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SUPPLEMENTARY INFORMATIONS 

Peptide encoding and QSAR  

In order to present the simulated peptides to the learning algorithm, two types of descriptor encoding were 

employed (see Table S1): global descriptors and topological descriptors. Global descriptors describe the 

whole molecule, while topological descriptors represent the interaction of different residues along the 

amino acidic sequence. Charge and hydrophobicity related characteristics are among the most important 

properties in peptide binding.
1
 Hydrophobicity determines folding, binding to receptors, and interactions of 

proteins and peptides with biological membranes. Therefore, both charge and hydrophobicity will be taken 

into account in global and topological descriptors. Topological description of the peptide sequence was 

accounted for by encoding QSAR descriptors into auto- and cross covariance (ACC) values. Classical ACC 

transformation was first introduced by Wold et al 
2
, resulting in two kinds of variables: auto covariance (AC) 

of the same descriptor and cross covariance (CC) between two different descriptors. Briefly, for a given 

protein sequence, ACC variables describe the average interactions between residues distributed a certain 

lag apart throughout the whole sequence. Besides describing the sequence order, ACC has the ability to 

transform each amino acid (AA) sequence of variable length into uniform equal-length vectors. This feature 

is very important in data mining methods, where a fixed-length vector describing each instance is required. 

However, averaging along the entire sequence may cause loss of information about strong and weak 

correlations. To cope with these limitations, the Minimum and maximum of auto- and cross-covariances 

(mMACC) algorithm was introduced
3
, where positive and negative descriptor values are considered 

separately and only the minimum and maximum value of each lag is used. This allows accounting for both 

weak and strong correlations along the peptide sequence.  
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Equation 1. Minimum and Maximum of auto- and cross-covariances 

Where Z
k

i is the i-th descriptor of residue k in the sequence, d is the lag, L is the length of the amino acid 

sequence. As in the MACC algorithm, the maximum value of each interaction is taken into account. 

However, in the mMACC each z-scale descriptor is shifted by the absolute minimal value in order to have 

only positive interactions. This reduces the number of combinations, while maintaining both information of 

strong and weak interactions. In this work, ‘z-scale’ variables 
4
 are encoded into topological descriptors. 

These are highly condensed variables derived from a principal component analysis (PCA) of several 

experimental or theoretical physicochemical properties for the 87 amino acids. In detail, these z-scale 

descriptors correspond to the first five principal components explaining the variance in the set: z1, z2, and z3 



represent the AA hydrophobicity, steric properties, and polarity, respectively. Finally, z4 and z5 describe the 

electronic effect of the residues 
5
.  

Table S1: List of descriptors. Two classes of descriptors were used to describe a single hexapeptide 

sequence: global descriptors and topological descriptors. Column “Number” indicates the number of 

components for a given descriptor. 

 

Type Abbreviation Description Number 

Global NetCharge@5 Net charge at pH = 5 1 

NetCharge@7 Net charge at pH = 7 1 

NetCharge@9 Net charge at pH = 9 1 

IP Isoelectric Point 1 

MW Molecular weight 1 

Topological AC Min and max auto covariance values between same descriptors 25 

CC Min and max cross covariance between two descriptors 100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S1: QCM-D measurements of ∆f over time. Shift in frequency were detected at the binding of 

peptides (blue arrows) or the binding of increasing concentration (1, 10, 20, 50 µM) of hTransferrin (red 

arrows,upper panels) or BSA (red arrows, lower panels). 

 

 

  



Figure S2: Internalization assay in adenocarcinoma pancreatic cells (Mia PaCa-2). Each peptide labelled with 

Atto633 (yellow channel) was incubated in cultured cells at concentration of 1μM for 30 minutes at 37°C 

and 5% CO2 and then internalization was monitored by confocal fluorescence microscopy. (a) Evaluation of 

aspecific internalization of Tf2 using medium without serum and transferrin. (b) Evaluation of Tf2-scr 

internalization using medium with serum and adding unlabeled transferrin to a final concentration of 

35µM. Scale bars 10µM. 
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Figure S3: Competitive inhibition for binding of Tf2 to Tf. Tf2 (1 µM) internalizes in Mia PaCa-2 cells in the 

presence of Tf (35 µM, labeled/unlabeled 1/7), with extensive colocalization at membrane and lysosomal 

level (Fig. S3a). Internalization of labeled Tf2 (1 µM) is completely inhibited when saturating amounts of 

unlabeled Tf2 (1 mM) are added in the presence of Tf (35 µM, labeled/unlabeled 1/7) (Fig. S3b). 

Internalization of labeled Tf2 (1 µM) and of labeled Tf (5 µM) is almost completely inhibited by the addition 

of 600 µM of unlabeled Tf (Fig. S3c).  

 

 



Table S2: Total identified proteins  

The table contains all identified protein with at least 2 identified peptides (at 95% of confidence). %Cov: 

Coverage percentage at 95% confidence level. 

