128.7, 128.4, 126.7, 126.5, 87.0, 64.9, 51.7, 37.3, 34.0, 27.7, 27.6, 26.31, 26.25, 25.7, 25.19, 25.16, 24.5, 24.4, 22.2, 22.1, 18.1, 13.8; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] ~ 2928,2855,1763,1739,1559,1507,1455,1371,1255,1237,1144,1077$, 1045, 1014, 967, 951, 935, 900, 848, 743, 700, 570; HRMS (ESI): [m/z] calculated for [$\left.\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{O}_{3} \mathrm{~N} 6 \mathrm{Na}\right]$ 595.3367, found 595.3364.

ethyl 3-oxododec-6-enoate

Following the general procedure $\mathbf{A}(1.350 \mathrm{~g}$ of ethyl acetoacetate), the product was obtained as a yellow liquid ($1.802 \mathrm{~g}, 7.49 \mathrm{mmol}, 69 \%$) upon purification by column chromatography ($\mathrm{PE}: \mathrm{EtOAc}=90: 10 \rightarrow 80: 20$).

TLC: $\mathrm{Rf}_{\mathrm{f}}=0.34$ (PE:EtOAc / 90:10, [UV, $\left.\mathrm{KmnO}_{4}\right]$); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] $5.48-5.42(\mathrm{~m}, 1 \mathrm{H}), 5.40-5.34(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{~s}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 2H), 2.31-2.26(m, 2H), 1.98-1.93(m, 2H), 1.30-1.23(m, 9H), $0.87(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}$ (151 MHz, CDCl_{3}): δ [ppm] 202.3, 167.2, 132.0, 127.8, 61.4, 49.4, 43.0, 32.5, 31.4, 29.2, 26.6, 22.6, 14.2, 14.1; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 2957,2926,2856,1742,1716,1648,1466,1444$, 1410, 1367, 1312, 1232, 1182, 1150, 1096, 1032, 969; HRMS (ESI): [m/z] calculated for [$\left.\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na}\right]$ 263.1623, found 263.1618.

ethyl 2,2-diazido-3-oxododec-6-enoate (11)

Following the general procedure B 1-bromooct-2-ene (253 mg of ethyl 3-oxododec-6-enoate, $0.1 \mathrm{M}, 1 \mathrm{~h}$), the product was obtained as a yellow liquid ($214 \mathrm{mg}, 0.66 \mathrm{mmol}, 63 \%$) upon purification by column chromatography ($\mathrm{PE}: \mathrm{EtOAc}=100: 0 \rightarrow 94: 6$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.50$ (PE:EtOAc / 90:10, [UV, $\left.\mathrm{KmnO}_{4}\right]$); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]$ $5.51-5.42(\mathrm{~m}, 1 \mathrm{H}), 5.39-5.29(\mathrm{~m}, 1 \mathrm{H}), 4.36(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.31-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.38-1.20(\mathrm{~m}, 8 \mathrm{H}), 0.88$ ($\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 197.7,164.4,132.6,127.2,83.2$, 64.2, 37.7, 32.6, 31.5, 29.2, 27.3, 26.4, 22.7, 14.2; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 2958,2927,2857$, $2114,1745,1488,1465,1457,1446,1396,1369,1226,1097,1048,1017,969,853,727,608$, 555, 444.
ethyl 2,2-bis(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-3-oxododec-6-enoate

Following the general procedure \mathbf{C} (17 mg of ethyl 2,2-diazido-3-oxododec-6-enoate, 1 h), the product was obtained as a yellow liquid ($3 \mathrm{mg}, 0.006 \mathrm{mmol}, 11 \%$) upon purification by column chromatography ($\mathrm{CH}: E t O A c=90: 10 \rightarrow 70: 30$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.20$ (PE:EtOAc / 90:10, [UV, $\left.\mathrm{KmnO}_{4}\right]$); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] $5.52-5.45(\mathrm{~m}, 1 \mathrm{H}), 5.44-5.39(\mathrm{~m}, 1 \mathrm{H}), 4.51(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.96-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.87$ (dd, $J=7.6,5.8 \mathrm{~Hz}, 5 \mathrm{H}$), 2.52 (dd, $J=14.5,7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 2.18 ($\mathrm{s}, 4 \mathrm{H}$), $1.95(\mathrm{td}, J=7.4,0.8$
$\mathrm{Hz}, 2 \mathrm{H}$), $1.72(\mathrm{sb}, 5 \mathrm{H}), 1.41-1.29(\mathrm{~m}, 19 \mathrm{H}), 0.86(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(101 \mathrm{MHz}$, CDCl_{3} : δ [ppm] 191.9, 161.8, 146.1, 136.7, 132.3, 127.8, 86.4, 64.8, 41.8, 32.6, 31.5, 29.2, 28.6, 27.7, 26.2, 25.8, 25.1, 24.4, 22.7, 22.0, 14.2, 13.9; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 2927,2855,2240$, 1770, 1748, 1565, 1458, 1444, 1371, 1256, 1133, 1090, 1019, 906, 849, 727, 647; HRMS (ESI): [m/z] calculated for [$\left.\mathrm{C}_{3} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{Na}\right] 561.3529$, found 561.3524.

ethyl 4-benzyl-3-oxododec-6-enoate

Following the general procedure A with benzyl bromide (302 mg of ethyl 4-benzyl-3-oxooct6 -enoate), the product was obtained as an orange liquid ($359 \mathrm{mg}, 1.08 \mathrm{mmol}, 92 \%$) upon purification by column chromatography ($\mathrm{PE}: \mathrm{EtOAc}=100: 0 \rightarrow 95: 5$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.53$ (PE:EtOAc / 90:10, [UV, $\left.\mathrm{KmnO}_{4}\right]$); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] $7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 2 \mathrm{H}), 5.51-5.42(\mathrm{~m}, 1 \mathrm{H}), 5.35-5.27$ (m, 1H), 4.16-4.08 (m, 2H), $3.26(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{dd}, J=13.3$, $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.21(\mathrm{~m}$, $10 \mathrm{H}), 0.88(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 205.7,167.0,139.4$, $134.4,129.1,128.7,126.5,125.9,61.3,54.2,50.2,37.1,34.6,32.6,31.5,29.2,22.6,14.21$, 14.17; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3028,2956,2925,2872,1745,1713,1646,1627,1605,1496$, 1455, 1367, 1304, 1230, 1148, 1095, 1075, 1030, 970, 842, 802, 750, 736, 699, 497; HRMS (ESI): [m/z] calculated for [$\left.\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Na}\right]$ 353.2093, found 353.2087.

ethyl 2,2-diazido-3-oxododec-6-enoate (1m)

Following the general procedure $\mathbf{B}(1.369 \mathrm{~g}$ of ethyl 4-benzyl-3-oxododec-6-enoate, $0.1 \mathrm{M}, 1$ h), the product was obtained as a yellow liquid ($1.329 \mathrm{~g}, 3.00 \mathrm{mmol}, 73 \%$) upon purification by column chromatography ($\mathrm{CH}: \mathrm{EtOAc}=100: 0 \rightarrow 90: 10$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.54$ (PE:EtOAc / 90:10, [UV, $\left.\mathrm{KmnO}_{4}\right]$); ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] $7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.13(\mathrm{~m}, 2 \mathrm{H}), 5.51-5.44(\mathrm{~m}, 1 \mathrm{H}), 5.33-$ $5.25(\mathrm{~m}, 1 \mathrm{H}), 4.23-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.33-3.27(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=13.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.70$ (dd, $J=13.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.96(\mathrm{~m}, 2 \mathrm{H})$, 1.38 - 1.24 (m, 9H), 0.89 (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 200.7$, 164.1, 138.9, 134.8, 129.3, 128.6, 126.6, 125.3, 83.3, 64.2, 49.3, 37.0, 34.8, 32.7, 31.5, 29.1, 22.6, 14.2, 14.1; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]$ 2957, 2926, 2856, 2124, 1741, 1715, 1647, 1604, 1497, $1455,1368,1228,1152,1095,1029,970,922,852,803,746,699,545,502$.

tert-butyl 3-oxohept-6-enoate

Following the general procedure \mathbf{A} with allyl bromide (3.37 mL of ethyl tert-butyl acetoacetate), the product was obtained as a yellowish liquid ($3.101 \mathrm{~g}, 15.64 \mathrm{mmol}, 77 \%$) upon purification by column chromatography ($\mathrm{PE}: \mathrm{EtOAc}=100: 0 \rightarrow 90: 10$). The analytical data corresponds with the previously published data. ${ }^{[3]}$

