Supporting Information

Suppression of Homo-Coupling Side Reactions in Direct Arylation Polycondensation for Producing High Performance OPV Materials.

Junpei Kuwabara,* Yohei Fujie, Keisuke Maruyama, Takeshi Yasuda, Takaki Kanbara*

Scheme S1. Proposed mechanism of homo-coupling reaction in direct arylation. A disproportionation reaction of the Pd(II) intermediate forms a biscarboxylato Pd complex and a biaryl Pd complex which affords a C-Br/C-Br homo-coupling compound via reductive elimination. The biscarbocylato Pd complex affords a C-H/C-H homo-coupling compound via C-H bond cleavage.

Figure S1. ¹H NMR spectrum of **P1** (a) full spectrum (b) aromatic region (600 MHz, $C_2D_2Cl_4$, 353 K). The signl b' and A' overlap at 7.06 ppm, exhibiting a triplet-like signal.

Figure S2. MALDI TOF MS spectrum of P1.

Figure S5. ¹H NMR spectrum of **P3** (a) full spectrum (b) aromatic region (600 MHz, $C_2D_2Cl_4$, 353 K). The signals with asterisk could not be assigned.

Figure S6. $^{13}C\{^1H\}$ and DEPT 135 NMR spectra of P3 (150 MHz, $C_2D_2Cl_4,$ 353 K).

Scheme S2. A control experiment for assessing the reactivity of the C-H bond on the debrominated thienyl group under the toluene system.

Figure S7. ¹H NMR spectra of (a) 2,7-(dithien-2-yl)-9,9-dioctylfluorene, (b) the crude products of the control experiment shown in Scheme S2, and (c) 2,7-bis(5-bromothien-2-yl)-9,9-dioctylfluorene (400 MHz, CDCl₃). The spectra reveal almost no reaction of the control experiment shown in Scheme S2, indicating low reactivity of C-H bond on the thienyl group under the toluene system.

Figure S8. ¹H NMR spectrum of **P4** (600 MHz, $C_2D_2Cl_4$, 353 K). Multiplicity of the signal at around 7.89 ppm is due to the presence of diastereomers caused by two 2-ethylhexyl side chain. ^{S1} No signal for the C-Br/C-Br homo-coupling structures (CPDT-CPDT) was observed at 7.1 and 6.9 ppm. ^{S1}

Figure S9. $^{13}C\{^1H\}$ and DEPT 135 NMR spectra of P4 (150 MHz, $C_2D_2Cl_4,$ 353 K).

Figure S11. AFM images (5 \times 5 $\mu m^2)$ of P4 and P4:PC_{70}BM (1:2).

	$J_{\rm sc}~({\rm mA/cm}^2)$	$V_{ m oc}$ (V)	FF	PCE (%)
1	13.296	0.877	0.453	5.297
2	13.542	0.861	0.440	5.135
3	13.100	0.834	0.425	4.646
4	13.070	0.891	0.468	5.458
5	13.201	0.871	0.452	5.209
6	13.274	0.849	0.450	5.079
Average with standard deviation	13.3 ± 0.2	0.86 ± 0.02	0.45 ± 0.01	5.1 ± 0.3

Table S1. Photovoltaic device characteristics of BHJ OPVs (Table 1, Entry 1)

ITO/ PEDOT:PSS/ P4:PC₇₀BM(1:2) (88 nm) / Al (80 nm)

The BHJ layer is fabricated using chlorobenzene + 1,8-diiodooctane 4% as solvent and annealed at 70 °C for 10 min.

Table S2. Photovoltaic device characteristics of BHJ OPVs (Table 1, Entry 2)

	$J_{\rm sc}~({\rm mA/cm^2})$	$V_{\rm oc}$ (V)	FF	PCE (%)
1	13.294	0.917	0.536	6.547
2	13.940	0.913	0.535	6.815
3	13.825	0.885	0.530	6.493
4	13.107	0.903	0.523	6.196
5	13.148	0.897	0.517	6.112
6	13.088	0.890	0.523	6.098
Average with standard deviation	13.4 ± 0.4	0.90 ± 0.01	0.527 ± 0.008	6.4 ± 0.3

ITO/ PEDOT:PSS/ P4:PC₇₀BM(1:2) (90 nm) / LiF (1 nm)/ Al (80 nm)

The BHJ layer is fabricated using chlorobenzene + 1,8-diiodooctane 4% as solvent and annealed at 70 $^{\circ}$ C for 10 min.

Reference

S1. Chang, S. W.; Waters, H.; Kettle, J.; Kuo, Z. R.; Li, C. H.; Yu, C. Y.; Horie, M. Macromol. Rapid Commun. 2012, 33 (22), 1927.