Paragon 

Score 

%Cov (95) Accession Entry name Protein Name Peptides 

(95%) 

121.26 81.12 P02768 ALBU_HUMAN Serum albumin  174 

68.73 33.72 P02671 FIBA_HUMAN Fibrinogen alpha chain  72 

59.44 16.21 P21333 FLNA_HUMAN Filamin-A  35 

40.54 31.83 P04264 K2C1_HUMAN Keratin, type II cytoskeletal 1  43 

39.6 51.93 P02675 FIBB_HUMAN Fibrinogen beta chain  34 

35 9.745 P35579 MYH9_HUMAN Myosin-9  23 

32.69 25.64 P02787 TRFE_HUMAN Serotransferrin  15 

29.85 56.78 P02649 APOE_HUMAN Apolipoprotein E  24 

27.38 47.19 P02647 APOA1_HUMAN Apolipoprotein A-I  24 

26.42 34.73 P01871 IGHM_HUMAN Ig mu chain C region  28 

26.27 26.54 P13645 K1C10_HUMAN Keratin, type I cytoskeletal 10  25 

25.72 44.15 P02679 FIBG_HUMAN Fibrinogen gamma chain  19 

24.57 8.049 P12259 FA5_HUMAN Coagulation factor V  21 

24.04 50 P01857 IGHG1_HUMAN Ig gamma-1 chain C region  20 

22.77 15.53 P01042 KNG1_HUMAN Kininogen-1  20 

20.94 58.47 P67936 TPM4_HUMAN Tropomyosin alpha-4 chain  18 

20.29 26.28 P10909 CLUS_HUMAN Clusterin  12 

19.98 38.42 P00738 HPT_HUMAN Haptoglobin  16 

18.5 24.27 P04004 VTNC_HUMAN Vitronectin  19 

17.11 21.67 P35527 K1C9_HUMAN Keratin, type I cytoskeletal 9  15 

15.98 38.46 O75636 FCN3_HUMAN Ficolin-3  17 

15.28 5.706 Q9Y490 TLN1_HUMAN Talin-1  10 

15.2 35.13 P01876 IGHA1_HUMAN Ig alpha-1 chain C region  10 

14.77 18.18 P06727 APOA4_HUMAN Apolipoprotein A-IV  9 

13.64 11.64 P02730 B3AT_HUMAN Band 3 anion transport protein  8 

12.44 12.95 P04196 HRG_HUMAN Histidine-rich glycoprotein  8 

12 82.08 P01834 IGKC_HUMAN Ig kappa chain C region  12 



10.27 20.8 P63261 ACTG_HUMAN Actin, cytoplasmic 2  8 

10.27 20.8 P60709 ACTB_HUMAN Actin, cytoplasmic 1  8 

10 32.65 P68871 HBB_HUMAN Hemoglobin subunit beta  8 

9.89 5.726 P07996 TSP1_HUMAN Thrombospondin-1  6 

16.22 22.69 P35908 K22E_HUMAN Keratin, type II cytoskeletal 2 epidermal  18 

9.74 28.91 P02775 CXCL7_HUMAN Platelet basic protein  7 

7.49 13.28 P04040 CATA_HUMAN Catalase  5 

7.46 2.34 P11277 SPTB1_HUMAN Spectrin beta chain, erythrocytic  4 

7.31 4.524 P08514 ITA2B_HUMAN Integrin alpha-IIb  5 

17.15 40.49 P01859 IGHG2_HUMAN Ig gamma-2 chain C region  14 

6.52 15.8 P02765 FETUA_HUMAN Alpha-2-HS-glycoprotein  5 

6.4 25.83 P60660 MYL6_HUMAN Myosin light polypeptide 6  4 

6 23.27 P01591 IGJ_HUMAN Immunoglobulin J chain  3 

5.97 6.472 P05106 ITB3_HUMAN Integrin beta-3  4 

5.9 56.36 P81605 DCD_HUMAN Dermcidin  8 

5.82 2.02 P16157 ANK1_HUMAN Ankyrin-1  3 

5.36 2.108 P02549 SPTA1_HUMAN Spectrin alpha chain, erythrocytic 1  4 

5.14 30.3 P02656 APOC3_HUMAN Apolipoprotein C-III  5 

4.94 28.17 P69905 HBA_HUMAN Hemoglobin subunit alpha  5 

4.55 43.56 P02655 APOC2_HUMAN Apolipoprotein C-II  4 

4.04 1.323 P01024 CO3_HUMAN Complement C3  2 

4.04 28.3 P0CG06 LAC3_HUMAN Ig lambda-3 chain C regions  9 

4.04 28.3 P0CG05 LAC2_HUMAN Ig lambda-2 chain C regions  9 

4.04 28.3 P0CG04 LAC1_HUMAN Ig lambda-1 chain C regions  9 

4.04 14.02 B9A064 IGLL5_HUMAN Immunoglobulin lambda-like polypeptide 

5  

9 

4 28.3 P0CF74 LAC6_HUMAN Ig lambda-6 chain C region  9 

4.02 5.24 P15169 CBPN_HUMAN Carboxypeptidase N catalytic chain  3 

4.02 2.662 P11171 41_HUMAN Protein 4.1  2 

20.07 31.71 P04220 MUCB_HUMAN Ig mu heavy chain disease protein  19 

4 3.333 Q14624 ITIH4_HUMAN Inter-alpha-trypsin inhibitor heavy chain 

H4  

2 



3.7 12.14 Q15485 FCN2_HUMAN Ficolin-2  4 

3.6 2.279 Q92954 PRG4_HUMAN Proteoglycan 4  3 

3.43 4.762 P02790 HEMO_HUMAN Hemopexin  2 

3.28 6.982 P07437 TBB5_HUMAN Tubulin beta chain  2 

3.18 10.19 P13224 GP1BB_HUMAN Platelet glycoprotein Ib beta chain  3 

2.75 7.536 P02749 APOH_HUMAN Beta-2-glycoprotein 1  2 

2.67 10.95 O43866 CD5L_HUMAN CD5 antigen-like  2 

2.18 24.56 P06702 S10A9_HUMAN Protein S100-A9  3 

2.03 4.049 P07477 TRY1_HUMAN Trypsin-1  2 

2 10 P02652 APOA2_HUMAN Apolipoprotein A-II  2 

1.78 4.43 P02774 VTDB_HUMAN Vitamin D-binding protein  2 
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