TLC: $\mathrm{R}_{\mathrm{f}}=0.57$ (PE:EtOAc / 95:5, [$\left.\mathrm{KMnO}_{4}\right]$); ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 5.77$ (ddt, $J=17.1,10.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dq}, J=17.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{dq}, J=10.2,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.31(\mathrm{~s}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.35-2.27(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(101$
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 202.5,166.4,136.8,115.5,82.0,50.7,42.0,28.0,27.5$; IR (ATR): \tilde{v} [$\left.\mathrm{cm}^{-1}\right]$ 3080, 2980, 2933, 1734, 1713, 1642, 1368, 1318, 1251, 1145, 1090, 914, 837; HRMS (ESI): [m/z] calculated for [$\left.\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}\right]$ 221.1148, found 221.1153.

tert-butyl 2,2-diazido-3-oxohept-6-enoate (1n)

Following the general procedure $\mathbf{B}(1.500 \mathrm{~g}$ of tert-butyl 3-oxohept-6-enoate, $0.1 \mathrm{M}, 1 \mathrm{~h}$), the product was obtained as a yellowish liquid ($1.236 \mathrm{~g}, 4.41 \mathrm{mmol}, 58 \%$) upon purification by column chromatography ($\mathrm{CH}: E t O A c=100: 0 \rightarrow 90: 10$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.87$ (PE:EtOAc / 90:10, [KMnO4]); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 5.78$ (ddt, $J=17.1,10.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{dq}, J=17.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dq}, J=10.2,1.6 \mathrm{~Hz}$, 1 H), 2.64 (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $2.38-2.34$ (m, 2H), 1.52 (s, 9H); ${ }^{13}$ C-NMR (151 MHz , CDCl_{3}): $\delta[\mathrm{ppm}] 197.7,163.1,136.2,116.1,86.9,83.4,36.8,27.9,27.4$; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]$ 3081, 2983, 2936, 2113, 1742, 1643, 1476, 1459, 1397, 1372, 1238, 1149, 1053, 995, 947, 918, 832, 750, 705, 621, 554, 467, 436.
tert-butyl 2,2-bis(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-3-oxohept-6-enoate

$\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{3}$
$496.64 \mathrm{~g} / \mathrm{mol}$

Following the general procedure \mathbf{C} (15 mg of tert-butyl 2,2-diazido-3-oxohept-6-enoate, 16 h), the product was obtained as a yellow liquid ($20 \mathrm{mg}, 0.04 \mathrm{mmol}, 65 \%$) upon purification by column chromatography ($\mathrm{CH}: E t O A c=90: 10 \rightarrow 75: 25$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.20$ (PE:EtOAc / 90:10, [UV, $\left.\mathrm{KmnO}_{4}\right]$); ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] 5.89 (ddt, $J=16.8,10.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{dq}, J=17.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{dq}, J=10.2,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.02(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{td}, J=6.1,1.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.63(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.25$ - $2.11(\mathrm{~m}, ~ J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.78-1.69(\mathrm{~m}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.61(\mathrm{~s}, 9 \mathrm{H}), 1.58(\mathrm{~s}, 4 \mathrm{H}), 1.42-$ 1.35 (m, 8H); ${ }^{13} \mathbf{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]$ 192.2, 160.2, 146.0, 136.8, 136.7, 115.8, 87.9, 86.8, 41.0, 29.7, 27.8, 27.7, 26.1, 25.8, 25.1, 24.5, 22.0; HRMS (ESI): [m/z] calculated for $\left[\mathrm{C}_{2} 7 \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{Na}\right] 519.3060$, found 519.3054.

N-benzyl-3-oxohept-6-enamide

tert-Butyl 3-oxohept-6-enoate ($1.000 \mathrm{~g}, 5.04 \mathrm{mmol}$) and N-benzylamide ($606 \mu \mathrm{l}, 5.55 \mathrm{mmol}$, 1.10 eq.) were dissolved in 12 mL xylene (mixture of isomers) in a microwave reaction vial and heated at $160{ }^{\circ} \mathrm{C}$ for 8 hours under microwave irradiation. The reaction mixture was washed with water, a 10% aqueous solution of citric acid, brine and then dried over magnesium sulfate. The solvent was removed in vacuo and the product obtained as a yellow solid (521 mg, $2.25 \mathrm{mmol}, 45 \%$) after column chromatography ($\mathrm{CH}: \mathrm{EtOAc}=90: 10 \rightarrow$ 65:35).

TLC: $\mathrm{R}_{\mathrm{f}}=0.23$ (PE:EtOAc / 70:30, [UV, KMnO_{4}]); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]$ $7.35-7.23(\mathrm{~m}, 5 \mathrm{H}), 5.77$ (ddt, $J=16.8,10.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06-5.00(\mathrm{~m}, 1 \mathrm{H}), 5.00-4.97$ (m, 1H), $4.44(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.41(\mathrm{~s}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.35-2.29(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 206.1,165.5,138.0,136.4,128.8,127.8,127.6,115.9$, 49.1, 43.7, 43.0, 27.4; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3282,3077,3064,3034,2998,2977,2919,1712$, $1660,1638,1562,1497,1453,1417,1369,1345,1279,1253,1212,1172,1082,1038,1017$, 997, 907, 857, 798, 729, 698, 636, 609, 566, 483, 464, 448; HRMS (ESI): [m/z] calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{Na}\right] 254.1151$, found 254.1150 .

2,2-diazido- N-benzyl-3-oxohept-6-enoate (10)

Following the general procedure B (472 mg of N-benzyl-3-oxohept-6-enamide, $0.1 \mathrm{M}, 30$ min), the product was obtained as a colorless liquid ($401 \mathrm{mg}, 1.28 \mathrm{mmol}, 63 \%$) upon purification by column chromatography ($\mathrm{PE}: \mathrm{EtOAc}=100: 0 \rightarrow 85: 15$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.56$ (PE:EtOAc / 90:10, [UV, $\left.\mathrm{KMnO}_{4}\right]$); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]$ $7.38-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.82(\mathrm{~m}, 1 \mathrm{H}), 5.76$ (ddt, $J=16.8,10.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{dq}, J=16.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dq}, J=10.2,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.47 (d, $J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.39-2.31(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(151 \mathrm{MHz}$, CDCl_{3}): δ [ppm] 198.4, 163.0, 136.7, 136.1, 129.1, 128.2, 127.9, 116.1, 84.8, 44.3, 36.8, 27.4; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3338,3079,3033,2980,2929,2110,1736,1674,1642,1517,1455,1435$, 1401, 1359, 1226, 1110, 1080, 1047, 1029, 994, 956, 917, 789, 752, 726, 697, 640, 544, 495, 461.
N-benzyl-2,2-bis(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-3-oxohept-6-enamide

Following the general procedure \mathbf{C} (50 mg of 2,2-diazido- N-benzyl-3-oxohept-6-enoate, 16 h), the product was obtained as a colorless ($43 \mathrm{mg}, 0.08 \mathrm{mmol}, 51 \%$) upon purification by column chromatography ($\mathrm{CH}: E t O A c=90: 10 \rightarrow 80: 20$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.29$ (PE:EtOAc / 80:20, [UV, KMnO_{4}) ; ${ }^{\mathbf{1}} \mathbf{H - N M R ~ (4 0 0 ~ M H z , ~} \mathrm{CDCl}_{3}$): δ [ppm] $8.63(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H}), 5.71(\mathrm{ddt}, J=16.8$, $10.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-4.96(\mathrm{~m}, 1 \mathrm{H}), 4.96-4.92(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{t}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 2.43-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.06(\mathrm{~m}, 4 \mathrm{H}), 1.78-$ $1.67(\mathrm{~m}, 4 \mathrm{H}), 1.44-1.22(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 194.4,160.9$, $146.2,136.9,136.7,136.4,129.0,128.1,128.0,115.9,87.8,45.5,38.9,29.0,27.9,26.0,25.8$, 25.0, 24.5, 22.1; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3228,3065,3031,2925,2854,2123,1739,1702,1642$, $1517,1455,1440,1371,1355,1309,1253,1145,1081,1047,1028,1000,948,908,793,753$, 729, 699, 633, 493, 463, 411; HRMS (ESI): [m/z] calculated for $\left[\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{~N}_{7} \mathrm{O}_{2} \mathrm{Na}\right]$ 552.3057, found 552.3058.

ethyl 2-methyl-3-oxohept-6-enoate

Following the general procedure \mathbf{A} with allyl bromide (811 mg of ethyl 2-methyl-3oxobutanoate), the product was obtained as a yellow liquid ($238 \mathrm{mg}, 1.29 \mathrm{mmol}, 39 \%$) upon purification by column chromatography ($\mathrm{PE}: \mathrm{EtOAc}=90: 10 \rightarrow 88: 12$). The analytical data corresponds with the previously published data. ${ }^{[3]}$

TLC: $\mathrm{R}_{\mathrm{f}}=0.52$ (PE:EtOAc / 90:10, [KMnO4]); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 5.79$ (ddt, $J=17.1,10.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{dq}, J=17.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{dq}, J=10.2,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.18(\mathrm{qd}, J=7.1,0.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.37-2.31$ $(\mathrm{m}, 2 \mathrm{H}), 1.33(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] 205.1, 170.7, 136.9, 115.6, 61.5, 53.1, 40.6, 27.7, 14.2, 12.9; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]$ 2983, 2941, 1740, 1714, 1642, 1451, 1407, 1375, 1322, 1239, 1191, 1118, 1069, 1035, 997, 913, 860, 635; HRMS (ESI): [m/z] calculated for [$\left.\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}\right]$ 207.0997, found 207.0992.

ethyl 2-azido-3-methyl-3-oxohept-6-enoate (3)

Following the general procedure B (207 mg of ethyl 2-methyl-3-oxohept-6-enoate, 2.3 eq. $\mathrm{NaN}_{3}, 2.0$ eq. $\mathrm{NaHCO}_{3}, 1.2$ eq. $\mathrm{I}_{2}, 1 \mathrm{~h}$), the product was obtained as a yellow liquid (148 mg , $0.65 \mathrm{mmol}, 58 \%)$ upon purification by column chromatography ($\mathrm{PE}: \mathrm{EtOAc}=100: 0 \rightarrow 96: 4$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.63$ (PE:EtOAc / 90:10, $\left[\mathrm{KMnO}_{4}\right]$); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 5.78$ (ddt, $J=17.1,10.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{dq}, J=17.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{dq}, J=10.2,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.28(\mathrm{dq}, J=7.1,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.76-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.29(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H})$, $1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 201.9,168.6,135.5,116.0$, 73.0, 63.0, 37.1, 27.6, 19.4, 14.2; IR (ATR): $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right] 2980,2936,2874,2112,1742,1719$, $1640,1505,1472,1447,1388,1368,1318,1224,1156,1128,1095,1071,1038,1017,911$, 851, 758, 648, 619, 553, 456.
ethyl-2-(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-2-methyl-3-oxohept-6-enoate

$\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3}$
$333.43 \mathrm{~g} / \mathrm{mol}$
Following the general procedure \mathbf{C} (22 mg ethyl 2-azido-3-methyl-3-oxohept-6-enoate, 1 h), the product was obtained as a yellow liquid ($84 \mathrm{mg}, 0.08 \mathrm{mmol}, 85 \%$) upon purification by column chromatography ($\mathrm{PE}: \mathrm{EtOAc}=50: 50 \rightarrow 25: 75$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.21$ (PE:EtOAc / 90:10, [CAM]); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 5.77$ (ddt, $J=17.1,10.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{dq}, J=17.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.99-4.95(\mathrm{~m}, 1 \mathrm{H}), 4.29(\mathrm{q}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.76-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.36$ (m, 2H), $2.08(\mathrm{~s}, 3 \mathrm{H}), 1.82-1.68(\mathrm{~m}, 5 \mathrm{H}), 1.58-1.38(\mathrm{~m}, 5 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (101 MHz, CDCl_{3}): δ [ppm] 200.2, 167.9, 145.7, 136.6, 134.5, 115.9, 74.9, 63.1, 38.0, 28.1, 28.0, 26.7, 25.9, 25.2, 24.5, 23.1, 21.6, 14.0; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 2930,2856,1730$,

1642, 1445, 1375, 1253, 1197, 1128, 1093, 1038, 1001, 952, 915, 864, 794, 756, 732, 690, 639, 558, 526, 504, 450; HRMS (ESI): [m/z] calculated for [$\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{3}$] 334.2131, found 334.2125 .

Synthesis of the 3-hydroxypyridines

ethyl 3-hydroxy-6-methylpicolinate (2a)

$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3}$ $181.18 \mathrm{~g} / \mathrm{mol}$

Method A: Following the general procedure D (200 mg of 1a, $0.05 \mathrm{M}, 2 \mathrm{~h}$), the product was obtained as a yellow liquid ($140 \mathrm{mg}, 0.77 \mathrm{mmol}, 97 \%$) upon purification by column chromatography $(\mathrm{CH}: \mathrm{EtOAc}=90: 10 \rightarrow 70: 30)$.

Method B: Ethyl 2,2-diazido-3-oxohept-6-enoate ($5.050 \mathrm{~g}, 20.02 \mathrm{mmol}$) was dissolved in 400 mL xylene and stirred at $140^{\circ} \mathrm{C}$ for two hours. The solvent was evaporated in vacuo and the product obtained as a yellow liquid ($2.533 \mathrm{~g}, 13.98 \mathrm{mmol}, 70 \%$) after column chromatography $(\mathrm{CH}: \mathrm{EtOAc}=90: 10 \rightarrow 70: 30)$.

TLC: $\mathrm{Rf}_{\mathrm{f}}=0.16$ (PE:EtOAc / 70:30, [UV, KMnO4]); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] $10.68(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 2 \mathrm{H}), 4.55(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 169.9,157.3,150.1,129.9,129.1,126.7,62.6,24.0$, 14.4; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3153,2982,2960,2927,2856,1668,1586,1465,1406,1381,1340$, 1294, 1199, 1099, 1018, 923, 864, 834, 807, 718, 667, 558, 541, 488, 457, 440, 416; HRMS (ESI): [m/z] calculated for [$\left.\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{Na}\right]$ 204.0631, found 204.0632.
ethyl 3-hydroxy-4,6-methylpicolinate (2b)

Following the general procedure $\mathbf{D}(199 \mathrm{mg}$ of $\mathbf{1 b}, 0.05 \mathrm{M}, 2 \mathrm{~h})$, the product was obtained as an orange liquid ($69 \mathrm{mg}, 0.35 \mathrm{mmol}, 69 \%$) upon purification by column chromatography $(\mathrm{CH}: \mathrm{EtOAc}=100: 0 \rightarrow 85: 15)$.

TLC: $\mathrm{R}_{\mathrm{f}}=0.28$ (PE:EtOAc / 70:30, [UV]); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] 10.90 (s, $1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 170.3,156.6,149.4,137.2,130.7,128.0,62.6,23.9$, 15.5, 14.4; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3029,2985,2921,1676,1579,1502,1477,1452,1411,1381$, $1346,1329,1271,1232,1195,1149,1109,1019,967,928,864,835,804,755,724,704,591$, 543, 498, 486, 453, 412; HRMS (ESI): [m/z] calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NO}_{3}\right]$ 196.0974, found 196.0968.

ethyl 3-hydroxy-6-methyl-4-pentylpicolinate (2c)

Following the general procedure $\mathbf{D}(98 \mathrm{mg}$ of $\mathbf{1 c}, 0.05 \mathrm{M}, 2 \mathrm{~h})$, the product was obtained as an orange liquid ($39 \mathrm{mg}, 0.15 \mathrm{mmol}, 48 \%$) upon purification by column chromatography $(\mathrm{PE}: \mathrm{EtOAc}=100: 0 \rightarrow 90: 10)$.

TLC: $\mathrm{R}_{\mathrm{f}}=0.12$ (PE:EtOAc / 90:10, [UV, $\left.\mathrm{KMnO}_{4}\right]$); ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] $10.92(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.40-1.29(\mathrm{~m}, 6 \mathrm{H}), 0.91(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: δ [ppm] 170.4, 156.3, 149.5, 141.7, 129.6, 128.1, 62.6, 31.7, 29.3, 28.4, 24.0, 22.6, 14.4, 14.1; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3338,2969,2931,2882,1672,1465,1409,1378,1305,1203,1160,1128$, 1107, 950, 816, 638, 487, 423; HRMS (ESI): [m/z] calculated for [$\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{3}$] 252.1600, found 252.1594 .

ethyl (2-(benzyloxy)ethyl)-3-hydroxy-6-methylpicolinate (2d)

$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{4}$
$315.36 \mathrm{~g} / \mathrm{mol}$
Following the general procedure $\mathbf{D}(99 \mathrm{mg}$ of $\mathbf{1 d}, 0.05 \mathrm{M}, 2 \mathrm{~h})$, the product was obtained as an orange liquid ($39 \mathrm{mg}, 0.12 \mathrm{mmol}, 48 \%$) upon purification by column chromatography ($\mathrm{PE}: \mathrm{EtOAc}=75: 25 \rightarrow 70: 30$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.18$ (PE:EtOAc / 90:10, [UV, $\left.\mathrm{KMnO}_{4}\right]$); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): δ [ppm] $10.93(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{t}$, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{td}, J=6.5,0.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{t}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}-$ NMR (101 MHz, CDCl_{3}): δ [ppm] 170.3, 156.2, 149.4, 138.3, 137.8, 130.5, 128.5, 127.8, 127.7, 127.0, 73.1, 68.2, 62.6, 29.9, 24.0, 14.4; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3351,3027,2923,2869$, 2104, 1703, 1609, 1516, 1491, 1454, 1417, 1378, 1364, 1273, 1251, 1203, 1157, 1097, 1076, 1027, 1011, 897, 775, 739, 697, 607, 561, 541, 471, 439; HRMS (ESI): [m/z] calculated for [$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{4}$] 316.1549, found 316.1543.

ethyl 4-benzyl-3-hydroxy-6-methylpicolinate (2e)

$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{3}$
$271.31 \mathrm{~g} / \mathrm{mol}$
Method A: Following the general procedure D (198 mg of $\mathbf{1 e}, 0.05 \mathrm{M}, 2 \mathrm{~h})$, the product was obtained as a yellow solid ($137 \mathrm{mg}, 0.52 \mathrm{mmol}, 72 \%$) upon purification by column chromatography (CH:EtOAc $=100: 0 \rightarrow 70: 30)$.

Method B: Ethyl 4-benzyl-2,2-diazido-3-oxononanoate ($2.444 \mathrm{~g}, 7.13 \mathrm{mmol}$) was dissolved in 140 mL xylene and stirred at $140{ }^{\circ} \mathrm{C}$ for two hours. The solvent was evaporated in vacuo
and the product obtained as a yellow solid ($951 \mathrm{mg}, 3.505 \mathrm{mmol}, 53 \%$) after column chromatography ($\mathrm{CH}: E t O A c=100: 0 \rightarrow 70: 30$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.28$ (PE:EtOAc / 70:30, [UV]); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 11.02$ (s, 1H), $7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{~s}$, $2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 170.3$, 155.9, 149.7, 140.0, 138.6, 129.9, 129.3, 128.8, 128.5, 126.7, 62.6, 35.1, 24.1, 14.4; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3029,2985,2921,1676,1579,1502,1477,1452,1411,1381,1346,1329$, $1271,1232,1195,1149,1109,1019,967,928,864,835,804,755,724,704,591,543,498$, 486, 453, 412; HRMS (ESI): [m/z] calculated for [$\left.\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{3}\right]$ 272.1281, found 272.1279.

ethyl 4-(4-fluorobenzyl)-3-hydroxy-6-methylpicolinate (2f)

Following the general procedure $\mathbf{D}(300 \mathrm{mg}$ of $\mathbf{1 f}, 0.05 \mathrm{M}, 2 \mathrm{~h})$, the product was obtained as an orange liquid ($163 \mathrm{mg}, 0.56 \mathrm{mmol}, 68 \%$) upon purification by column chromatography ($\mathrm{PE}: \mathrm{EtOAc}=100: 0 \rightarrow 70: 30$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.63$ (PE:EtOAc / 70:30, [UV, $\left.\mathrm{KMnO}_{4}\right]$); ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] $11.04(\mathrm{~s}, 1 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.04-6.99(\mathrm{~m}, 3 \mathrm{H}), 4.55$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.98$ (s, 2H), $2.50(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 170.3,163.0$, $160.6,155.8,149.7,139.8,134.22$, 134.19, 130.73, 130.65, 129.7, 128.6, 116.7, 115.5, 62.7 34.3, 24.0, 14.4; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3074,2985,2914,1675,1616,1601,1579,1513,1477$, $1454,1410,1381,1345,1329,1272,1223,1195,1162,1149,1109,1012,965,933,859,845$, 829, 805, 780, 760, 724, 696, 623, 587, 518, 486, 455, 416; HRMS (ESI): [m/z] calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{FNO}_{3}\right] 290.1192$, found 290.1187.

ethyl 3-hydroxy-6-methyl-phenylpicolinate (2g)

Following the general procedure $\mathbf{D}(252 \mathrm{mg}$ of $\mathbf{1 g}, 0.05 \mathrm{M}, 2 \mathrm{~h})$, the product was obtained as a yellow liquid ($122 \mathrm{mg}, 0.47 \mathrm{mmol}, 62 \%$) upon purification by column chromatography $(\mathrm{CH}: E t O A c=90: 0 \rightarrow 70: 30)$.

TLC: $\mathrm{R}_{\mathrm{f}}=0.32$ (PE:EtOAc / 70:30, [UV]); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 11.25(\mathrm{~s}$, $1 \mathrm{H}), 7.64-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{~s}$, 3H), 1.49 (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}] 170.3,154.9,149.8$, 139.0, 135.0, 129.7, 129.5, 129.3, 128.8, 128.5, 62.7, 24.0, 14.4; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3058$, 2981, 2929, 2105, 1738, 1663, 1564, 1455, 1432, 1407, 1379, 1342, 1272, 1250, 1187, 1087, 1018, 949, 892, 873, 811, 737, 695, 642, 612, 538, 495, 477, 455; HRMS (ESI): [m/z] calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{3}\right]$ 258.1125, found 258.1127.

ethyl 4-([1,1'-biphenyl]-2-yl)-3-hydroxy-6-methylpicolinate (2h)

Following the general procedure $\mathbf{D}(262 \mathrm{mg}$ of $\mathbf{1 h}, 0.05 \mathrm{M}, 2 \mathrm{~h})$, the product was obtained as a yellow liquid ($176 \mathrm{mg}, 0.52 \mathrm{mmol}, 81 \%$) upon purification by column chromatography $(\mathrm{CH}:$ EtOAc $=90: 0 \rightarrow 70: 30)$.

TLC: $\mathrm{R}_{\mathrm{f}}=0.22$ (PE:EtOAc / 80:20, [UV, $\left.\mathrm{KmnO}_{4}\right]$); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] $10.84(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.14(\mathrm{~m}$, 2H), $6.96(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathbf{C}-\mathbf{N M R}$
(101 MHz, CDCl_{3}): δ [ppm] 170.1, 155.2, 149.2, 141.7, 141.0, 140.0, 133.6, 131.4, 130.43, $130.41,129.3,129.0,128.9,128.1,127.2,127.0,62.7,23.9,14.4$; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3057$, 3023, 2981, 2929, 2104, 1664, 1571, 1432, 1406, 1379, 1344, 1274, 1187, 1084, 1018, 1009, 744, 699, 642, 612; HRMS (ESI): [m/z] calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}_{3}\right]$ 334.1443, found 334.1438.

ethyl 4-(2-bromophenyl)-3-hydroxy-6-methylpicolinate (2i)

Following the general procedure $\mathbf{D}(400 \mathrm{mg}$ of $\mathbf{1 i}, 0.05 \mathrm{M}, 2 \mathrm{~h})$, the product was obtained as a yellow liquid ($255 \mathrm{mg}, 0.76 \mathrm{mmol}, 77 \%$) upon purification by column chromatography $(\mathrm{CH}: \mathrm{EtOAc}=100: 0 \rightarrow 75: 25)$.

TLC: $\mathrm{Rf}=0.24$ (PE:EtOAc / 80:20, [UV, KmnO4]); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{CDCl} 3): \delta$ [ppm] $11.00(\mathrm{~s}, 1 \mathrm{H}), 7.70-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 4.56$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(101 \mathrm{MHz}, \mathrm{CDCl} 3): \delta$ [ppm] 170.1, 154.8, 149.5, 139.0, 136.3, 133.1, 131.0, 130.6, 130.1, 129.5, 17.4, 123.1, 62.8, 24.0, 14.4; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]$ 6056, 2981, 2931, 2861, 1665, 1572, 1445, 1406, 1379, 1344, 1277, 1187, 1096, 1017, 910, 811, 724, 634, 613, 493, 455, 441, 417; HRMS (ESI): [m/z] calculated for [C 15 H 15 NO 3 Br$] 336.0230$, found 336.0231.

ethyl 6-ethyl-3-hydroxypicolinate ($\mathbf{2 j}$)

Following the general procedure $\mathbf{D}(200 \mathrm{mg}$ of $\mathbf{1 j}, 0.05 \mathrm{M}, 2 \mathrm{~h})$, the product was obtained as a yellow liquid ($26 \mathrm{mg}, 0.13 \mathrm{mmol}, 18 \%$) upon purification by column chromatography $(\mathrm{CH}: \mathrm{EtOAc}=90: 10 \rightarrow 84: 16)$.

TLC: $\mathrm{R}_{\mathrm{f}}=0.35$ (PE:EtOAc / 80:20, $\left[\mathrm{KMnO}_{4}\right]$); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 10.68$ (s, 1H), $7.31-7.29(\mathrm{~m}, 2 \mathrm{H}), 4.53(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.47(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.28(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 170.0,157.3,155.3$, 129.1, 128.5, 126.8, 62.6, 30.8, 14.4, 14.2; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3194,2971,2934,2874,1719$, $1669,1589,1468,1411,1379,1343,1297,1255,1195,1099,1016,843,808,738,700,665$, 594, 542, 500, 457, 440, 417; HRMS (ESI): [m/z] calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NO}_{3}\right]$ 196.0968, found 196.0963.

ethyl 4-benzyl-6-ethyl-3-hydroxypicolinate (2k)

Following the general procedure $\mathbf{D}(250 \mathrm{mg}$ of $\mathbf{1 k}, 0.05 \mathrm{M}, 2 \mathrm{~h})$, the product was obtained as a yellow liquid ($88 \mathrm{mg}, 0.31 \mathrm{mmol}, 44 \%$) upon purification by column chromatography $(\mathrm{CH}: E t O A c=90: 10 \rightarrow 84: 16)$.

TLC: $\mathrm{R}_{\mathrm{f}}=0.40$ (PE:EtOAc / 80:20, $\left[\mathrm{KMnO}_{4}\right]$); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 11.02$ (s, 1H), $7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.02$ (s, 2H), $2.75(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.46(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ [ppm] 170.4, 156.0, 154.9, 139.9, 138.6, 129.2, 128.7, 128.6, 128.5, 126.7, 62.5, 35.2, 30.9, 14.4, 14.3; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3087,3062,3028,2969,2934,2873$, $1748,1665,1602,1577,1495,1464,1412,1379,1348,1317,1273,1196,1147,1095,1068$, 1021, 925, 863, 807, 738, 698, 588, 555, 510, 488, 450, 417; HRMS (ESI): [m/z] calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{3}\right] 286.1438$, found 286.1443.

ethyl 6-hexyl-3-hydroxypicolinate (2I)

Following the general procedure $\mathbf{D}(335 \mathrm{mg}$ of ethyl $\mathbf{1 1}, 0.05 \mathrm{M}, 2 \mathrm{~h})$, the product was obtained as an orange liquid ($87 \mathrm{mg}, 0.35 \mathrm{mmol}, 33 \%$) upon purification by column chromatography (CH:EtOAc $=90: 10 \rightarrow 80: 20)$.

TLC: $\mathrm{Rf}_{\mathrm{f}}=0.39$ (PE:EtOAc / 90:10, [UV, $\left.\mathrm{KmnO}_{4}\right]$); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]$ $10.67(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 2 \mathrm{H}), 4.53-4.48(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.78-2.74(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.62$ (m, 2H), 1.46-1.43 (t, J=7.1 Hz, 3H), 1.34-1.27(m, 6H), 0.87-0.84 (m, 3H); ${ }^{13}$ C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ [ppm] 170.0, 157.3, 154.3, 129.1, 129.0, 126.5, 62.5, 37.7, 31.8, 30.0, 29.1, 22.7, 14.3, 14.1; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3157,3257,2928,2857,1672,1467,1203,1100$, 905, 726; HRMS (ESI): [m/z] calculated for [$\left.\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{3}\right]$ 252.1600, found 252.1594.

ethyl 4-benzyl-6-hexyl-3-hydroxypicolinate (2m)

Following the general procedure $\mathbf{D}(400 \mathrm{mg}$ of $\mathbf{1 m}, 0.05 \mathrm{M}, 2 \mathrm{~h})$, the product was obtained as a yellow solid ($166 \mathrm{mg}, 0.49 \mathrm{mmol}, 50 \%$) upon purification by column chromatography $(\mathrm{CH}: E t O A c=100: 0 \rightarrow 85: 15)$.

TLC: $\mathrm{R}_{\mathrm{f}}=0.37$ (PE:EtOAc / 90:10, [UV, $\left.\mathrm{KmnO}_{4}\right]$); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]$ $11.03(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 4.55-4.50(\mathrm{q}, \mathrm{J}=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 2 \mathrm{H}), 2.73-2.69(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.44(\mathrm{t}, \mathrm{J}=7.1 \mathrm{HZ}$, 3H), $1.34-1.26(\mathrm{~m}, 6 \mathrm{H}), 0.89-0.86(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]$ 170.4,
156.0, 153.8, 139.7, 138.6, 129.2, 129.1, 128.7, 128.6, 126.6, 62.5, 37.8, 35.2, 31.8, 30.1, 29.1, 22.7, 14.4, 14.2; IR (ATR): $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]$ 2955, 2924, 2855, 2100, 1738, 1713, 1495, 1454, 1376, 1232, 1157, 1115, 1097, 1030, 969, 737, 698; HRMS (ESI): [m/z] calculated for [$\left.\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{3}\right]$ 342.2069, found 342.2064.

tert-butyl 3-hydroxy-6-methylpicolinate (2n)

Following the general procedure $\mathbf{D}(250 \mathrm{mg}$ of $\mathbf{1 n}, 0.05 \mathrm{M}, 1 \mathrm{~h})$, the product was obtained as a pale yellow liquid ($92 \mathrm{mg}, 0.44 \mathrm{mmol}, 49 \%$) upon purification by column chromatography $(\mathrm{CH}: \mathrm{EtOAc}=90: 10 \rightarrow 75: 25)$.

TLC: $\mathrm{Rf}_{\mathrm{f}}=0.57$ (PE:EtOAc / 80:20, [UV]); ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] 10.79 (s, $1 \mathrm{H}), 7.20(\mathrm{~s}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 169.3$, 157.1, 149.7, 130.2, 129.3, 126.5, 84.1, 28.2, 23.9; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3149,3117,2981$, 2931, 1663, 1585, 1465, 1394, 1366, 1296, 1279, 1217, 1149, 1099, 1036, 1004, 927, 843, 810, 776, 741, 718, 667, 558, 535, 491, 473, 445, 415; HRMS (ESI): [m/z] calculated for [$\left.\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{Na}\right]$ 232.0944, found 232.0942.

N-benzyl 3-hydroxy-6-methylpicolinate (20)

Following the general procedure $\mathbf{D}(58 \mathrm{mg}$ of $\mathbf{1 0}, 0.05 \mathrm{M}, 6 \mathrm{~h})$, the product was obtained as a yellow solid ($18 \mathrm{mg}, 0.07 \mathrm{mmol}, 40 \%$) upon purification by column chromatography $(\mathrm{CH}: \mathrm{EtOAc}=100: 0 \rightarrow 90: 10)$.

TLC: $\mathrm{R}_{\mathrm{f}}=0.52$ (PE:EtOAc / 90:10, [366 nm, KMnO_{4}]); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] 11.93 (s, 1H), $8.39(\mathrm{sb}, 1 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(101$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 169.0,155.9,148.2,137.9,130.1,128.94,128.85,127.9,127.8,126.7$, 43.0, 23.4; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3314,2951,2922,2852,1639,1585,1496,1467,1429,1396$, $1358,1316,1306,1278,1237,1199,1179,1140,1116,1077,1031,1008,970,898,815,793$, 766, 741, 694, 664, 603, 544, 477, 456, 436; HRMS (ESI): [m/z] calculated for [$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}$] 243.1128, found 243.1127.

ethyl 2,6-dimethyl-3-oxo-2,3,4,5-tetrahydropyridin-2-carboxylate (4)

Following the general procedure $\mathbf{D}(80 \mathrm{mg}$ of $\mathbf{3}, 0.05 \mathrm{M}, 2 \mathrm{~h})$, the product was obtained as a brown liquid ($12 \mathrm{mg}, 0.06 \mathrm{mmol}, 18 \%$) upon purification by column chromatography $(\mathrm{CH}: \mathrm{EtOAc}=100: 0 \rightarrow 80: 20)$. Compound 4 was characterized using IR- and NMRtechniques. Due to the presumably highly unstable nature of this entity, acquisition of high resolution mass analytical data was rendered challenging and the structure assignment based on the spectroscopic data at hand.

TLC: $\mathrm{R}_{\mathrm{f}}=0.13$ (PE:EtOAc / 90:10, $\left[\mathrm{KMnO}_{4}\right]$); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 4.20-$ $4.14(\mathrm{~m}, 2 \mathrm{H}), 2.88-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.39(\mathrm{~m}$, $1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] 207.4, 171.1, 169.4, 72.1, 62.1, 32.9, 31.8, 27.6, 22.5, 14.1; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3306$, 2982, 2936, 1719, 1663, 1584, 1523, 1444, 1368, 1232, 1105, 1015, 858, 767.

Modifications of 3-hydroxypyridines

ethyl 6-methyl-3-(((trifluoromethyl)sulfonyl)oxy)picolinate (5)

2a ($266 \mathrm{mg}, 1.47$) and triethylamine ($407 \mu \mathrm{l}, 2.94 \mathrm{mmol}, 2.0$ eq.) were dissolved in 15 mL dry dichloromethane under a nitrogen atmosphere and cooled to $0^{\circ} \mathrm{C}$. Triflic anhydride (493 $\mu \mathrm{L}, 2.94 \mathrm{mmol}, 2.0$ eq.) was slowly added to the cooled solution and the reaction mixture stirred for one hour at $0^{\circ} \mathrm{C}$. The reaction was stopped by addition of an aqueous solution of sodium bicarbonate. The solution was stirred until the evolution of gas bubbles has stopped and afterwards extracted with dichloromethane. The combined organic phases were washed with a saturated aqueous solution of sodium bicarbonate, brine and dried over magnesium sulfate. The solvent was evaporated in vacuo and the product obtained after column chromatography $(\mathrm{CH}: E t O A c=100: 0 \rightarrow 85: 15)$ as a pale yellow liquid $(378 \mathrm{mg}, 1.21 \mathrm{mmol}$, $82 \%)$.

TLC: $\mathrm{R}_{\mathrm{f}}=0.19$ (PE:EtOAc / 90:10, $\left[\mathrm{KMnO}_{4}\right]$); ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 7.56$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 163.0,159.1,144.2,141.7,131.1$, 127.6, 118.7 (q, $J=320.7 \mathrm{~Hz}, 1 \mathrm{C}$), 62.9, 24.2, 14.1; IR (ATR): $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right] 3081,2987,2942$, 1730, 1587, 1457, 1426, 1386, 1305, 1251, 1205, 1135, 1073, 1020, 925, 871, 800, 771, 723, 700, 661, 646, 617, 582, 505, 456; HRMS (ESI): [m/z] calculated for [$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NO}_{5} \mathrm{SF}_{3} \mathrm{Na}$] 336.0124 , found 336.0116 .

ethyl 6-methyl-3-phenylpicolinate (6)

Tris(dibenzylidene)dipalladium(0) ($15 \mathrm{mg}, 0.02 \mathrm{mmol}, 5 \mathrm{~mol} \%$) was dissolved in $3 \mathrm{~mL} 1,4-$ dioxane in a microwave vial and the solution rapidly stirred while a steam of nitrogen was passed through the solution. Triphenylphosphine ($17 \mathrm{mg}, 0.06 \mathrm{mmol}, 20 \mathrm{~mol} \%$) was added and the solution was stirred for 15 minutes. Afterwards, caesium carbonate ($312 \mathrm{mg}, 0.96$ mmol, 3.0 eq.), 5 ($100 \mathrm{mg}, 0.32 \mathrm{mmol}$) and phenylboronic acid ($55 \mathrm{mg}, 0.45 \mathrm{mmol}, 1.40 \mathrm{eq}$.) were added successively. The microwave vial was sealed and the reaction mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for four hours under microwave irradiation. After the reaction has reached completion, the organic phase was diluted with water and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over magnesium sulfate, filtered over Celite ${ }^{\circledR}$ and the solvent was evaporated in vacuo. The product was obtained after column chromatography $(\mathrm{CH}: E t O A c=100: 0 \rightarrow 90: 10)$ as a colorless liquid $(74 \mathrm{mg}, 0.31 \mathrm{mmol}$, 96\%).

TLC: $\mathrm{R}_{\mathrm{f}}=0.24$ (PE:EtOAc / 90:10, [KMnO4]); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 7.62$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.42-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.16$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] 167.5, 157.4, 148.9, 138.4, 134.0, 128.5, 128.4, 127.9, 124.8, 61.6, 24.2, 13.7; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3081,2987,2942,1730,1587,1457,1426,1386,1305,1251,1205,1135$, 1073, 1020, 925, 871, 800, 771, 723, 700, 661, 646, 617, 582, 505, 456; HRMS (ESI): [m/z] calculated for [$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{Na}$] 264.0995, found 264.0992.

ethyl 4-bromo-3-hydroxy-6-methylpicolinate (7)

2a ($441 \mathrm{mg}, 2.43 \mathrm{mmol}$) and N -bromosuccinimide ($476 \mathrm{mg}, 2.68 \mathrm{mmol}, 1.10 \mathrm{eq}$.$) were$ dissolved in 10 mL acetonitrile and stirred under reflux for three hours. The reaction was stopped by addition of a saturated aqueous solution of sodium thiosulfate and the aqueous layer extracted with ethyl acetate. The combined organic layers were washed with brine, dried over magnesium sulfate and the solvent was concentrated in vacuo. The product was obtained after column chromatography $(\mathrm{CH}: \mathrm{EtOAc}=100: 0 \mathrm{80}: 20)$ as a white solid $(485 \mathrm{mg}, 1.86$ $\mathrm{mmol}, 77 \%$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.50$ (PE:EtOAc / 80:20, $\left[\mathrm{KMnO}_{4}\right]$); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 11.32$ $(\mathrm{s}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}] 169.6,154.6,150.2,133.1,129.7,122.7,63.2,23.6,14.3 ;$ IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3073,2989,2920,2856,1652,1571,1470,1439,1412,1380,1339,1281$, 1203, 1015, 947, 890, 866, 802, 785, 745, 726, 595, 490, 454, 419; HRMS (ESI): [m/z] calculated for $\left[\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{Br}\right]$ 259.9917, found 259.9918.

ethyl 5-methyl-2-phenylfuro[2,3-c]pyridine-7-carboxylate (8a)

Tris(dibenzylideneacetone)dipalladium(0) ($18 \mathrm{mg}, 0.02 \mathrm{mmol}, 5 \mathrm{~mol} \%$) was dissolved in 3 mL dry acetonitrile in a microwave vial and the mixutre vigorously stirred while a constant
steam of nitrogen was passed through the solution. Triphenylphosphine ($20 \mathrm{mg}, 0.08 \mathrm{mmol}$, $20 \mathrm{~mol} \%$) was added and the resulting solution was stirred for 15 minutes. 7 ($100 \mathrm{mg}, 0.38$ mmol) was added, followed by phenylacetylene ($51 \mu \mathrm{~L}, 0.46 \mathrm{mmol}, 1.20$ eq.) and copper(I) iodide ($7 \mathrm{mg}, 0.04 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The microwave vial was sealed and then stirred at $70^{\circ} \mathrm{C}$ under microwave irradiation for twelve hours. After the reaction has reached completion, the reaction mixture was diluted with water and extracted with ethyl acetate. The combined organic phases were washed with brine, dried over magnesium sulfate and filtered over a pad of Celite ${ }^{\circledR}$. The solvent was removed in vacuo and the product was obtained after column chromatography ($\mathrm{CH}: E t O A c=90: 10 \rightarrow 60: 40$) as a yellow solid ($92 \mathrm{mg}, 0.33 \mathrm{mmol}, 85 \%$).

TLC: $\mathrm{Rf}_{\mathrm{f}}=0.31$ (PE:EtOAc / 80:20, $[\mathrm{KMnO} 4]$); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 7.97$ $7.94(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{~s}$, $3 \mathrm{H}), 1.54(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 164.1,160.3,151.5$, $150.5,139.3,131.3,130.3,129.2,129.1,126.1,118.6,99.7,62.0,24.5,14.6$; IR (ATR): \tilde{v} [$\left.\mathrm{cm}^{-1}\right] 3112,3058,2976,2920,2866,1725,1599,1489,1471,1426,1391,1364,1260,1117$, 1037, 949, 925, 864, 828, 797, 759, 690, 655, 625, 550, 509, 486, 456; HRMS (ESI): [m/z] calculated for [$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}_{3}$] 282.1125, found 282.1124 .

ethyl 5-methyl-2-(trimethylsilyl)furo[2,3-c]pyridine-7-carboxylate (8b)

Tris(dibenzylideneacetone)dipalladium(0) ($149 \mathrm{mg}, 0.16 \mathrm{mmol}, 5 \mathrm{~mol} \%$). was dissolved in 12 mL dry acetonitrile in a microwave vial and the mixture was vigorously stirred while a constant steam of nitrogen was passed through the solution. Triphenylphosphine (166 mg , $0.63 \mathrm{mmol}, 20 \mathrm{~mol} \%$) was added and the resulting solution stirred for 15 minutes. 7 (822 mg , 3.16 mmol) was added, followed by trimethylsilylacetylene ($542 \mu \mathrm{l}, 3.79 \mathrm{mmol}, 1.20 \mathrm{eq}$.) and copper(I) iodide ($60 \mathrm{mg}, 0.32 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The microwave vial was sealed and the reaction mixture was stirred at $100^{\circ} \mathrm{C}$ under microwave irradiation for twelve hours. After the reaction has reached completion, the reaction mixture was filtered through a pad of Celite ${ }^{\circledR}$,
diluted with water and extracted with ethyl acetate. The combined organic layers were washed with brine and dried over magnesium sulfate. The solvent was removed in vacuo and the product was obtained after column chromatography ($\mathrm{CH}: E t O A c=90: 10 \rightarrow 60: 40$) as a yellow solid ($490 \mathrm{mg}, 1.77 \mathrm{mmol}, 56 \%$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.18$ (PE:EtOAc / 80:20, [KMnO4]); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 7.49$ $(\mathrm{s}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.37(\mathrm{~s}$, 9H); ${ }^{13} \mathbf{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ [ppm] 169.6, 164.2, 153.4, 150.6, 138.2, 131.4, 118.8, 114.4, 61.7, 24.2, 14.4, -1.9; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 2959,2932,2903,1725,1602,1525,1421$, $1380,1337,1247,1212,1190,1130,1066,1038,911,839,799,757,702,632,542,514,484$; HRMS (ESI): [$\mathrm{m} / \mathrm{z}]$ calculated for [$\left.\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{Si}\right]$ 278.1207, found 278.1208.
methyl 2-iodo-5-methylfuro[2,3-c]pyridine-7-carboxylate (9)

$\mathbf{8 b}(100 \mathrm{mg}, 0.36 \mathrm{mmol})$ was dissolved in 2 mL dry methanol. N-Iodosuccinimide (162 mg , $0.72 \mathrm{mmol}, 2.0$ eq.) and potassium fluoride ($42 \mathrm{mg}, 0.72 \mathrm{mmol}, 2.0$ eq.) were added to the solution and the reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 16 hours. The reaction was stopped by the addition of a saturated aqueous solution of sodium thiosulfate and the aqueous phase extracted with dichloromethane. The combined organic phases were washed with brine, dried over magnesium sulfate and the solvent was evaporated in vacuo. The product was obtained after column chromatography $(\mathrm{CH}: \mathrm{EtOAc}=100: 0 \rightarrow 70: 30)$ as a pale yellow solid (90 mg , $0.28 \mathrm{mmol}, 79 \%)$.

TLC: $\mathrm{R}_{\mathrm{f}}=0.14$ (PE:EtOAc / 80:20, [KMnO4]); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 7.48$ $(\mathrm{s}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}] 164.0$, 153.9, 151.8, 138.9, 130.5, 117.5, 116.5, 104.1, 53.1, 24.4; IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] 3122,29952$, $1922,2851,1724,1596,1513,1435,1419,1378,1343,1246,1219,1177,1131,1048,1030$,

995, 901, 877, 808, 795, 774, 739, 651, 629, 552, 503, 486; HRMS (ESI): [m/z] calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{3} \mathrm{I}\right] 317.9622$, found 317.9633

Literature

[1] Bargiggia, F. C.; Murray, W. V. J. Org. Chem. 2005, 70, 9636.
[2] Therkelsen, F. D.; Hansen, A.-L. L.; Pedersen, E. B.; Nielsen, C. Org. Biomol. Chem. 2003, 1, 2908.
[3] Graalfs, H.; Fröhlich, R.; Wolff, C.; Mattay, J. Eur. J. Org. Chem. 1999, 1057.

Spectra ($\left.{ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}, ~ I R\right)$
ethyl 3-oxohept-6-enoate

ethyl 2,2-diazido-3-oxohept-6-enoate (1a)

$\begin{aligned} & \stackrel{0}{\circ} \\ & \stackrel{\rightharpoonup}{\mid} \end{aligned}$	$\begin{gathered} \text { + } \\ \stackrel{+}{+} \end{gathered}$	$\stackrel{\rightharpoonup}{0}$	$\begin{gathered} \text { No } \\ \stackrel{\rightharpoonup}{7} \end{gathered}$	$\stackrel{\text { N }}{\text { ¢ }}$	$\stackrel{\text { m }}{\text { ¢ }}$	¢09	$\stackrel{\sim}{1}$

C NMR ($151 \mathrm{MHz}, \mathrm{CDCl} 3$)

ethyl 2,2-bis(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-3-oxohept-6-enoate

${ }^{13} \mathrm{C}$ NMR（ $101 \mathrm{MHz}, \mathrm{CDCl} 3$ ）
 ，

1

$\begin{aligned} & 9 \\ & \dot{6} \\ & 1\end{aligned}$

ethyl 4－methyl－3－oxohept－6－enoate

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3)$

范
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl} 3$)

둘	$\stackrel{+}{\text { + }}$	$\stackrel{\text { ¢ }}{\substack{\text { a }}}$	$\stackrel{\infty}{\square}$		¢	号	\bigcirc

ethyl 2,2-bis(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-4-methyl-3-oxohept-6enoate

${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}, \mathrm{CDCl} 3)$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl} 3$)

ethyl 4-allyl-3-oxononanoat

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$)

ethyl 4-allyl-2,2-diazido-3-oxononanoate (1c)

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3)$

								$\begin{aligned} & \stackrel{T}{2} \\ & \underset{i}{2} \end{aligned}$			$\begin{aligned} & \text { T } \\ & \hline \stackrel{O}{O} \end{aligned}$	$\stackrel{\text { T }}{\text { N }}$			$\stackrel{H}{\substack{n \\ \sim}}$				
8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	$\stackrel{4.0}{\mathrm{f} 1}(\mathrm{ppm})$	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5	-1

ハ
${ }^{13} \mathrm{CNMR}$ ($151 \mathrm{MHz}, \mathrm{CDCl} 3$)

ethyl 4-allyl-2,2-bis(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-3-oxononanoate

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3)$


```
M
```

of
∞
∞
O

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl} 3$)

ハ

ethyl 2,2-diazido-4-(2-(benzyloxy)ethyl)-3-oxohept-6-enoate (1d)

HNMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$)

ハ
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl} 3$)

N^{-}

ethyl 4-(2-(benzyloxy)ethyl)-2,2-bis(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-3-oxohept-6-enoate

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3)$

苗
${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}^{3}\right)$

ethyl 4-benzyl-3-oxononanoate

$\stackrel{\sim}{\sim}{ }_{\sim}^{\prime}$ ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$)

${ }^{13} \mathrm{CNMR}$ ($101 \mathrm{MHz}, \mathrm{CDCl} 3$)

ethyl 2，2－diazido－4－benzyl－3－oxohept－6－enoate（1e）

スペ in

H NMR（ $400 \mathrm{MHz}, \mathrm{CDCl} 3$ ）

ハ
${ }^{13}$ C NMR（ $101 \mathrm{MHz}, \mathrm{CDCl} 3$ ）

$\begin{array}{llllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

ethyl 4-benzyl-2,2-bis(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-3-oxohept-6enoate

H NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$)

${ }^{13} \mathrm{CNMR}(101 \mathrm{MHz}, \mathrm{CDCl} 3) \mathrm{C}$

ethyl 4-(4-fluorobenzyl)-3-oxohept-6-enoate

${ }^{1} \mathrm{HNMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl} 3$)

ethyl 2,2-diazido-4-(4-fluorobenzyl)-3-oxohept-6-enoate (1f)

${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}, \mathrm{CDCl} 3)$

$\underset{\substack{\circ \\ \hline \\ \hline}}{ }$	$\overrightarrow{t_{0}}$			\%	¢	$\stackrel{\infty}{\text { ¢ }}$	

ethyl 4-(4-fluorobenzyl)-2,2-bis(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-3-oxohept-6-enoate

${ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}, \mathrm{CDCl} 3)$

${ }^{13} \mathrm{CNMR}(101 \mathrm{MHz}, \mathrm{CDCl} 3$)

ethyl 3-oxo-4-phenylhept-6-enoate

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$)

$\stackrel{\infty}{\underset{\sim}{\sim}}$	$\stackrel{\rightharpoonup}{\stackrel{1}{0}}$		$\stackrel{\circ}{\ddot{1}}$	$\begin{aligned} & \text { Jo } \\ & \text { io } \\ & \text { ion } \end{aligned}$	$\begin{gathered} \text { m } \\ \stackrel{\alpha}{\circ} \\ \mid \end{gathered}$	$\begin{gathered} \text { M } \\ \text { ín } \end{gathered}$

${ }^{13} \mathrm{CNMR}(101 \mathrm{MHz}, \mathrm{CDCl} 3)$

ethyl 2,2-diazido-3-oxo-4-phenylhept-6-enoate (1g)

Фলm
'HNMR (400 MHz, CDCl3)

$\begin{gathered} \infty \\ \stackrel{\infty}{0} \\ \stackrel{1}{2} \end{gathered}$	O		$\stackrel{\infty}{\stackrel{\infty}{1}}$	$\stackrel{\infty}{\infty}$	+	$\underset{\substack{\underset{\sim}{\sim} \\ \vdots}}{ }$	$\stackrel{+}{\infty}$	$\stackrel{\infty}{\stackrel{\infty}{1}}$

${ }^{13} \mathrm{CNMR}(101 \mathrm{MHz}, \mathrm{CDCl} 3)$

ethyl 2,2-bis(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-3-oxo-4-phenylhept-6enoate
º̛̣

${ }^{1}$ HNMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$)


```
\({ }^{13} \mathrm{C}\) NMR ( \(101 \mathrm{MHz}, \mathrm{CDCl} 3\) )
```


ethyl 4-([1,1'-biphenyl]-2-yl)-3-oxohept-6-enoate

${ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}, \mathrm{CDCl} 3)$


```
\in
m
```

${ }^{13} \mathrm{CNMR}(101 \mathrm{MHz}, \mathrm{CDCl} 3)$

ethyl 4-([1,1'-biphenyl]-2-yl)-2,2-diazido-3-oxohept-6-enoate (1h)

${ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}, \mathrm{CDCl} 3$)

$\stackrel{\underset{\circ}{\circ}}{\stackrel{\circ}{\circ}}$	$\stackrel{\text { ¢ }}{\stackrel{\text { ® }}{\text { ® }}}$	 	\%	¢	N゙	مٌ

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl} 3$)

ethyl 4-([1,1'-biphenyl]-2-yl)-2,2-bis(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-3-oxohept-6-enoate

${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}, \mathrm{CDCl} 3)$

${ }^{13} \mathrm{CNMR}(151 \mathrm{MHz}, \mathrm{CDCl} 3)$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl} 3$)

ethyl 2,2-diazido-4-(2-bromophenyl)-3-oxohept-6-enoate (1i)

${ }^{1} \mathrm{HNMR}$ (400 MHz, CDCl3)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl} 3$)

ethyl 4-(2-bromophenyl)-2,2-bis(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-3-oxohept-6-enoate
$\stackrel{O}{0} 0$
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3)$

ethyl 3.oxooct-6-enoate

:

ethyl 2,2-diazido-3-oxooct-6-enoate (1j)

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3)$


```
N \stackrel{~}{|}
N゙
\(\stackrel{0}{\sim}\)
```

${ }^{13} \mathrm{CNMR}(101 \mathrm{MHz}, \mathrm{CDCl} 3)$

 $\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\ f(\mathrm{ppm})\end{array}$

ethyl 2,2-bis(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-3-oxooct-6-enoate

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3)$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl} 3$)

ethyl 4-benzyl-3-oxooct-6-enoate

${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}, \mathrm{CDCl} 3)$

参 菅
${ }^{13} \mathrm{CNMR}(151 \mathrm{MHz}, \mathrm{CDCl} 3)$

$\begin{array}{lllllllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -11\end{array}$
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3)$

ハ
${ }^{13} \mathrm{CNMR}(101 \mathrm{MHz}, \mathrm{CDCl} 3)$

ethyl 4-benzyl-2,2-bis(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-3-oxooct-6enoate

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl} 3$)

ethyl 3-oxododec-6-enoate

${ }^{1} \mathrm{HNMR}$ ($600 \mathrm{MHz}, \mathrm{CDCl} 3$)

$\stackrel{\text { ® }}{\underset{\sim}{i}}$
$\stackrel{N}{\stackrel{0}{0}}$
$\stackrel{\sim}{\sim} \underset{\sim}{\sim}$
İ
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl} 3$)

$\left.\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1(\mathrm{ppm})\end{array}\right)$
ethyl 2,2-diazido-3-oxododec-6-enoate (11)

${ }^{1}$ HNMR (600 MHz , CDCl3)

ethyl 2,2-bis(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-3-oxododec-6-enoate
${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}, \mathrm{CDCl} 3)$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl} 3$)

ethyl 4-benzyl-3-oxododec-6-enoate

H NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$)

ハ

$\left.\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1(\mathrm{ppm})\end{array}\right)$
ethyl 2,2-diazido-3-oxododec-6-enoate (1m)

tert-butyl 3-oxohept-6-enoate

tert-butyl 2,2-diazido-3-oxohept-6-enoate (1n)
${ }^{1} \mathrm{HNMR}$ ($600 \mathrm{MHz}, \mathrm{CDCl} 3$)

$\stackrel{\sim}{\sim}$

N^{-}

tert-butyl 2,2-bis(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-3-oxohept-6-enoate

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$)

~
$\stackrel{\infty}{\stackrel{\infty}{n}} \stackrel{\substack{\infty \\ \cdots}}{\infty}$

${ }^{13} \mathrm{CNMR}$ ($101 \mathrm{MHz}, \mathrm{CDCl} 3$)

N-benzyl-3-oxohept-6-enamide

H NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$)

[^0]
2,2-diazido- N-benzyl-3-oxohept-6-enoate (10)

${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}, \mathrm{CDCl} 3)$

$\begin{array}{lllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

N-benzyl-2,2-bis(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-3-oxohept-6-enamide

ethyl 2-methyl-3-oxohept-6-enoate
${ }^{1}$ HNMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl} 3$)

ethyl 2-azido-3-methyl-3-oxohept-6-enoate (3)

${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl3)

ethyl-2-(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-2-methyl-3-oxohept-6-enoate

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3)$

Nì
$\stackrel{9}{6}$

${ }^{13} \mathrm{CNMR}$ ($101 \mathrm{MHz}, \mathrm{CDCl} 3$)

ethyl 3-hydroxy-6-methylpicolinate (2a)

ethyl 3-hydroxy-4,6-methylpicolinate (2b)

$\begin{aligned} & \text { هচ } \\ & \stackrel{1}{1} \end{aligned}$	$\stackrel{m}{i}$			$\underbrace{\infty}_{i}$

H NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$)

-

ethyl 3-hydroxy-6-methyl-4-pentylpicolinate (2c)

-

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3)$

ethyl (2-(benzyloxy)ethyl)-3-hydroxy-6-methylpicolinate (2d)

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3)$

${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\stackrel{\substack{0}}{\stackrel{\sim}{1}}$

ethyl 4-benzyl-3-hydroxy-6-methylpicolinate (2e)
(
${ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}, \mathrm{CDCl} 3$)

 H_{3}

${ }^{13} \mathrm{CNMR}(101 \mathrm{MHz}, \mathrm{CDCl} 3) \stackrel{0}{\circ}$

ethyl 4-(4-fluorobenzyl)-3-hydroxy-6-methylpicolinate (2f)
(

ethyl 3-hydroxy-6-methyl-phenylpicolinate (2g)

${ }^{13} \mathrm{CNMR}(101 \mathrm{MHz}, \mathrm{CDCl} 3) \stackrel{\text { M }}{\stackrel{0}{0}}$ |
$\stackrel{\widehat{O}}{\substack{i \\ i}}$

200
$0 \quad 180$
$\left[\begin{array}{lllll}160 & 150 & 140 & 130\end{array}\right.$
120 100
$\mathrm{f1}(\mathrm{ppm})$

$$
90 \quad 8
$$

ethyl 4-([1,1'-biphenyl]-2-yl)-3-hydroxy-6-methylpicolinate (2h)

${ }^{1} \mathrm{HNMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl} 3$)

${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3)
$\stackrel{+}{0}$

స̀

ethyl 4-(2-bromophenyl)-3-hydroxy-6-methylpicolinate (2i)

ethyl 6－ethyl－3－hydroxypicolinate（2j）
$\stackrel{\circ}{\circ}$
$\overbrace{\text { ®ion }}^{\sim}$
$\underbrace{\text { Rロ～}}$
$\underbrace{\text { ®．}}$
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3)$

${ }^{13} \mathrm{CNMR}(101 \mathrm{MHz}, \mathrm{CDCl} 3)$
$\stackrel{\circ}{\circ}$

パ்

ethyl 4-benzyl-6-ethyl-3-hydroxypicolinate (2k)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$)

ethyl 6-hexyl-3-hydroxypicolinate (21)

CH_{3}

${ }^{13} \mathrm{CNMR}(101 \mathrm{MHz}, \mathrm{CDCl} 3)$
$\stackrel{\circ}{\circ}$
「ㅜㅜ웅

 H_{3}

ethyl 4-benzyl-6-hexyl-3-hydroxypicolinate (2m)

${ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}, \mathrm{CDCl} 3)$

CNMR (101 MHz, CDCl 3$)$

tert-butyl 3-hydroxy-6-methylpicolinate (2n)

N-benzyl 3-hydroxy-6-methylpicolinate (20)

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3)$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl} 3$)
:

$\begin{array}{lllllllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -1(\end{array}$
ethyl 2,6-dimethyl-3-oxo-2,3,4,5-tetrahydropyridin-2-carboxylate (4)
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3)$

ethyl 6－methyl－3－（（（trifluoromethyl）sulfonyl）oxy）picolinate（5）

${ }^{13} \mathrm{CNMR}(151 \mathrm{MHz}, \mathrm{CDCl} 3)$
 ホั่ デ

ethyl 6-methyl-3-phenylpicolinate (6)

ethyl 4-bromo-3-hydroxy-6-methylpicolinate (7)
'HNMR ($600 \mathrm{MHz}, \mathrm{CDCl} 3$)

ethyl 5-methyl-2-phenylfuro[2,3-c]pyridine-7-carboxylate (8a)

ethyl 5-methyl-2-(trimethylsilyl)furo[2,3-c]pyridine-7-carboxylate (8b)

-
$\stackrel{\infty}{\circ}$
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3)$

${ }^{13} \mathrm{CNMR}$ ($101 \mathrm{MHz}, \mathrm{CDCl} 3$)

$\stackrel{\stackrel{i}{i}}{i}$
$\stackrel{1}{\underset{\sim}{f}}$

[^1]methyl 2-iodo-5-methylfuro[2,3-c]pyridine-7-carboxylate (9)

[^0]: $\left.\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1(\mathrm{ppm})\end{array}\right)$

[^1]:

