Supporting Information

Chiral Substituted Poly- N-vinylpyrrolidinones and Bimetallic Nanoclusters in Catalytic

Asymmetric Oxidation Reactions

Bo Hao, Medha J. Gunaratna, Man Zhang, Sahani Weerasekara, Sarah N. Seiwald, Vu T.
Nguyen, Alex Meier, and Duy H. Hua*

Table of Contents

1. Figure S1. Molecular weight determination of polymer 17 by gel permeation
chromatography using TSKgel GMHxl column and THF as solvent with a flow rate of 1
$\mathrm{mL} / \mathrm{min}$.

S2 - S3
2. Figure S2. AFM images of CSPVP 17 and $\mathrm{Pd} / \mathrm{Au}(3: 1)$-17. S3-S4
3. Figure S3. Dynamic light scattering studies of CSPVP 17 and $\mathrm{Pd} / \mathrm{Au}(3: 1)-17$ S4 - S5
4. Figure S4. The appearance $\mathrm{Pd} / \mathrm{Au}(3: 1)$-CSPVP 17 in deionized $\mathrm{H}_{2} \mathrm{O}$ solution S5
5. Inductively coupled plasma-mass spectrometry (IPC-MS) S5-S8
6. Figure S5. Transmission electron microscopy (TEM) S8 - S9
7. Calculation of the number of metal atoms (N) in each nanoparticles S9-S10
8. Figure S6. X-ray photoelectron spectroscopy (XPS) S10-S12
9. Experimental Procedures and HPLC graphs S12-S81
10. Table S1. Selectivity factors for all HPLC/chiral column analyses S81-S82
11. References S82-S8412. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds $1-18,22-24,31-33,38,40,41,43,44,46,47$,49 - 51, and 55-59, 61-63 including 2D COSY spectra of compounds 56-58S84-S199

1. Figure S1. Molecular weight determination of polymer $\mathbf{1 7}$ by gel permeation chromatography using TSKgel GMHxl column and THF as solvent with a flow rate of 1 $\mathrm{mL} / \mathrm{min}$.

Method: Melania-0002.vcm
Peak RV - (ml) 19.183
Mn - (Daltons) 100,602
Mw - (Daltons) 106,184
Mz - (Daltons) 98,806
Mp - (Daltons) 100,812
Mw / Mn 1.06
Percent Above Mw: 100.000
Percent Below Mw: 0.000
IV - (dl/g) 0.3105
$\mathrm{Rh}(\mathrm{w})$ - (nm) $\quad 7.987$
Wt Fr (Peak) 1.000
Mark-Houwink a 0.191
Mark-Houwink -1.636
$\log K$
Branches $\quad 0.000$
Branch Freq. $\quad 0.000$
RI Area - (mvml) 18.42
UV Area - (mvml) 0.00
RALS Area - 47.62
(mvml)
LALS Area - 0.00
(mvml)
IVDP Area - 23.12
(mvml)

Sample Parameters	Input	Calculate d
Sample Conc ($\mathrm{mg} / \mathrm{ml}$)	1.000	0.460
Sample Recovery (\%)	0.000	- 45.972
$\mathrm{dn} / \mathrm{dc}-(\mathrm{ml} / \mathrm{g})$	0.1470	0.0000
$\mathrm{dA} / \mathrm{dc}-(\mathrm{ml} / \mathrm{g})$	1.0000	0.0000
Annotation		
Method File		Melania-0002.vcm
Limits File		
Date Acquired		ul 10, 2016-20:10:46
Solvent		THF
Acquisition Operato		utologin : autologin
Calculation Operator		utologin : autologin
Column Set		GMHxl
System		System 1
Flow Rate - (ml/min)		1.000
Inj Volume - ($\mu \mathrm{l}$)		100.0
Volume Increment - (ml) 0.00333		
Detector Temp. - (deg C)		22.0
Column Temp. - (deg C)		22.0
OmniSEC Build Number		406

2. Figure S2. Panel A: a representative AFM image of CSPVP 17, and sizes of the polymer are $\sim 20-30 \mathrm{~nm}$. B: measurement of the height (Y axis) and width (X axis) of polymer 17. C: representative image of nanocluster $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1 7}$. D : measurement of the height and width of the nanoclusters and the sizes are $\sim 50-200 \mathrm{~nm}$. The average height of the nanoparticles is 5.76 nm . For analysis, the crude nanocluster solution was filtered through a Vivaspin 20 centrifugal filter device ($3,000 \mathrm{MWCO}$), and washed with deionized water twice to remove low MW inorganic materials. The resulting nanocluster was dissolved in water and subjected to AFM analysis. Images of polymers and nanocluster-polymers were randomly taken from the samples and representative images were displayed.

3. Figure S3. Dynamic light scattering studies of CSPVP 17 and $\mathrm{Pd} / \mathrm{Au}(3: 1)-17$. A. Autocorrelation function over time of $\mathbf{1 7}$ in $\mathrm{H}_{2} \mathrm{O}$ (deionized) solution with concentration of $0.12 \mathrm{~mol} / \mathrm{L}$. B. Size distribution graph of $\mathbf{1 7}$ in $\mathrm{H}_{2} \mathrm{O}$ (same concentration as in A). C. Autocorrelation function over time of $\mathrm{Pd} / \mathrm{Au}(3: 1)-17$ in $\mathrm{H}_{2} \mathrm{O}$ (deionized) solution with concentration of $4.36 \mathrm{~mol} / \mathrm{L} \mathrm{Pd} / \mathrm{Au}(3: 1)$ and $0.12 \mathrm{~mol} / \mathrm{L} 17$. D. Size distribution graph of $\mathrm{Pd} / \mathrm{Au}$ (3:1)-17 in $\mathrm{H}_{2} \mathrm{O}$. The sizes of $\mathrm{Pd} / \mathrm{Au}-\mathbf{1 7}$ are ~ 5.7 times larger than those of polymer $\mathbf{1 7}$ alone. For analysis, the crude nanocluster solution was filtered through a Vivaspin 20 centrifugal filter device ($3,000 \mathrm{MWCO}$), and washed with deionized water twice to remove low MW inorganic materials. The resulting nanocluster was dissolved in water and subjected to DLS analysis.

4. Figure S4. The appearance $\mathrm{Pd} / \mathrm{Au}(3: 1)$-CSPVP 17 in deionized $\mathrm{H}_{2} \mathrm{O}$ solution. Left cuvette: 2.18 M (1.63 M of Pd and 0.55 M of Au complexed with 0.06 M of $\mathbf{1 7}$). Right cuvette: 4.23 M (3.17 M of Pd and 1.06 M of Au and 0.12 M of $\mathbf{1 7}$).

5. Inductively coupled plasma-mass spectrometry (ICP-MS) measurement: An ICP-MS instrument, NexION® 300D from PerkinElmer was used to measure the concentrations of Pd, Au , and Cu in $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1 7}$ and $\mathrm{Cu} / \mathrm{Au}(3: 1)-17$. To a solution of $100 \mu \mathrm{~g}$ of $\mathrm{Pd} / \mathrm{Au}(3: 1)-$
$\mathbf{1 7}$ or $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{1 7}$ in $100 \mu \mathrm{~L}$ of deionized water was added 2 mL of aqua regia solution at $70^{\circ} \mathrm{C}$ under sonication for 3 h , and the solution was cooled to $25^{\circ} \mathrm{C}$, diluted to 10 mL with a 1% $\mathrm{HNO}_{3} / 2 \% \mathrm{HCl}$ solution. A total of six separate experiments were conducted using different concentrations of the above solution. (1) Three similar experiments were carried out: in each experiment, $250 \mu \mathrm{~L}$ of the above $\mathrm{Pd} / \mathrm{Au}$ (or $\mathrm{Cu} / \mathrm{Au}$) solution was removed and diluted to 5 mL of $1 \% \mathrm{HNO}_{3} / 2 \% \mathrm{HCl}$ solution. The sample was subjected to the ICP mass spectrometer and intensities of Pd and Au (or Cu and Au) were obtained. (2) Three other similar experiments: in each experiment, $100 \mu \mathrm{~L}$ of the above $\mathrm{Pd} / \mathrm{Au}($ or $\mathrm{Cu} / \mathrm{Au}$) solution was removed and diluted to 5 mL of $1 \% \mathrm{HNO}_{3} / 2 \% \mathrm{HCl}$ solution. The sample was subjected to the ICP mass spectrometer and intensities of Pd and Au (or Cu and Au) were obtained. Standard solutions for Au and Cu are commercially available, and standardized Pd solution was obtained from $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$.

ICP-MS study of Pd/Au (3:1)-CSPVP 17 sample:

Standardized graph of intensities vs concentrations of standard ${ }^{107.9} \mathrm{Pd}$ (II) from $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$
$\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1 7}$ sample measurements (from three experiments):

dilute times	intensity	concentration
2000	51927.9 ± 1079.1	3.43 ± 0.30
5000	19083.8 ± 838.0	1.41 ± 0.29

Concentration of ${ }^{107.9} \mathrm{Pd}$ in $\mathrm{Pd} / \mathrm{Au}(3: 1)-17=6.96 \pm 1.03 \mu \mathrm{~g} / \mathrm{mg}$
Concentration of total Pd in $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1 7}=26.3 \pm 3.9 \mu \mathrm{~g} / \mathrm{mg}$
Mole of Pd in $\mathrm{Pd} / \mathrm{Au}(3: 1)-17=26.3 / 106.4=0.25 \pm 0.037 \mu \mathrm{~mol} / \mathrm{mg}$

Standardized graph of intensities vs concentrations of standard ${ }^{197} \mathrm{Au}$.

dilute times	intensity	concentration
2000	185915.2 ± 1359.2	7.53 ± 0.22
5000	78991.2 ± 1885.48	3.29 ± 0.24

Concentration of ${ }^{197} \mathrm{Au}$ in $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1 7}=15.8 \pm 0.82 \mu \mathrm{~g} / \mathrm{mg}$
Mole of Au in $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1 7}=15.8 / 197=0.080 \pm 0.004 \mu \mathrm{~mol} / \mathrm{mg}$

The ratio of $\mathrm{Pd} / \mathrm{Au}$ is: $0.25 / 0.08=3.12 \pm 0.58$

ICP-MS study of Cu/Au (3:1)-CSPVP 17 sample:

Standardized graph of intensities vs concentrations of standard ${ }^{62.9} \mathrm{Cu}$
$\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{1 7}$ sample measurements (from three experiments):

dilute times	intensity	concentration
2000	222135.2 ± 332.3	5.33 ± 0.15
5000	90612.7 ± 6185.3	2.26 ± 0.28

Concentration of ${ }^{62.9} \mathrm{Cu}$ in $\mathrm{Cu} / \mathrm{Au}-\mathbf{1 7}=10.97 \pm 0.85 \mu \mathrm{~g} / \mathrm{mg}$
Concentration of Cu in $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{1 7}=15.9 \pm 1.2 \mu \mathrm{~g} / \mathrm{mg}$
Mole of Cu in $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{1 7}=15.9 / 63.6=0.25 \pm 0.02 \mu \mathrm{~mol} / \mathrm{mg}$

Standardized graph of intensities vs concentrations of standard ${ }^{197} \mathrm{Au}$.

dilute times	intensity	concentration
2000	200274.2 ± 1541.6	8.10 ± 0.22
5000	79420.2 ± 1409.7	3.31 ± 0.22

Concentration of ${ }^{197} \mathrm{Au}$ in $\mathrm{Cu} / \mathrm{Au}(3: 1)-17=16.37 \pm 0.77 \mu \mathrm{~g} / \mathrm{mg}$
Mole of Au in $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{1 7}=16.4 / 197=0.083 \pm 0.004 \mu \mathrm{~mol} / \mathrm{mg}$

The ratio of $\mathrm{Cu} / \mathrm{Au}$ is: $\mathbf{0 . 2 5 / 0 . 0 8 3}=\mathbf{3 . 0} \pm \mathbf{0 . 4}$
6. Transmission electron microscopy (TEM) images of $\operatorname{Pd} / \mathrm{Au}(3: 1)-17$ and $\mathrm{Cu} / \mathrm{Au}(3: 1)-$

17:

Figure S5. Panel A: a representative TEM image of nanocluster $\mathrm{Pd} / \mathrm{Au}(3: 1)-17$. B: measurement of the diameter of the nanoclusters and the average size is $3.44 \pm 1.63 \mathrm{~nm} . \mathrm{C}$: a representative TEM image of nanocluster $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{1 7}$. D : measurement of the diameter of the nanoclusters and the average size is $3.66 \pm 1.95 \mathrm{~nm}$. Bars are 20 nm . For analysis, the crude nanocluster solution was filtered through a Vivaspin 20 centrifugal filter device (3,000 MWCO), and washed with deionized water twice to remove low MW inorganic materials. The resulting nanocluster was dissolved in ethanol and subjected to TEM analyses.
7. Calculation of the number of metal atoms (\mathbf{N}) in each nanoparticle with the assumption that the nanoparticles have face-centered cubic close-packed structure.

For $\mathrm{Pd} / \mathrm{Au}(3: 1)-17$: (diameters for Au and Pd are 0.288 and 0.275 , respectively.)

Diameter $\mathrm{d}=(3 \times 0.275+0.288) / 4=0.278$
Nanocluster diameter: $12.3 \mathrm{~d}=3.44 \mathrm{~nm}$ (the diameter of $\mathrm{Pd} / \mathrm{Au}$ is obtained from TEM)

The shell number: $\mathrm{n}=6.5$ (based on Poole, C.; Owens, F. Introduction to Nanotechnology, 2003, Wiley, New Jersey)
The number of atoms in a 3.44 nm nanocluster: $\mathrm{N}=1 / 3\left[10 \mathrm{n}^{3}-15 \mathrm{n}^{2}+11 \mathrm{n}-3\right]=727$ atoms Mole of metals in each nanocluster: $1.21 \times 10^{-21} \mathrm{~mol}$ Mole of CSPVP in each nanocluster: $1.21 \times 10^{-21} \times 0.11 / 4=3.3 \times 10^{-23} \mathrm{~mol}$ Number of CSPVP in each nanocluster: $3.3 \times 10^{-23} \mathrm{x} \mathrm{N}_{\mathrm{A}}$ (Avogadro number) $=3.3 \times 10^{-23} \mathrm{x}$ $6.022 \times 10^{23}=\mathbf{2 0 . 0}$

For $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{1 7}$: (diameters for Au and Cu are 0.288 and 0.256 , respectively.)

Diameter d $=(3 \times 0.256+0.288) / 4=0.264$
Nanocluster diameter: $14 \mathrm{~d}=3.66 \mathrm{~nm}$ (the diameter of $\mathrm{Cu} / \mathrm{Au}$ is obtained from TEM)
The shell number: $\mathrm{n}=7.5$
The number of atoms in a 3.66 nm nanocluster: $\mathrm{N}=1 / 3\left[10 \mathrm{n}^{3}-15 \mathrm{n}^{2}+11 \mathrm{n}-3\right]=1151$
atoms
Mole of metal in each nanocluster: 1.91×10^{-21}
Mole of CSPVP in each nanocluster: $1.91 \times 10^{-21} \times 0.11 / 4=5.3 \times 10^{-23}$
Number of CSPVP in each nanocluster: $5.3 \times 10^{-23} \times 6.022 \times 10^{23}=32$
8. X-ray photoelectron spectroscopy (XPS) of Pd/Au (3:1)-17 and Cu/Au (3:1)-17:

Figure S6. A. Wide-scan (or survey) XPS spectrum of $\mathrm{Pd} / \mathrm{Au}(3: 1)-17$ showing all elements present on the sample surface: major elements are carbon (C 1s at 284.6 eV), oxygen (O 1 s at 530.6 eV), and nitrogen (N 1 s at 398.6 eV) of the polymers. B. Detailed XPS spectrum of $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1 7}$ in the range of the Au signals. The signal at 84.1 eV belongs to $\mathrm{Au} 4 \mathrm{f}_{7 / 2}$. C. Detailed XPS spectrum of $\mathrm{Pd} / \mathrm{Au}(3: 1)-17$ in the range of the Pd signals. The signal at 335.1 eV belongs to Pd 3d5/2. D. Wide-scan (or survey) XPS spectrum of $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{1 7}$ showing
all elements present on the sample surface: major elements are carbon (C 1s at 284.6 eV), oxygen (O 1 s at 530.8 eV), and nitrogen (N 1 s at 398.6 eV) of the polymers. E. Detailed XPS spectrum of $\mathrm{Cu} / \mathrm{Au}(3: 1)-17$ in the range of the Au signals. The signal at 84.1 eV belongs to Au $4 f_{7 / 2}$. F. Detailed XPS spectrum of $\mathrm{Cu} / \mathrm{Au}(3: 1)-17$ in the range of the Cu signals. The signal at 932.7 eV belongs to $\mathrm{Cu} 2 \mathrm{p}_{3 / 2}$.

9. Experimental Procedure

${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR spectra $(100 \mathrm{MHz})$ were measured from a solution in CDCl_{3} unless otherwise mentioned. The chemical shift data for each signal on ${ }^{1} \mathrm{H}$ NMR are given in units of δ relative to TMS $(\delta=0)$ or $\mathrm{CHCl}_{3}(\delta=7.26)$. For ${ }^{13} \mathrm{C}$ NMR spectra, the chemical shifts are recorded relative to $\mathrm{CDCl}_{3}(\delta=77.0)$. Low-resolution mass spectra were taken from an API 2000-triple quadrupole ESI-MS/MS mass spectrometer. High-resolution mass spectra were obtained using a LCT Premier time of flight mass spectrometer. IR spectra were measured directly in either solid or liquid form. Inductively coupled plasma-mass spectra (ICP-MS) were taken from a PerkinElmer NexION® ${ }_{\circledR}$ 300D ICP-MS instrument. Transmission electron microscopy (TEM) images were taken from a FEI CM100 TEM instrument (Technical Sales Solutions Inc.). X-ray photoelectron spectroscopy (XPS) study was performed on a PHI 5400 XPS system (Physical Electronic Inc.). The purchased N-Boc-L-amino acids (from Chem-Impex International, Wood Dale, IL) were recrystallized twice from ethyl acetate and hexane to obtain pure amino acids before use. All cis-, and trans-1,2and 1,3-cyclopentanes, -cyclohexanes, and -cycloheptanes, limonene, and sclareolide were purchased from Sigma-Aldrich or prepared by following the reported procedures. ${ }^{1-3} 1,4-$

Diisopropylcyclohexanes are commercially available from Alfa Aesar Co. as a mixture of inseparable trans- and cis-isomers. We prepared the trans-isomer 50 from a two-step sequence of reactions involving Birch reduction of 1,4-diisopropylbenzene followed by hydrogenation. Alcohols 52-54 and 58 were made from the addition reactions of isopropylmagnesium bromide with cycloalkanones in the presence of 0.2 equiv of ZnCl_{2} in THF at $0^{\circ} \mathrm{C}^{4}$ Optical purities of various oxidized products were determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, size: $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$, from Daicel Chemical Industries, Exton, PA. AFM images were taken from a Nanoscope IIIa SPM atomic force microscope (Digital Instrument). Dynamic light scattering graphs were taken from a ZetaPALS zeta potential analyzer (Brookhaven Instrument Co.). High pressure reactions were conducted in a Parr Pressure Reactor (Parr Instrument Co., Moline, IL) under 2 atm. (or 30 psi) of oxygen. Vivaspin 20 centrifugal filter device with a 3,000 MWCO was purchased from Sartorius Inc.

Scheme S1. Synthesis of N-vinyl-5-benzhydryloxymethylpyrrolidinone (11).

(S)-tert-Butyl 3-tert-butoxy-1-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)-1-oxopropan-2ylcarbamate (1a). ${ }^{5-7}$ A solution of $4.0 \mathrm{~g}(15.3 \mathrm{mmol})$ of N -Boc-O-tert-butyl-L-serine, 3.3 g (23 mmol) of Meldrum's acid (2,2-dimethyl-1,3-dioxane-4,6-dione), and $2.8 \mathrm{~g}(22.9 \mathrm{mmol})$ of 4-(dimethylamino)pyridine (DMAP) in 80 mL of dichloromethane under argon was cooled to $0^{\circ} \mathrm{C}$ over an ice-water bath. To it, a solution of $3.47 \mathrm{~g}(16.8 \mathrm{mmol})$ of N, N^{\prime} ' dicyclohexylcarbodiimide (DCC) in 20 mL of dichloromethane was added dropwise. The mixture was stirred for 12 hours under argon and the precipitated (N, N^{\prime}-dicyclohexylurea) was removed by filtration. The filtrate was washed with 50 mL of $5 \% \mathrm{HCl}$, and then water, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrated to dryness leaving 5.83 g of compound 1 a as a white solid. This compound was used in the following step without further purification. ${ }^{1} \mathrm{H}$ NMR $\delta 5.67-5.63(\mathrm{~m}, 1 \mathrm{H}), 5.49-5.47(\mathrm{~m}, 1 \mathrm{H}), 3.74-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 1.76(\mathrm{~s}$, $3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 206.8,172.7$, 152.3, 105.9, 79.0, $75.0,62.0,60.6,59.9,30.0$ (3 C), 28.4 (3 C), 25.6 (2 C). MS (ESI, MeOH): $m / z=388.7$ ([M $\left.+\mathrm{H}]^{+}\right)$.

(R)-tert-Butyl 3-tert-butoxy-1-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)propan-2-

ylcarbamate (1b). To a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of $5.80 \mathrm{~g}(15.2 \mathrm{mmol})$ of compound $\mathbf{1 a}$ in 150 mL of dichloromethane under argon were added $5.51 \mathrm{~g}(91.8 \mathrm{mmol})$ of acetic acid and 1.51 g (39.8 mmol) of NaBH_{4}. The solution was stirred at $0^{\circ} \mathrm{C}$ for three hours and at $25^{\circ} \mathrm{C}$ for 12 hours, diluted with 30 mL of water, the dichloromethane layer was separated, and the water layer was extracted with dichloromethane three times. The combined organic layers were washed with water and brine, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), concentrated to give a yellow oil, which was crystallized from diethyl ether to give 5.27 g of compound $\mathbf{1 b}$ as a white solid. ${ }^{1} \mathrm{H}$

NMR $\delta 5.08-5.09(\mathrm{~m}, 1 \mathrm{H}), 4.08-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 3.45-3.41(\mathrm{~m}, 2 \mathrm{H}), 2.5$ - 2.45 (m, 1 H), 2.16-2.01 (m, 1 H), $1.80(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 208.0,174.6,151.0,105.7,79.3,74.7,69.8,49.6,47.1,31.9,28.4,25.7 . \operatorname{MS}(E S I$, $\mathrm{MeOH}): m / z=374.0\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, 299.9.
(R)-N-(tert-Butoxycarbonyl)-5-(tert-butoxymethyl)-pyrrolidin-2-one (3). A solution of $5.26 \mathrm{~g}(14.10 \mathrm{mmol})$ of compound $\mathbf{1 b}$ in 40 mL of toluene under argon was heated to reflux for 6 hours, cooled to $25^{\circ} \mathrm{C}$, concentrated under vacuum, and column chromatographed on silica gel using hexane and ethyl acetate (4:1) as eluent to give $3.44 \mathrm{~g}(83 \%$ overall yield in three steps) of compound $\mathbf{3}$ as a yellow oil. $\quad[\alpha]_{\mathrm{D}}{ }^{22}=+80.7\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 4.09-4.07$ $(\mathrm{m}, 1 \mathrm{H}), 3.52(\mathrm{dd}, \mathrm{J}=10,4 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, \mathrm{J}=10,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dt}, \mathrm{J}=17.6,9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.20(\mathrm{dd}, \mathrm{J}=17.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 175.3,150.1,82.6,73.2,62.9,58.0,32.5,28.2,27.5,21.7 . \quad$ MS (ESI, MeOH): $m / z=$ $294.1\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 272.0\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, 194.1, 172.1, 116.0. HRMS-ESI: $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{NO}_{4}$: 272.1862 ; found: 272.1887 .
(R)-5-(Hydroxymethyl)pyrrolidin-2-one (5). A solution of $1.0 \mathrm{~g}(12.9 \mathrm{mmol})$ of compound 3 in 5 mL of 10% trifluoroacetic acid in dichloromethane was stirred at $50^{\circ} \mathrm{C}$ for 5 hours, cooled to $25^{\circ} \mathrm{C}$, and diluted with dichloromethane. The solution was washed with an aqueous solution of NaHCO_{3}, then water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated to give $0.42 \mathrm{~g}(99 \%$ yield) of compound $\mathbf{5}$ as a brown oil. This material was used in the subsequent step without further purification. $\quad[\alpha] \mathrm{D}^{22}=-60.2\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 6.7-6.6(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 4.46$ $(\mathrm{dd}, \mathrm{J}=11.2,4 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, \mathrm{J}=11.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.04(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.32(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{CH}_{2}$ and OH), $1.98-1.87(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 181.6,65.2,57.5,30.3,22.3$; MS (ESI,
$\mathrm{MeOH}): m / z=116.0\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right)$, 98.1. HRMS-ESI: $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}_{2} \mathrm{Na}^{+}: 138.0531$ found: 138.0537 .
(R)-5-(Benzhydryloxymethyl)pyrrolidin-2-one (8). To a cold ($0^{\circ} \mathrm{C}$) solution of $0.43 \mathrm{~g}(3.74$ $\mathrm{mmol})$ of compound $\mathbf{5}$ in 1 mL distilled THF under argon, was added $0.15 \mathrm{~g}(3.74 \mathrm{mmol})$ of $\mathrm{NaH}(60 \%$ in mineral oil; NaH was washed twice with dried diethyl ether). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes and added $1.11 \mathrm{~g}(4.48 \mathrm{mmol})$ of bromodiphenylmethane. The mixture was stirred at $50^{\circ} \mathrm{C}$ for 12 hours, diluted with 1 mL of $\mathrm{H}_{2} \mathrm{O}$, and the organic THF layer was separated and concentrated under vacuum and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as an eluent to give $0.93 \mathrm{~g}(88 \%$ yield $)$ of compound $\mathbf{8}$ as a brown oil. $\quad[\alpha] \mathrm{D}^{22}=-63.2\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ; \quad{ }^{1} \mathrm{H}$ NMR $\delta 7.4-7.2(\mathrm{~m}, 10 \mathrm{H}$, Ar), $6.06-5.98(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 3.95-3.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHN}), 3.48(\mathrm{dd}, \mathrm{J}=9.6,3.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHO}), 3.36(\mathrm{dd}, \mathrm{J}=9.6,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}), 2.41-2.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 2.24-2.14$ (m, 1 H$), 1.79-1.68(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 178.1, 141.8 (2 C), 128.7 (4 C), 127.9 (2 C), 127.1 (4 C), 84.1, 73.0, 54.1, 29.9, 23.4; MS (ESI, MeOH): $m / z=304.1\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 194.0,167.1$. HRMS-ESI: $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{Na}^{+}: 304.1313$; found: 304.1320 . (R)-5-(Benzhydryloxymethyl)-1-vinylpyrrolidin-2-one (11). ${ }^{8}$ To a solution of 1.20 g (4.27 mmol) of compound $\mathbf{8}$ in 50 mL of vinyl acetate under argon, were added 4.0 g of $3 \AA$ molecular sieves, $27 \mathrm{mg}(0.34 \mathrm{mmol})$ of $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$, and $1.06 \mathrm{~g}(7.69 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$. The mixture was stirred at $50^{\circ} \mathrm{C}$ under argon for 28 hours, cooled to $25^{\circ} \mathrm{C}$, filtered, concentrated under vacuum, and column chromatographed on silica gel using a mixture of hexane and diethyl ether (1:1) as an eluent to give $0.67 \mathrm{~g}(51 \%$ yield $)$ of pure compound 11 as a brown oil. $\quad[\alpha] \mathrm{D}^{22}=+24.6(\mathrm{c}$ $\left.1.0, \mathrm{CHCl}_{3}\right) ; \quad{ }^{1} \mathrm{H}$ NMR $\delta 7.35-7.20(\mathrm{~m}, 10 \mathrm{H}), 6.98(\mathrm{dd}, \mathrm{J}=16.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=), 5.31$
$(\mathrm{s}, 1 \mathrm{H}), 4.38\left(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 4.34\left(\mathrm{~d}, \mathrm{~J}=16.4 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 4.13-4.08(\mathrm{~m}, 1$ H), $3.68(\mathrm{dd}, \mathrm{J}=9.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, \mathrm{J}=9.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dt}, \mathrm{J}=17,10 \mathrm{~Hz}, 1 \mathrm{H})$, $2.42-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.11(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 178.8,142.5,138.1,128.7(4 \mathrm{C}), 127.9$ (2 C), 127.1 (4 C$), 96.8,84.2,73.6,54.0,30.2,23.7 . \mathrm{MS}(\mathrm{ESI}, \mathrm{MeOH}): m / z=330.1([\mathrm{M}+$ $\mathrm{Na}]^{+}$). HRMS-ESI: $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{Na}^{+}: 330.1470$; found: 330.1490.

Scheme S2. Syntheses of N-vinyl 5-substituted pyrrolidinones 9 and 10.

(R)-5-(t-Butyloxymethyl)pyrrolidin-2-one (6). A solution of $10.2 \mathrm{~g}(37.5 \mathrm{mmol})$ of compound $\mathbf{3}$ in 100 mL of 7% trifluoroacetic acid (TFA) in dichloromethane was stirred at $25^{\circ} \mathrm{C}$ for 15 minutes and then diluted with 30 mL of saturated NaHCO_{3}. The mixture was separated, and the aqueous layer was extracted with dichloromethane. The combined organic layer was washed with water, and brine, dried (MgSO_{4}), concentrated to give $6.28 \mathrm{~g}(98 \%$ yield $)$ of compound $\mathbf{6}$ as a brown oil. This material was used in the subsequent step without further purification. $[\alpha] \mathrm{D}^{22}=-10.8\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.8-7.72(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 3.94-3.86(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CHN}), 3.43\left(\mathrm{dd}, \mathrm{J}=9.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.25\left(\mathrm{dd}, \mathrm{J}=9.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 2.61$
$-2.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 2.28-2.18(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 175.5,74.4,65.2,59.7,32.4,28.0(3 \mathrm{C}), 22.5 . \quad \mathrm{MS}(\mathrm{ESI}, \mathrm{MeOH}): m / z=194.1\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$; 100%), 172.3. HRMS-ESI: $m / z[M+N a]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{Na}^{+}: 194.1157$; found: 194.1172.
(R)-5-(t-Butyloxymethyl)-1-vinylpyrrolidin-2-one (9). To a solution of $2.0 \mathrm{~g}(11.6 \mathrm{mmol})$ of compound $\mathbf{6}$ in 35 mL of vinyl acetate under argon, were added 4.0 g of $3 \AA$ molecular sieves, $0.27 \mathrm{~g}(0.9 \mathrm{mmol})$ of $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$, and $2.25 \mathrm{~g}(16.3 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$. The mixture was stirred at $50^{\circ} \mathrm{C}$ under argon for 14 hours, cooled to $25^{\circ} \mathrm{C}$, filtered, concentrated under vacuum, and column chromatographed on silica gel using a mixture of hexane and ethyl acetate (1:2) as an eluent to give $0.96 \mathrm{~g}(42 \%$ yield $)$ of pure compound $\mathbf{9}$ as a yellow oil. $[\alpha]_{\mathrm{D}}^{22}=+9.6$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.0(\mathrm{dd}, \mathrm{J}=16,9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=), 4.45\left(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 4.44(\mathrm{~d}$, $\left.\mathrm{J}=16 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 4.06-4.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHN}), 3.52\left(\mathrm{dd}, \mathrm{J}=9.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.41$ (dd, J = 9.2, 2.8 Hz, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), $2.64(\mathrm{dt}, \mathrm{J}=17.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.14$ - $2.05(\mathrm{~m}, 2 \mathrm{H}), 1.13(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 175.3, 139.7, 93.1, 74.6, 63.5, 58.8, 32.4, $28.2(3 \mathrm{X})$, 20.8. MS (ESI, MeOH): $m / z=220.2\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 198.2\left(\mathrm{M}^{+} \mathrm{H}^{+}\right), 187.1$. HRMSESI: $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{Na}^{+}: 220.1313$; found: 220.1333 .

(S)-tert-Butyl 1-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)-1-oxo-3-phenylpropan-2-

 ylcarbamate (2a). ${ }^{5-7}$ A solution of $1.33 \mathrm{~g}(5.0 \mathrm{mmol})$ of Boc-L-phenylalanine, $1.08 \mathrm{~g}(7.5$ mmol) of Meldrum's acid, and $0.95 \mathrm{~g}(7.5 \mathrm{mmol})$ of 4-(dimethylamino)pyridine (DMAP) in 70 mL of dichloromethane under argon was cooled to $0^{\circ} \mathrm{C}$ over an ice-water bath. To it, a solution of $1.13(5.5 \mathrm{mmol}) \mathrm{g}$ of N, N^{\prime}-dicyclohexylcarbodiimide (DCC) in 15 mL of dichloromethane was added dropwise. The mixture was stirred for 12 hours under argon andthe precipitated (N, N^{\prime}-dicyclohexylurea) was removed by filtration. The filtrate was washed with $5 \% \mathrm{HCl}$ twice, and then water, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrated to dryness leaving 1.90 g of $\mathbf{2} \mathbf{a}^{5}$ as white solid. This compound was used in the following step without further purification. ${ }^{1} \mathrm{H}$ NMR $\delta 7.3-7.15(\mathrm{~m}, 5 \mathrm{H}), 4.5-4.4(\mathrm{~m}, 1 \mathrm{H}), 4.3-4.2(\mathrm{~m}, 1 \mathrm{H}), 3.9$ $-3.8(\mathrm{~m}, 1 \mathrm{H}), 2.8-2.7(\mathrm{~m}, 2 \mathrm{H}), 1.7(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 207.5,170.8,153.1$, 135.8, 129.6 (2 C), 128.9 (2 C), 127.4, 105.7, 80.3, 62.7, 60.3, 33.8, 28.4, 26.8.

(R)-tert-Butyl 1-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)-3-phenylpropan-2-ylcarbamate

(2b). To a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of $1.90 \mathrm{~g}(4.85 \mathrm{mmol})$ of compound $\mathbf{2 a}$ in 25 mL of dichloromethane under argon were added $1.75 \mathrm{~g}(29.1 \mathrm{mmol})$ of acetic acid and $0.48 \mathrm{~g}(12.6$ mmol) of NaBH_{4}. The solution was stirred at $0^{\circ} \mathrm{C}$ for three hours and at $25^{\circ} \mathrm{C}$ for 12 hours, diluted with 30 mL of water, the dichloromethane layer was separated, and the water layer was extracted with dichloromethane three times. The combined organic layers were washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated to give 1.78 g of compound $\mathbf{2} \mathbf{b}^{5}$ as a white solid. This compound was used in the subsequent step without further purification. ${ }^{1} \mathrm{H}$ NMR $\delta 7.35$ $-7.19(\mathrm{~m}, 5 \mathrm{H}), 4.48-4.43(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.90(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.83$ (m, 2 H), $2.31-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 174.7, 150.2, 137.3, 129.6 (2 C), 129.0 (2 C), 127.1, 83.2, 59.2, 39.7, 31.3, 28.3 (3 C), 21.8. MS (ESI, $\mathrm{MeOH}): m / z=400.2\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
(R)-N-(tert-Butoxycarbonyl)-5-benzylpyrrolidin-2-one (4). ${ }^{5}$ A solution of $0.35 \mathrm{~g}(0.93 \mathrm{mmol})$ of compound $\mathbf{2 b}$ in 20 mL of toluene under argon was heated to reflux for 4 hours, cooled to $25^{\circ} \mathrm{C}$, concentrated, and column chromatographed on silica gel using hexane and ethyl acetate (4:1) as eluent to give 0.23 g (88% overall yield in three steps) of compound $\mathbf{4}^{5}$ as a yellow oil.

The material was used in the subsequent step without purification. $[\alpha]_{\mathrm{D}} 22=+48.7$ (c 1.5, $\left.\mathrm{CHCl}_{3}\right) ;$ Lit. ${ }^{9}+48.5\left(\mathrm{c} 1.50, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR} \delta 7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H})$, $7.20-7.17(\mathrm{~m}, 2 \mathrm{H}), 4.39-4.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHN}), 3.13(\mathrm{dd}, \mathrm{J}=13.5,4 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, \mathrm{J}=$ $13.5,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.20-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 9$ H); ${ }^{13} \mathrm{C}$ NMR $\delta 174.8,150.1,137.3,129.6$ (2 C), 129.0 (2 C), 127.1, 83.3, 59.3, 39.7, 31.3, $28.4(3 \mathrm{C}), 21.8 . \quad \mathrm{MS}(\mathrm{ESI}, \mathrm{MeOH}): m / z=298.1\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
(R)-5-Benzylpyrrolidin-2-one (7). ${ }^{5}$ A solution of $1.0 \mathrm{~g}(12.9 \mathrm{mmol})$ of compound $\mathbf{4}$ in 5 mL of 10% trifluoroacetic acid in dichloromethane was stirred at $25^{\circ} \mathrm{C}$ for 2 hours, diluted with dichloromethane, and washed with an 10% aqueous solution of NaHCO_{3}, then water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated to give $0.61 \mathrm{~g}(96 \%$ yield $)$ of compound 7^{5} as a brown oil. This material was used in the subsequent step without further purification. $\quad[\alpha]_{\mathrm{D}}{ }^{22}=+39.7(\mathrm{c} 1.19$, EtOH); Lit. ${ }^{9}+39.6(\mathrm{c} 1.19, \mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\delta 7.33-7.12(\mathrm{~m}, 5 \mathrm{H}), 5.95-5.90(\mathrm{bs}, 1 \mathrm{H}$, NH), $3.92-3.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHN}), 2.83(\mathrm{dd}, \mathrm{J}=13.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, \mathrm{J}=13.4,7.6 \mathrm{~Hz}, 1$ H), $2.34-2.20(\mathrm{~m}, 3 \mathrm{H}), 1.89-1.80(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 178.1,137.8,129.3(2 \mathrm{C}), 129.2(2$ C), 127.1, 55.9, 43.2, 30.3, 27.2; MS (ESI, MeOH$): ~ m / z=198.1\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
(R)-5-(Benzyl)-1-vinylpyrrolidin-2-one (10). To a solution of 0.60 g (3.42 mmol) of compound 7 in 30 mL of vinyl acetate under argon, were added 2.0 g of $3 \AA$ molecular sieves, $88 \mathrm{mg}(0.30 \mathrm{mmol})$ of $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$, and $0.86 \mathrm{~g}(6.2 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$. The mixture was stirred at $50^{\circ} \mathrm{C}$ under argon for 28 hours, cooled to $25^{\circ} \mathrm{C}$, filtered, concentrated under vacuum, and column chromatographed on silica gel using a mixture of hexane and diethyl ether (1:1) as an eluent to give $0.46 \mathrm{~g}(67 \%$ yield $)$ of pure compound 10 as a yellow oil. $\quad[\alpha] \mathrm{D}^{22}=+38.3(\mathrm{c} 1.0$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.34-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{dd}, \mathrm{J}=16.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}$,
$=\mathrm{CH}), 4.63\left(\mathrm{~d}, \mathrm{~J}=16.4 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 4.60\left(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 4.22-4.17(\mathrm{~m}, 1 \mathrm{H}$, CHN), $3.00(\mathrm{dd}, \mathrm{J}=14,3 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, \mathrm{J}=14,8 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.10-$ 1.91 (m, 3 H$) ;{ }^{13} \mathrm{C}$ NMR $\delta 173.7,137.1,129.7,128.9$ (2 C), 128.4, 127.1 (2 C), 95.3, 57.0, 36.6, 30.1, 22.8; MS (ESI, MeOH): $m / z=224.1\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 202.0\left(\mathrm{M}+\mathrm{H}^{+} ; 100 \%\right)$. HRMS-ESI: m / z $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NONa}$: 224.1051; found: 224.1076

Scheme S3. Synthesis of CSPVPs.

9 : $\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{O}-t-\mathrm{Bu}$ (42% yield)
$10: R^{1}=\mathrm{CH}_{2} \mathrm{Ph}$ (67% yield)
11 : $\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{OCHPh}_{2}$ (51% yield)

9 : $\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{O}-t-\mathrm{Bu}$ (42\% yield)
$10: \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{Ph}$ (67% yield)
$11: \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{OCHPh}_{2}$ (51\% yield)

12: $\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{O}-t-\mathrm{Bu}$
13: $\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{Ph}$
$14: \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{OCHPh}_{2}$

15 : $\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{O}-t-\mathrm{Bu}$ (84\% yield); MW 68,000
$16: \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{Ph}(90 \%$ yield); MW 76,000
17: $\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{OCHPh}_{2}$ (85% yield); MW 106,000

18 (96% yield); MW 56,480

Representative syntheses of copolymers, poly(5-substituted N-vinyl pyrrolidinone-covinyl acetate) $[\mathbf{P (S V P - c o - V A c)}] \mathbf{1 2 - 1 4 .}{ }^{10,11}$

Copolymer 14 from (R)-5-(benzhydryloxymethyl)-1-vinylpyrrolidin-2-one (11) and vinylacetate. To a solution of $93 \mathrm{mg}(0.33 \mathrm{mmol})$ of compound 11 and $28 \mathrm{mg}(0.33 \mathrm{mmol})$
of vinyl acetate in 0.15 mL of acetone under argon, was added $10 \mathrm{mg}(0.066 \mathrm{mmol})$ of AIBN, and the solution was stirred under reflux for 30 h . The solution was cooled to $25^{\circ} \mathrm{C}$, diluted with hexane, and stirred for 10 min . The white precipitate was collected by filtration, dried under vacuum to give 0.106 g (88% yield) of copolymer $\mathbf{1 4}$ as a white solid. ${ }^{1} \mathrm{H}$ NMR $\delta 7.50$ 6.3 (m, $11 \mathrm{H}, \mathrm{Ph} \& \mathrm{CH}), 3.6-1.0(\mathrm{~m}, 16 \mathrm{H})$.

Copolymer 12 from (R)-5-(tert-butoxymethyl)-1-vinylpyrrolidin-2-one (9) and vinylacetate. From $30 \mathrm{mg}(0.15 \mathrm{mmol})$ of $\mathbf{9}, 13 \mathrm{mg}(0.15 \mathrm{mmol})$ of vinyl acetate and 0.25 mg of AIBN, copolymer 12, $39 \mathrm{mg}\left(90 \%\right.$ yield), was obtained. ${ }^{1} \mathrm{H}$ NMR $\delta 4.90-2.75(\mathrm{~m}, 5$ H), $2.70-0.80(\mathrm{~m}, 20 \mathrm{H})$.

Copolymer 13 from (R)-5-benzyl-1-vinylpyrrolidin-2-one (10) and vinylacetate. From 50

 $\mathrm{mg}(0.25 \mathrm{mmol})$ of monomer $\mathbf{1 0}, 21.4 \mathrm{mg}(0.25 \mathrm{mmol})$ of vinyl acetate and 0.7 mg of AIBN, copolymer 13, $65 \mathrm{mg}\left(91 \%\right.$ yield), was obtained. ${ }^{1} \mathrm{H}$ NMR $\delta 7.20-6.80(\mathrm{~m}, 3 \mathrm{H}), 6.75-6.30$ (m, 2 H), $3.50-3.00(\mathrm{~m}, 3 \mathrm{H}), 2.5-1.1(\mathrm{~m}, 13 \mathrm{H})$.Poly[(5R)-5-(benzhydryloxymethyl)-1-vinylpyrrolidin-2-one] (17). To a hot $\left(120^{\circ} \mathrm{C}\right)$ solution of 1.2 mg (1% by weight) of copolymer 14 in 0.5 mL of DMF under argon, were added $120 \mathrm{mg}(0.43 \mathrm{mmol})$ of compound 11 and $0.28 \mathrm{mg}(1.7 \mu \mathrm{~mol})$ of AIBN. The solution was stirred for 6 days at $120^{\circ} \mathrm{C}$ (until no monomer 11 was found by NMR spectrum of an aliquot from the reaction solution), cooled to $25^{\circ} \mathrm{C}$, and diluted with hexane. The precipitate was collected by filtration, dried under vacuum to give 102 mg (84% yield) of polymer $\mathbf{1 7}$ as a white solid. The average molecular weight of polymer 17, 106,000, was determined by gel permeation chromatography using TSKgel GMHxl column and THF as solvent with a flow rate of $1 \mathrm{~mL} / \mathrm{min} .{ }^{1} \mathrm{H}$ NMR $\delta 7.3-6.8(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}), 6.6-6.3(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 3.8-3.76(\mathrm{~m}, 1$
H), $3.4-3.0(\mathrm{~m}, 3 \mathrm{H}), 2.45-1.0(\mathrm{~m}, 7 \mathrm{H}) . \quad$ IR (neat) $v 3050,2954,2890,1650(\mathrm{~s}), 1462$, 1441, 1423, 1290. The polymer was used in the subsequent catalytic asymmetric oxidation reactions without further purification. AFM images of the polymer were taken and a representative graph is shown in Figure S2. A diluted solution of polymer $\mathbf{1 7}$ in water was added onto a mica chip and the water was slowly evaporated by a slow stream of argon. AFM images were obtained using the resulting polymer deposited on the mica from a Nanoscope IIIa SPM atomic force microscope (Digital Instrument).

Poly[(5R)-5-(tert-butoxymethyl)-1-vinylpyrrolidin-2-one] (15). To a solution of 90 mg (0.45 mmol) of monomer $\mathbf{9}$ and 2 mg of copolymer $\mathbf{1 2}$ in 0.2 mL of ethyl acetate under argon was added a solution of 0.3 mg of AIBN in 0.1 mL of ethyl acetate. The solution was heated to reflux for 14 h , cooled to $25^{\circ} \mathrm{C}$, diluted with hexane, and filtered to collect the white solid. The solid was dried under vacuum to give 76 mg (83% yield) of polymer 15 . The average molecular weight of polymer 15 was 68,000 , which was determined by gel permeation chromatography using TSKgel GMHxl column and THF as solvent with a flow rate of 1 $\mathrm{mL} / \mathrm{min} .{ }^{1} \mathrm{H}$ NMR $\delta 4.0-3.0(\mathrm{~m}, 4 \mathrm{H}), 2.5-1.4(\mathrm{bm}, 6 \mathrm{H}), 1.71(\mathrm{bs}, 9 \mathrm{H}, t-\mathrm{Bu})$. The polymer was used in the subsequent catalytic asymmetric oxidation reactions without further purification.

Poly[(5R)-5-(benzyl)-1-vinylpyrrolidin-2-one] (16). To a solution of $0.30 \mathrm{~g}(1.5 \mathrm{mmol})$ of monomer 10 and 3 mg of copolymer 13 in 0.6 mL of ethyl acetate under argon was added a solution of 1 mg of AIBN in 0.1 mL of ethyl acetate. The solution was heated to reflux for 6 h , cooled to $25^{\circ} \mathrm{C}$, diluted with hexane, and filtered to collect the white solid. The solid was dried under vacuum to give $0.27 \mathrm{~g}(89 \%$ yield $)$ of polymer 16 . The average molecular weight
of polymer 16 was 76,000 , which was determined by gel permeation chromatography using TSKgel GMHxl column and THF as solvent with a flow rate of $1 \mathrm{~mL} / \mathrm{min} .{ }^{1} \mathrm{H}$ NMR $\delta 7.25$ $-6.25(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 4.0-3.0(\mathrm{~m}, 4 \mathrm{H}), 2.5-1.2(\mathrm{~m}, 6 \mathrm{H})$. The polymer was used in the subsequent catalytic asymmetric oxidation reactions without further purification.

Poly[(5R)-5-(hydroxymethyl)-1-vinylpyrrolidin-2-one] (18). A solution of 0.20 g ($3 \mu \mathrm{~mol}$)
of polymer 15 and $34 \mathrm{mg}(0.3 \mathrm{mmol})$ of trifluoroacetic acid in 0.2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred at $25^{\circ} \mathrm{C}$ for 2 h , and concentrated to dryness to give $0.14 \mathrm{~g}(96 \%$ yield $)$ of polymer 18 . The average molecular weight of polymer 18 was 56,480 , which was determined by gel permeation chromatography using TSKgel GMHxl column and THF as solvent with a flow rate of 1 $\mathrm{mL} / \mathrm{min} . \quad{ }^{1} \mathrm{H}$ NMR $\delta 4.1-2.8(\mathrm{~m}, 4 \mathrm{H}), 2.5-1.25(\mathrm{~m}, 7 \mathrm{H})$. The polymer was used in the subsequent catalytic asymmetric oxidation reactions without further purification.

General procedure for the preparation of Pd/Au (3:1)-chiral substituted PVP 17.

To a solution of $88 \mu \mathrm{~L}(0.88 \mu \mathrm{~mol})$ of a 10 mM aqueous solution of $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$ and $29 \mu \mathrm{~L}(0.29$ $\mu \mathrm{mol}$) of a 10 mM aqueous solution of $\mathrm{HAuCl}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ in 2 mL of deionized $\mathrm{H}_{2} \mathrm{O}$ was added 3.4 $\mathrm{mg}(0.032 \mu \mathrm{~mol} ; 0.027$ equiv based on total Pd and Au moles of atoms) of $\mathbf{1 7}$ and the solution was stirred at $0^{\circ} \mathrm{C}$ for 0.5 h . To it, was added $0.44 \mathrm{mg}(0.012 \mathrm{mmol})$ of NaBH_{4} and the resulting light black solution was stirred at $25^{\circ} \mathrm{C}$ for 0.5 h to give the bimetallic nanoclusters $\mathrm{Pd} / \mathrm{Au}(3: 1)-17$ in aqueous solution (see Figure S 1 for the appearance of the solution). The solution was used in subsequent catalytic asymmetric oxidation without further manipulation. Characterization of Pd/Au (3:1)-17 (representative example). A solution of $\mathrm{Pd} / \mathrm{Au}(3: 1) \mathbf{- 1 7}$ was prepared by following the above mentioned procedure. It was filtered through a Vivaspin 20 (Sartorius Inc.) centrifugal filter device (with a $3,000 \mathrm{MWCO}$) using a centrifugation
instrument (Eppendorf Centrifuge model 5430) at 3,000 rpm for $1-3 \mathrm{~min}$, and washed with deionized water twice to remove low molecular weight inorganic materials. The resulting nanocluster was dissolved in water, lyophilized to give $\mathrm{Pd} / \mathrm{Au}(3: 1) \mathbf{- 1 7}$ as light brown solids, which was subjected to analyses including atomic force microscopy (AFM), dynamic light scattering (DLS), TEM, XPS, and ICP-MS. IR (neat) v 3050, 2950, 2924, 1641 (s), 1425, 1441, 1420, 1292.

General procedure for the catalytic asymmetric oxidation of trans-diols.

Oxidation of a mixture of (R, R)- and (S, S)-trans-1,3-cyclohexanediol (20). Formation of

(S)-3-hydroxycyclohexanone (23). To a solution of 4.8 mL of $\mathrm{Pd} / \mathrm{Au}(3: 1)$-17 ($2.1 \mu \mathrm{~mol}$ of $\mathrm{Pd} / 0.7 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.08 \mu \mathrm{~mol}$ of $\mathbf{1 7})$ in $\mathrm{H}_{2} \mathrm{O}$, were added $0.16 \mathrm{~g}(1.39 \mathrm{mmol})$ of racemic trans-1,3-cyclohexanediol (20) and $68 \mathrm{mg}(0.42 \mathrm{mmol}) \mathrm{K}_{2} \mathrm{CO}_{3}$ under 1 atmospheric pressure of O_{2} (a balloon was used). The solution was stirred at $60^{\circ} \mathrm{C}$ for 7 days and the reaction progress was monitored by ${ }^{1} \mathrm{H}$ NMR until about a half of the diol was consumed. The reaction solution was cooled to $25^{\circ} \mathrm{C}$, diluted with water, and extracted three times with dichloromethane (20 mL each). The combined extracts were dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), concentrated, and column chromatographed on silica gel using a mixture of ethyl acetate and diethyl ether (3:7) as an eluent to give 78 mg [97.5\% yield based on reacted ((S, S)-20] of (S)-3-hydroxycyclohexanone (23) in 99% ee and 81 mg (50% recovery based on racemic diol) of $(R, R)-\mathbf{2 0}$ in 92% ee. (S)23: $[\alpha] \mathrm{D}^{22}=+45.2\left(\mathrm{c} 0.8, \mathrm{CHCl}_{3}\right) ;$ Lit. $^{12}+37.3$ (c $0.80, \mathrm{CHCl}_{3} ; 82 \%$ ee). ${ }^{1} \mathrm{H} \mathrm{NMR}^{8} \delta 4.13-$ 4.07 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHO}$), $3.30(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 2.56\left(\mathrm{dd}, \mathrm{J}=14,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 2.33(\mathrm{dd}, \mathrm{J}$ $\left.=14,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 2.24\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 2.05-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.56$ (m, 2 H); ${ }^{13} \mathrm{C}$ NMR $\delta 210.9,69.8,50.6,41.1,32.9,20.9 . \mathrm{MS}(E S I, \mathrm{MeOH}): \mathrm{m} / \mathrm{z}=137.1$ ([M +
Na^{+}). The \% ee's of the hydroxyketones and diols were determined by subjecting the benzoate derivatives to HPLC using chiral column [Chiralpak AD(-H) column, size: 0.46 cm x 25 cm (vide infra).
$(R, R)-\mathbf{2 0}: \quad$ NMR spectra were identical to the authentic trans-1,3-cyclohexanediol. $[\alpha] \mathrm{D}^{22}=$ $+3.18\left(\mathrm{c} 2.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{Lit}^{13}-3.5\left(\mathrm{c} 2.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Other $\mathrm{Pd} / \mathrm{Au}(3: 1) \mathbf{- 1 5}, \mathrm{Pd} / \mathrm{Au}(3: 1) \mathbf{- 1 6}$, and $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{2 0}$ were also used in the oxidation of diol (\pm)-20, and results were described in Table 1.

In all cases, PVP was used in place of CSPVP to produce the racemic mixture of products for HPLC/chiral column analyses.

Representative preparation of benzoate derivative and dibenzoate derivative for determination of optical purity.
(S)-3-Oxocyclohexyl benzoate (23a). To a solution of $50 \mathrm{mg}(0.44 \mathrm{mmol})$ of (S)-23 in 1.5 mL of dichloromethane under argon at $0^{\circ} \mathrm{C}$, was added 0.1 mL of pyridine and $0.12 \mathrm{~g}(0.85$ mmol) of benzoyl chloride. The reaction solution was stirred at $0^{\circ} \mathrm{C}$ for 1 h , diluted with water, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ twice. The combined extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a mixture of ethyl acetate and hexane (1:2) as an eluent to give $88 \mathrm{mg}\left(92 \%\right.$ yield) of (S)-23a in 99% ee. ${ }^{1} \mathrm{H}$ $\operatorname{NMR}^{11} \delta 8.00(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz} 1 \mathrm{H}), 7.43(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.55-$ $5.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO}), 2.75(\mathrm{dd}, \mathrm{J}=14.8,4 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, \mathrm{J}=14.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.40$ (m, 2 H), $2.17-2.2 .0(\mathrm{~m}, 3 \mathrm{H}), 1.97-1.85(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 208.4,165.7,133.4,129.8$, 128.7, 128.6, 72.4, 46.8, 41.3, 29.6, 21.1. MS (ESI, MeOH): $m / z=241.1\left([\mathrm{M}+\mathrm{Na}]^{+}\right) . \quad$ The \% ee of this compound was determined by HPLC using chiral column, Chiralpak AD(-H) column,
n -hexane-i- $\mathrm{PrOH}=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=21 \mathrm{~min}(R$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=25$ $\min (S$ enantiomer, major).

($\boldsymbol{R}, \boldsymbol{R}$)-1,3-Di(phenylcarbonyloxy)cyclohexane (23b). A solution of $10 \mathrm{mg}(86 \mu \mathrm{~mol})$ of $(R, R) \mathbf{- 2 0}, 24 \mathrm{mg}(0.17 \mathrm{mmol})$ of benzoyl chloride in 0.1 mL of pyridine and 0.3 mL of dichloromethane was stirred at $25^{\circ} \mathrm{C}$ for 8 h under argon. The solution was diluted with 1 mL of water, concentrated to dryness, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give 17 mg (61% yield) of $(R, R) \mathbf{- 2 3 b}$ in 92% ee. ${ }^{1} \mathrm{H}$ NMR $\delta 8.06(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 4 \mathrm{H}), 7.56(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 4 \mathrm{H}), 5.47-$ $5.45(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.60(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 166.0 (2 C), 133.1 (2 C), 130.8 (2 C), 129.8 (4 C), 128.6 (4 C$), 70.8$ (2 C), $36.1,30.6$ (2 C), 19.7. MS (ESI, MeOH): $m / z=347.2\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 203.2,107.1$. The $\%$ ee of this compound
was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane: $i-\mathrm{PrOH}=$ 90:10, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=15.7 \mathrm{~min}(R, R$ enantiomer, major $), \mathrm{t}_{\mathrm{R}}=18.6 \mathrm{~min}(S, S$ enantiomer, minor).

The racemic trans-dibenzoate 23b were similarly prepared for HPLC/chiral column study from the corresponding racemic trans-diols.

Oxidation of a mixture of (R, R)- and (S, S)-trans-1,3-cyclohexanediol (20) using double amounts of $\mathrm{Pd} / \mathrm{Au}-17$ catalyst for 6 days at $60^{\circ} \mathrm{C}$. Formation of (S)-3hydroxycyclohexanone (23). Following the general procedure described above, $80 \mathrm{mg}(0.70$ mmol) of racemic trans-1,3-cyclohexanediol (20) was treated with of 4.8 mL of $\mathrm{Pd} / \mathrm{Au}(3: 1)-$ $17(2.1 \mu \mathrm{~mol}$ of $\mathrm{Pd} / 0.7 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.08 \mu \mathrm{~mol}$ of $\mathbf{1 7})$ in $\mathrm{H}_{2} \mathrm{O}$ and $34 \mathrm{mg}(0.21 \mathrm{mmol}) \mathrm{K}_{2} \mathrm{CO}_{3}$ under 1 atmospheric pressure of O_{2}. The reaction progress was monitored by ${ }^{1} \mathrm{H}$ NMR and after

6 days about a half of the diol was consumed. After aqueous work-up and silica gel column chromatography, 37 mg (47% yield) of (S)-23 along with 40 mg (50% recovery) of (R, R)-20 . The $\%$ ee of (S)-23 was found to be 99% from HPLC/chiral column (Chiralpak AD(-H) column) analysis of the benzoate derivative as described above, using n-hexane- $-\mathrm{PrOH}=90: 10$ as eluent and with a flow rate of $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=21 \mathrm{~min}(R$ enantiomer, $\operatorname{minor}), \mathrm{t}_{\mathrm{R}}=25 \mathrm{~min}(\mathrm{~S}$ enantiomer, major).

Oxidation of a mixture of (R, R) - and (S, S)-trans-1,3-cyclohexanediol (20) using quadruple amounts of $\mathrm{Pd} / \mathrm{Au}-17$ catalyst for 5 days at $60^{\circ} \mathrm{C}$. Formation of (S)-3hydroxycyclohexanone (23). Following the general procedure described above, 80 mg (0.70 mmol) of racemic trans-1,3-cyclohexanediol (20) was treated with of 9.6 mL of $\mathrm{Pd} / \mathrm{Au}(3: 1)$ $17(4.2 \mu \mathrm{~mol}$ of $\mathrm{Pd} / 1.4 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.16 \mu \mathrm{~mol}$ of $\mathbf{1 7})$ in $\mathrm{H}_{2} \mathrm{O}$ and $34 \mathrm{mg}(0.21 \mathrm{mmol}) \mathrm{K}_{2} \mathrm{CO}_{3}$
under 1 atmospheric pressure of O_{2}. The reaction progress was monitored by ${ }^{1} \mathrm{H}$ NMR and after 5 days about a half of the diol was consumed. Aqueous work-up of the reaction mixture followed by silica gel column chromatography gave 38 mg (49% yield) of (S)-23 along with $40 \mathrm{mg}(50 \%$ recovery $)$ of $(R, R)-\mathbf{2 0}$ in 93% ee.

The \% ee of (S)-23 was found to be 99% from HPLC/chiral column (Chiralpak AD(-H) column) analysis of the benzoate derivative as described above, using n-hexane- $i-\operatorname{PrOH}=90: 10$ as eluent and with a flow rate of $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=21 \mathrm{~min}(R$ enantiomer, $\operatorname{minor}), \mathrm{t}_{\mathrm{R}}=25 \mathrm{~min}(S$ enantiomer, major).

Recover diol from quadruple amounts catalyst oxidation

The \% ee of (R, R) - $\mathbf{2 0}$ was found to be 93% determined by HPLC/chiral column (Chiralpak $\mathrm{AD}(-\mathrm{H})$ column), eluent of n-hexane: $i-\mathrm{PrOH}=90: 10$, and a flow rate of $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=15.7$ $\min (R, R$ enantiomer, major $), \mathrm{t}_{\mathrm{R}}=18.6 \min (\mathrm{~S}, \mathrm{~S}$ enantiomer, minor $)$.

Oxidation of a mixture of (R, R)- and ((S, S)-trans-1,3-cyclohexanediol (20) using $0.15 \mathrm{~mol} \%$

 Pd-17 catalyst for 7 days at $60^{\circ} \mathrm{C}$. Formation of (S)-3-hydroxycyclohexanone (23). To a solution of 4.8 mL of $\mathrm{Pd} \mathbf{- 1 7}(2.8 \mu \mathrm{~mol}$ of $\mathrm{Pd}-0.08 \mu \mathrm{~mol}$ of $\mathbf{1 7})$ in $\mathrm{H}_{2} \mathrm{O}$, were added $0.16 \mathrm{~g}(1.39$ mmol) of racemic trans-1,3-cyclohexanediol (20) and $68 \mathrm{mg}(0.42 \mathrm{mmol}) \mathrm{K}_{2} \mathrm{CO}_{3}$ under 1 atmospheric pressure of O_{2} (a balloon was used). The solution was stirred at $60^{\circ} \mathrm{C}$ for 7 days and the reaction progress was monitored by ${ }^{1} \mathrm{H}$ NMR until about a half of the diol was consumed. The reaction solution was cooled to $25^{\circ} \mathrm{C}$, diluted with water, and extracted three times with dichloromethane (20 mL each). The combined extracts were dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), concentrated, and column chromatographed on silica gel using a mixture of ethylacetate and diethyl ether (3:7) as an eluent to give 46 mg (29% yield) of (S)-3hydroxycyclohexanone (23) in 95% ee along with 107 mg (68% recovery based on racemic diol) of $(R, R)-20$ in 35% ee.

The \% ee of (S)-23 was found to be 95% from HPLC/chiral column (Chiralpak AD(-H) column) analysis of the benzoate derivative as described above, using n-hexane- $i-\mathrm{PrOH}=90: 10$ as eluent and a flow rate of $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=21 \mathrm{~min}(R$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=25 \mathrm{~min}(S$ enantiomer, major).

The \% ee of recovered (R, R)-20 was found to be 35% from HPLC/chiral column analysis of its dibenzoate 23b. Chiralpak $\mathrm{AD}(-\mathrm{H})$ column and eluent of n-hexane: $i-\mathrm{PrOH}=90: 10$ with a flow rate of $0.5 \mathrm{~mL} / \mathrm{min}$ were used for the analysis. Retention times for $\mathrm{t}_{\mathrm{R}}(R, R$ enantiomer, major) and (S, S enantiomer, minor) are 15.7 and 18.6 min , respectively.

Oxidation of a mixture of (R, R) - and (S, S)-trans-1,3-cyclohexanediol (20) using $0.15 \mathrm{~mol} \%$ of first recovered $\mathrm{Pd} / \mathrm{Au}(3: 1)-17$ catalyst for 7 days at $60^{\circ} \mathrm{C}$. Formation of (S)-3hydroxycyclohexanone (23). Following the above general procedure for the oxidation of trans diol, a solution of racemic $20(80 \mathrm{mg} ; 0.70 \mathrm{mmol})$ and $34 \mathrm{mg}(0.21 \mathrm{mmol}) \mathrm{K}_{2} \mathrm{CO}_{3}$ in 2.4 mL of aqueous solution of $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1 7}(1.05 \mu \mathrm{~mol}$ of $\mathrm{Pd} / 0.35 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.04 \mu \mathrm{~mol}$ of 17) was stirred under 1 atmospheric pressure of O_{2}. The reaction progress was followed by ${ }^{1} \mathrm{H}$ NMR, and after stirring at $60^{\circ} \mathrm{C}$ for 7 days, the crude reaction mixture was diluted with deionized water and extracted with dichloromethane twice. The aqueous layer was filtered through a Vivaspin 20 (Sartorius Inc.) centrifugal filter device (with a 3,000 MWCO) using a centrifugation instrument (Eppendorf Centrifuge model 5430) at 4,000 rpm for 10 min , and washed with deionized water twice to remove low molecular weight inorganic materials. The
resulting nanocluster was diluted with 5 mL of water and added $80 \mathrm{mg}(0.70 \mathrm{mmol})$ of racemic diol-20 and $34 \mathrm{mg}(0.2 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$, and stirred at $60^{\circ} \mathrm{C}$ for 7 days. After aqueous workup, extraction of dichloromethane, and silica gel column chromatography, 31 mg (39% yield) of (S)-23 in 99% ee and $46 \mathrm{mg}(58 \%$ recovery) of (R, R)-diol $\mathbf{2 0}$ were isolated.

The \% ee of (S)-23 was 99% determined by HPLC/chiral column (Chiralpak AD(-H) column) analysis of the benzoate derivative as described above, using n-hexane- $-\mathrm{PrOH}=90: 10$ as eluent and a flow rate of $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=21 \mathrm{~min}(R$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=25 \mathrm{~min}(\mathrm{~S}$ enantiomer, major).

Oxidation of a mixture of (R, R) - and ((S, S)-trans-1,3-cyclohexanediol (20) using $0.15 \mathrm{~mol} \%$ of second recovered $\mathrm{Pd} / \mathrm{Au}(3: 1)-17$ catalyst for 7 days at $60^{\circ} \mathrm{C}$. Formation of (S)-3hydroxycyclohexanone (23). The aforementioned aqueous layer was filtered through a

Vivaspin 20 (Sartorius Inc.) centrifugal filter device (with a 3,000 MWCO) using a centrifugation instrument (Eppendorf Centrifuge model 5430) at 4,000 rpm for 10 min , and washed with deionized water twice to remove low molecular weight inorganic materials. The resulting nanocluster was diluted with 4 mL of water and added $80 \mathrm{mg}(0.70 \mathrm{mmol})$ of racemic diol-20 and $34 \mathrm{mg}(0.2 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$, and stirred at $60^{\circ} \mathrm{C}$ for 7 days. After aqueous workup, extraction of dichloromethane, and silica gel column chromatography, 14 mg (18% yield) of (S)-23 in 99% ee and $61 \mathrm{mg}(77 \%$ recovery) of (R, R)-diol $\mathbf{2 0}$ were isolated.

The \% ee of (S)-23 was 98% determined by HPLC/chiral column (Chiralpak AD(-H) column) analysis of the benzoate derivative as described above, using n-hexane- $i-\mathrm{PrOH}=90: 10$ as eluent and a flow rate of $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=21 \mathrm{~min}(R$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=25 \mathrm{~min}(S$ enantiomer, major).

Oxidation of a mixture of racemic trans-1,3-cyclohexanediol (20) using $0.15 \mathbf{m o l} \%$ of

Pd/Au (3:1)-17 catalyst for 7 days at $\underline{80^{\circ} \mathbf{C}}$. Formation of (S)-3-hydroxycyclohexanone (23).

Following the above general procedure for the oxidation of trans diol, a solution of racemic $\mathbf{2 0}$ (80 mg ; 0.70 mmol) and $34 \mathrm{mg}(0.21 \mathrm{mmol}) \mathrm{K}_{2} \mathrm{CO}_{3}$ in 2.4 mL of $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1 7}(1.05 \mu \mathrm{~mol}$ of $\mathrm{Pd} / 0.35 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.04 \mu \mathrm{~mol}$ of 17) in $\mathrm{H}_{2} \mathrm{O}$ was stirred under 1 atmospheric pressure of O_{2} at $80^{\circ} \mathrm{C}$. The reaction progress was monitored by TLC and ${ }^{1} \mathrm{H}$ NMR. After stirring at $80^{\circ} \mathrm{C}$ for 7 days, ${ }^{1} \mathrm{H}$ NMR spectrum of an aliquot of the reaction solution showed 50% of the starting material was converted to product. The reaction solution was worked up as mentioned above and $37.1 \mathrm{mg}(47 \%$ yield $)$ of (S) $\mathbf{- 2 3}$ in 94% ee along with 40.2 mg of $(R, R)-\mathbf{2 0}$ was isolated after silica gel column chromatography.

The \% ee of (S)-23 was determined through its benzyoate derivative and then HPLC/chiral column to be 94%. Chiralpak $\mathrm{AD}(-\mathrm{H})$ column and an eluent of n-hexane $/ i-\operatorname{PrOH}=90: 10$ with a flow rate of $0.5 \mathrm{~mL} / \mathrm{min}$ were used for the HPLC analysis; $\mathrm{t}=21 \mathrm{~min}(R$ enantiomer, minor $)$, $\mathrm{t}_{\mathrm{R}}=25 \mathrm{~min}(S$ enantiomer, major $)$.

(S)-3-Hydroxycyclopentanone (22). From $15 \mathrm{mg}(0.147 \mathrm{mmol})$ of (\pm)-cyclopentanediol (19), 0.48 mL of $\mathrm{Pd} / \mathrm{Au}(3: 1)-17(0.22 \mu \mathrm{~mol}$ of $\mathrm{Pd} / 0.07 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.008 \mu \mathrm{~mol}$ of $\mathbf{1 7})$ in $\mathrm{H}_{2} \mathrm{O}, 6.8$ $\mathrm{mg}(96 \%$ yield based on reacted diols $\mathbf{1 9} ; 99 \%$ ee $)$ of $(S)-\mathbf{2 2}$ and $8.0 \mathrm{mg}(53 \%$ recovery of $(R, R)-19$ in 91% ee. Compound (S)-22: $[\alpha]_{\mathrm{D}}{ }^{22}=-33.8\left(\mathrm{c} 0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$ Lit. ${ }^{14}-18.3(\mathrm{c} 0.50$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; for S-configuration, 83% ee $) .{ }^{1} \mathrm{H}$ NMR $\delta 4.63-4.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO}), 2.52-2.36(\mathrm{~m}$, $2 \mathrm{H}), 2.28-2.12(\mathrm{~m}, 3 \mathrm{H}), 2.10-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.87(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR $\delta 218.0$, 69.9, 47.9, 35.8, 32.3. $\mathrm{MS}(\mathrm{ESI}, \mathrm{MeOH}): \mathrm{m} / \mathrm{z}=123.0\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
$(R, R)-19:$ The NMR spectra were identical to those of the authentic 1,3-trans-cyclopentanediol. $[\alpha] D^{22}=+17.3\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$.
(S)-3-Oxocyclopentyl benzoate (22a). From $6.8 \mathrm{mg}(68 \mu \mathrm{~mol})$ of (S) - 22 and $19 \mathrm{mg}(0.14$ mmol) of benzoyl chloride and 0.1 mL of pyridine in 1 mL of dichloromethane, 13 mg (94\% yield) of $(S)-22 a$ in 99% ee. ${ }^{1} \mathrm{H}^{\mathrm{NMR}}{ }^{15} \delta 8.09-8.07(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.45-$ $7.42(\mathrm{~m}, 2 \mathrm{H}), 5.49-5.44(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.25(\mathrm{~m}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 215.8,165.7,133.4,129.8,128.7,128.6,72.5,44.4,35.6,29.2 . \quad \mathrm{MS}(\mathrm{ESI}$, $\mathrm{MeOH}): m / z=227.2\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 177.0. The $\%$ ee of this compound was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane $/ \mathrm{i}-\mathrm{PrOH}=90: 10$, flow rate:
$0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=22 \mathrm{~min}(R$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=24.5 \mathrm{~min}(S$ enantiomer, major $)$.

($\boldsymbol{R}, \boldsymbol{R}$)-1,3-Diphenylcarbonyloxycyclopentane (22b). From $15 \mathrm{mg}(0.147 \mathrm{mmol})$ of (R,R)19 and 82 mg (0.59 mmol) of benzoyl chloride in 0.2 mL of pyridine and 0.5 mL of dichloromethane, $26 \mathrm{mg}(57 \%$ yield $)$ of $(R, R)-\mathbf{2 2 b}$ in 91% ee. ${ }^{1} \mathrm{H}$ NMR $\delta 8.06(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, $4 \mathrm{H}), 7.56(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 5.49-5.44(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.13(\mathrm{~m}$, $2 \mathrm{H}), 1.94-1.86$ (m, 4 H); ${ }^{13} \mathrm{C}$ NMR $\delta 166.6$ (2 C), 133.1 (2 C), 130.8 (2 C), 129.8 (4 C), 128.6 (4 C), 71.5 (2 C), 39.7, 24.5 (2 C). MS (ESI, MeOH): $m / z=332.8\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 188.8. The $\%$ ee of this compound was determined by HPLC using chiral column, Chiralpak AD(-H) column, n-hexane: $i-\mathrm{PrOH}=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=16.8 \min (R, R$ enantiomer, major $), \mathrm{t}_{\mathrm{R}}=$ $19.6 \mathrm{~min}(S, S$ enantiomer, minor). The racemic trans-dibenzoate $\mathbf{2 2 b}$ were similarly prepared for HPLC/chiral column study from the corresponding racemic trans-diols.

(S)-3-Hydroxycycloheptanone (24). From $30 \mathrm{mg}(0.23 \mathrm{mmol})$ of (\pm)-cycloheptanediol (21), 0.8 mL of $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1 7}\left(0.35 \mu \mathrm{~mol}\right.$ of $\mathrm{Pd} / 0.12 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.013 \mu \mathrm{~mol}$ of 17) in $\mathrm{H}_{2} \mathrm{O}, 13.4$ $\mathrm{mg}(92 \%$ yield based on reacted diols $\mathbf{2 1} ; 99 \%$ ee $)$ of $(S) \mathbf{- 2 4}$ and $15.8 \mathrm{mg}(53 \%$ recovery of $(R, R)-21 . \quad$ Compound $(S)-24:[\alpha] \mathrm{D}^{22}=+16.4\left(\mathrm{c} 0.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}^{\mathrm{NMR}}{ }^{16} \delta 4.13-4.06(\mathrm{~m}, 1$ H, CHO), $2.84-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.54-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.70(\mathrm{~m}, 6 \mathrm{H}), 1.65-1.55(\mathrm{~m}, 1$ H); ${ }^{13} \mathrm{C}$ NMR $\delta 212.4,67.7,51.8,44.5,39.0,24.5,23.9$. MS (ESI, MeOH): $\mathrm{m} / \mathrm{z}=151.1([\mathrm{M}+$ $\mathrm{Na}]^{+}$). The \% ee was determined from the HPLC/chiral column of the benzoate derivative (S)-24a.
$(R, R)-\mathbf{2 1 :} \quad$ The NMR spectra were identical to those of authentic 1,3-trans-cycloheptanediol. $[\alpha] \mathrm{D}^{22}=+16.9\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$.
(S)-3-Oxocycloheptyl benzoate (24a). From $10 \mathrm{mg}(0.078 \mathrm{mmol})$ of (S$)$-24, $22 \mathrm{mg}(0.16 \mathrm{mmol})$
of benzoyl chloride and 0.1 mL of pyridine in 0.5 mL of dichloromethane, 18 mg (98% yield) of (S)-24a (99\% ee) was obtained. ${ }^{1} \mathrm{H}$ NMR $\delta 8.00(\mathrm{~d} \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1$ H), 7.43 (t, J = $7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $5.54-5.50(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{dd}, \mathrm{J}=12,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, \mathrm{J}=$ $12,8 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.05(\mathrm{~m}, 3 \mathrm{H}), 1.96-1.86$ (m, 1 H); ${ }^{13} \mathrm{C}$ NMR δ 208.2, 165.7, 133.7, 129.8 (2 C), 129.0, 128.6 (2 C), 72.4, 46.8, 40.8, 29.1, 21.8, 21.0. MS (ESI, MeOH): $m / z=255.1\left([\mathrm{M}+\mathrm{Na}]^{+}\right) . \quad$ The $\%$ ee of this compound was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n -hexane $/ \mathrm{i}-\mathrm{PrOH}=$ 90:10, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=19 \mathrm{~min}(R$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=23 \mathrm{~min}(S$ enantiomer, major).

($\boldsymbol{R}, \boldsymbol{R}$)-1,3-(Diphenylcarbonyloxy)cycloheptane (24b). From $15 \mathrm{mg}(0.12 \mathrm{mmol})$ of (R, R) 21 and 64 mg (0.46 mmol) of benzoyl chloride in 0.2 mL of pyridine and 0.5 mL of
dichloromethane, $22 \mathrm{mg}(56 \%$ yield $)$ of $(R, R)-\mathbf{2 4 b}$ in 85% ee. ${ }^{1} \mathrm{H}$ NMR $\delta 8.06(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, 4 H), 7.56 (t, J = $8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.45(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 4 \mathrm{H}), 5.49-5.44(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, 2$ H), $2.02-1.88(\mathrm{~m}, 4 \mathrm{H}), 1.87-1.74(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 166.5$ (2 C), 133.1 (2 C), 130.8 (2 C), 129.8 (4 C), 128.6 (4 C), 70.9 (2 C), $36.3,29.1$ (2 C), 24.1 (2 C). MS (ESI, MeOH): m / z $=361.4\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 249.1,217.3,123.1,102.2 . \quad$ The $\%$ ee of this compound was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane: $i-\mathrm{PrOH}=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=16.1 \mathrm{~min}(R, R$ enantiomer, major $), \mathrm{t}_{\mathrm{R}}=18.8 \mathrm{~min}(S, S$ enantiomer, minor $)$.

The racemic trans-dibenzoate 24b were similarly prepared for HPLC/chiral column study from the corresponding racemic trans-diols.

Oxidation of a mixture of (R, R) - and (S,S)-trans-1,2-cyclopentanediol (28). Formation of (S)-2-hydroxycyclopentanone (31) and recovered ($\boldsymbol{R}, \boldsymbol{R}$)-28. From $30 \mathrm{mg}(0.29 \mathrm{mmol})$ of (\pm)28, 1.0 mL of $\mathrm{Pd} / \mathrm{Au}(3: 1)-17\left(0.438 \mu \mathrm{~mol}\right.$ of $\mathrm{Pd} / 0.146 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.017 \mu \mathrm{~mol}$ of 17) in $\mathrm{H}_{2} \mathrm{O}$,
$14 \mathrm{mg}(94 \%$ yield; based on reacted $(S, S)-\mathbf{2 8})$ of $(S)-\mathbf{3 1}(99 \%$ ee) and $15 \mathrm{mg}(50 \%$ recovery $)$ of $(R, R)-\mathbf{2 8}$. The $\%$ ee of $(S)-\mathbf{3 1}$ was determined by HPLC/chiral of benzoate derivative (S)31a. Compound (S)-31: $[\alpha]_{\mathrm{D}}{ }^{22}=+40.6\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$; Lit. ${ }^{17}$-37.4 (c 1.0, $\left.\mathrm{CHCl}_{3}\right)$ for (R) configuration ($>99 \%$ ee $) .{ }^{1} \mathrm{H} \mathrm{NMR}^{17} \delta 4.10(\mathrm{dd}, \mathrm{J}=12,5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}), 3.65-3.55(\mathrm{bs}, 1 \mathrm{H}$, $\mathrm{OH}), 2.50-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.60(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta 211.9,75.1$, 40.5, 37.6, 26.3. MS (ESI, MeOH): $m / z=123.0\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.
(R, R)-28: The NMR spectra were identical to those of the authentic 1,2-trans-cyclopentanediol. $[\alpha]_{\mathrm{D}}{ }^{22}=-19.9\left(\mathrm{c} 1.1, \mathrm{CHCl}_{3}\right) ;$ Lit. $^{18}-21.3\left(\mathrm{c} 1.1, \mathrm{CHCl}_{3}\right)$ for (R, R)-configuration $(>99 \% \mathrm{ee})$. (S)-2-Oxocyclopentyl benzoate (31a). From $10 \mathrm{mg}(0.1 \mathrm{mmol})$ of $(S) \mathbf{- 3 1}$ and $28 \mathrm{mg}(0.2$ $\mathrm{mmol})$ of benzoyl chloride in 0.1 mL of pyridine and 0.5 mL of dichloromethane, $16.8 \mathrm{mg}(82 \%$ yield) of (S)-31a in 99\% ee was obtained. ${ }^{1} \mathrm{H}^{\mathrm{NMR}}{ }^{19} \delta 8.08(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, \mathrm{J}=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.46(\mathrm{dd}, \mathrm{J}=9,3 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.55-$ $2.45(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.08(\mathrm{~m}, 1), 1.95-1.85(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 204.6,169.2,133.4,130.1$ (2 C), 129.9, 128.6 (2 C), 77.2, 39.9, 31.2, 21.4. MS (ESI, MeOH): $m / z=227.2\left(\mathrm{M}^{2} \mathrm{Na}^{+}\right)$, 177.2, 123.0. The \% ee of this compound was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n -hexane $/ \mathrm{i}-\mathrm{PrOH}=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=20.5 \mathrm{~min}(R$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=23.3 \mathrm{~min}(S$ enantiomer, major $)$.

(R,R)-1,2-(Diphenylcarbonyloxy)cyclopentane (31b). From $14 \mathrm{mg}(0.14 \mathrm{mmol})$ of (R, R) $\mathbf{2 8}, 58 \mathrm{mg}(0.41 \mathrm{mmol})$ of benzoyl chloride in 0.1 mL of pyridine and 2 mL of dichloromethane, gave $29 \mathrm{mg}(67 \%$ yield $)$ of $(R, R)-\mathbf{3 1 b} .{ }^{1} \mathrm{H}$ NMR $\delta 8.04-8.00(\mathrm{~m}, 4 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 2 \mathrm{H})$, $7.46-7.38(\mathrm{~m}, 4 \mathrm{H}), 5.50(\mathrm{t}, \mathrm{J}=4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CHO}), 2.36-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.80(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 166.2,133.3,130.3,129.9$ (4 C), 128.6 (4 C), 79.7, 30.8, 21.9. MS (ESI, MeOH): $m / z=333.0\left(\mathrm{M}^{2}+\mathrm{Na}^{+}\right), 265.3,189.1,105.2 . \quad$ The $\%$ ee (88%) of (R, R)-31b was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane $/ i-\mathrm{PrOH}=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=17.3 \mathrm{~min}(R, R$ enantiomer, major $), \mathrm{t}_{\mathrm{R}}=20.0 \mathrm{~min}(S, S$ enantiomer, minor $)$.

The racemic trans-dibenzoate 31b were similarly prepared for HPLC/chiral column study from the corresponding racemic trans-diols.

Oxidation of a mixture of (R, R) - and (S,S)-trans-1,2-cyclohexanediol (29). Formation of (S)-2-hydroxycyclohexanone (32) and recovered ($\boldsymbol{R}, \boldsymbol{R}$)-29. From $161 \mathrm{mg}(1.39 \mathrm{mmol})$ of (\pm)29, 4.8 mL of $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1 7}(2.1 \mu \mathrm{~mol}$ of $\mathrm{Pd} / 0.7 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.08 \mu \mathrm{~mol}$ of $\mathbf{1 7})$ in $\mathrm{H}_{2} \mathrm{O}, 72 \mathrm{mg}$ (89% yield; based on reacted $(S, S)-29)$ of (S) - $32(99 \%$ ee $)$ and $80 \mathrm{mg}(50 \%$ recovery $)$ of (R, R) 29. Compound (S)-32: $[\alpha]_{\mathrm{D}}{ }^{22}=-20.7\left(\mathrm{c} 0.65, \mathrm{CHCl}_{3}\right) ;$ Lit. $^{20}+20.6\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$ for (R) - 32 $(>99.0 \%$ ee $) .{ }^{1} \mathrm{H}$ NMR $\delta 4.11(\mathrm{dd}, \mathrm{J}=12,7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}), 3.70-3.55(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 2.60-$ $2.30(\mathrm{~m}, 3 \mathrm{H}), 2.15-1.45(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 211.7,75.6,39.7,36.9,27.8,23.6 . \quad \mathrm{MS}(\mathrm{ESI}$, $\mathrm{MeOH}): m / z=115.1\left(\mathrm{M}+\mathrm{H}^{+}\right), 97.2,74.1$.
$(R, R)-\mathbf{2 9}:[\alpha]_{\mathrm{D}}{ }^{22}=-34.7\left(\mathrm{c} 1.0, \mathrm{H}_{2} \mathrm{O}\right) ;$ Lit. $^{17}+37.1\left(\mathrm{c} 1.0, \mathrm{H}_{2} \mathrm{O}\right)$ for $(S, S)-\mathbf{2 9}(>99.0 \%$ ee $)$.
(S)-2-Oxocyclohexyl benzoate (32a). From $50 \mathrm{mg}(0.44 \mathrm{mmol})$ of (S) - $\mathbf{3 2}$ and 0.122 mg (0.87 mmol) of benzoyl chloride in 0.1 mL of pyridine and 1.5 mL of dichloromethane, 66 mg (69% yield) of (S)-32a (99% ee $) .{ }^{1} \mathrm{H}^{\mathrm{NMR}}{ }^{20} \delta 8.08(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.45(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 5.41(\mathrm{dd}, \mathrm{J}=12,7 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.40(\mathrm{~m}, 3 \mathrm{H}), 2.18-1.64(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13}$ C NMR δ 204.7, 169.2, 133.3, 130.1 (2 C), 129.9, 128.6 (2 C), 77.2, 40.7, 33.4, 27.4, 24.0. MS (ESI, MeOH$): m / z=241.4\left(\mathrm{M}+\mathrm{Na}^{+}\right), 219.1(\mathrm{M}+1), 203.2$. The $\%$ ee of this compound was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane $/ i-\mathrm{PrOH}=$ 90:10, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=20 \mathrm{~min}(R$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=22.5 \mathrm{~min}(S$ enantiomer,
major).

($\boldsymbol{R}, \boldsymbol{R}$)-1,2-Di(phenylcarbonyloxy)cyclohexane (32b). From $20 \mathrm{mg}(0.17 \mathrm{mmol})$ of $(R, R)-\mathbf{2 9}$ and $49 \mathrm{mg}(0.34 \mathrm{mmol})$ of benzoyl chloride in 0.2 mL of pyridine and 0.6 mL of dichloromethane, 51 mg (85% yield) of $(R, R)-\mathbf{3 2 b}$ was isolated after silica gel column chromatography. ${ }^{1} \mathrm{H}$ NMR $\delta 7.94(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.46(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, \mathrm{J}=7.5$ $\mathrm{Hz}, 4 \mathrm{H}), 5.41-5.35(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.77(\mathrm{~m}, 3$ H), $1.63-1.49(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 166.2$ (2 C), 133.1 (2 C), 129.9 (2 C), 129.1 (4 C), 128.6 (4 C), 74.5 (2 C), 30.4 (2 C), $23.6(2 \mathrm{C}) . \quad \mathrm{MS}(\mathrm{ESI}, \mathrm{MeOH}): m / z=347.2\left(\mathrm{M}+\mathrm{Na}^{+}\right), 243.2$, 123.1, 102.1. The $\%$ ee (87%) of $(R, R)-\mathbf{3 2 b}$ was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane $/ \mathrm{i}-\mathrm{PrOH}=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=16.2 \mathrm{~min}$ $\left(R, R\right.$ enantiomer, major), $\mathrm{t}_{\mathrm{R}}=18.9 \min (S, S$ enantiomer, minor $)$.

The racemic trans-dibenzoate 32b were similarly prepared for HPLC/chiral column study from the corresponding racemic trans-diols.

Oxidation of a mixture of (R, R)- and (S, S)-trans-1,2-cycloheptanediol (30). Formation of (S)-2-hydroxycycloheptanone (33) and recovered ($\boldsymbol{R}, \boldsymbol{R}$)-30. From $30 \mathrm{mg}(0.23 \mathrm{mmol})$ of (\pm)-cycloheptanediol (30), 0.8 mL of $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1 7}(0.35 \mu \mathrm{~mol}$ of $\mathrm{Pd} / 0.12 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.013$ $\mu \mathrm{mol}$ of 17) in $\mathrm{H}_{2} \mathrm{O}, 13.5 \mathrm{mg}$ (93% yield based on reacted diols (S,S)-30; 99\% ee) of (S)-33 and $16.3 \mathrm{mg}(54 \%$ recovery $)$ of $(R, R)-\mathbf{3 0}$. The \% ee was determined by HPLC/chiral column of benzoate derivative (S)-33a. Compound (S)-33: $[\alpha] \mathrm{D}^{22}=-143.9\left(\mathrm{c} 0.8, \mathrm{CHCl}_{3}\right)$; Lit. ${ }^{17}-86.4$ (c 1.0, CHCl_{3}) for $(R)-\mathbf{3 3}\left(>99.0 \%\right.$ ee). ${ }^{1} \mathrm{H}$ NMR $\delta 4.31-4.26(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.75(\mathrm{bs}, 1 \mathrm{H}$, OH), $2.71-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{ddd}, \mathrm{J}=17,11,4 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-1.55(\mathrm{~m}, 7 \mathrm{H}), 1.40-1.30$ (m, 1 H); ${ }^{13} \mathrm{C}$ NMR $\delta 213.3,77.20,39.9,33.5,29.4,26.5,23.6 . \quad$ MS $(\mathrm{ESI}, \mathrm{MeOH}): \mathrm{m} / \mathrm{z}=$ $129.2\left(\mathrm{M}+\mathrm{H}^{+}\right), 107.1$.
$(R, R)-\mathbf{3 0}:$ The NMR spectra were identical to those of the authentic 1,2-trans-cycloheptanediol. $[\alpha] \mathrm{D}^{22}=-4.9\left(\mathrm{c} 0.7, \mathrm{CHCl}_{3}\right) ; \quad$ Lit. $^{17}+10.7\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$ for $(\mathrm{S}, \mathrm{S}) \mathbf{- 3 0}(>99.0 \% \mathrm{ee})$.
(S)-2-Oxocycloheptyl benzoate (33a). From $10 \mathrm{mg}(78 \mu \mathrm{~mol})$ of (S)-33 and $22 \mathrm{mg}(0.16$ mmol) of benzoyl chloride in 0.1 mL of pyridine and 0.5 mL of dichloromethane, $17.6 \mathrm{mg}(97 \%$ yield) of (S)-33a (99\% ee) was obtained. ${ }^{1} \mathrm{H}_{\mathrm{NMR}}{ }^{19} \delta 8.08(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, \mathrm{~J}=8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.75-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.10(\mathrm{~m}, 1$ H), $2.0-1.65(\mathrm{~m}, 6 \mathrm{H}), 1.51-1.40(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 207.4,165.1,133.4,130.1$ (2 C), 129.9, 128.6 (2 C), 79.9, 40.8, 30.8, 27.3, 26.1, 22.0. MS (ESI, MeOH): $\mathrm{m} / \mathrm{z}=255.1([\mathrm{M}+$ $\mathrm{Na}]^{+}$). The \% ee of this compound was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane $/ i-\mathrm{PrOH}=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=19 \mathrm{~min}(R$ enantiomer, $\operatorname{minor}), \mathrm{t}_{\mathrm{R}}=21.5 \mathrm{~min}(\mathrm{~S}$ enantiomer, major $)$.

($\boldsymbol{R}, \boldsymbol{R}$)-1,2-Di(phenylcarbonyloxy)cycloheptane (33b). From $10 \mathrm{mg}(0.077 \mathrm{mmol})$ of (R, R) 30 and $32 \mathrm{mg}(0.23 \mathrm{mmol})$ of benzoyl chloride in $61 \mu \mathrm{~L}$ of pyridine and 2 mL of dichloromethane, $23 \mathrm{mg}(90 \%$ yield $)$ of (R, R) - 33b was isolated after silica gel column chromatography. ${ }^{1} \mathrm{H}$ NMR $\delta 7.97(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 4 \mathrm{H}), 7.49(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.34(\mathrm{~m}$, 4 H), $5.42-5.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHO}), 2.20-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.75-1.60(\mathrm{~m}, 4$ H); ${ }^{13} \mathrm{C}$ NMR $\delta 166.3,133.1,130.5,129.8$ (4 C), 128.5 (4 C), 77.6, 30.7, 28.5, 23.1. MS (ESI, $\mathrm{MeOH}): m / z=361.3\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 217.5,194.3,105.2$. The $\%$ ee (88%) of $(R, R)-\mathbf{3 3 b}$ was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane $/ \mathrm{i}-\mathrm{PrOH}=$ 90:10, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=16.8 \mathrm{~min}(R, R$ enantiomer, major $), \mathrm{t}_{\mathrm{R}}=19.5 \mathrm{~min}(S, S$ enantiomer, minor).

The racemic trans-dibenzoate 33b were similarly prepared for HPLC/chiral column study from the corresponding racemic trans-diols.

General procedure for the catalytic asymmetric oxidation of cis-diols.

Oxidation of meso-cis-1,3-cyclohexanediol (26). Formation of (S)-3hydroxycyclohexanone (23). (The preparation of $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathrm{CSPVP} 17$ was similar to that described in the General Procedure). To a solution of 4.8 mL of $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1 7}(2.1 \mu \mathrm{~mol}$ of $\mathrm{Pd} / 0.7 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.08 \mu \mathrm{~mol}$ of $\mathbf{1 7})$ in $\mathrm{H}_{2} \mathrm{O}$, were added 16 mL of deionized $\mathrm{H}_{2} \mathrm{O}, 0.16 \mathrm{~g}(1.39$ mmol ; 662 equivalents based on Pd mole atoms) of racemic meso-cis-1,3-cyclohexanediol (26) and $68 \mathrm{mg}(0.42 \mathrm{mmol}) \mathrm{K}_{2} \mathrm{CO}_{3}$. The solution was transferred into a high pressure apparatus (Parr Pressure Reactor), stirred at $120^{\circ} \mathrm{C}$ under $30 \mathrm{psi}_{2}$ for 3 days. The stirring was stopped and reactor was cooled to $25^{\circ} \mathrm{C}$. The solution was extracted three times with dichloromethane (20 mL each) and the combined extracts were washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a mixture of ethyl acetate and hexane (1:1) as an eluent to give 0.141 g (89% yield) of (S)-23 in 91% ee (determined by HPLC/chiral column of the benzoate derivative (S)-23a). (S)-23: $\quad[\alpha] \mathrm{D}^{22}=+40.1(\mathrm{c} 0.8$, CHCl_{3}).; Lit. ${ }^{12}$ for (S)-23: +37.3 (c $0.80, \mathrm{CHCl}_{3} ; 82 \%$ ee). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those of (S)-23 obtained from the oxidation of trans-1,3-cyclohexanediol.

(S)-3-Oxocyclohexyl benzoate (23a) obtained from the benzoylation of (S)-23 of the above

reaction. From $0.1 \mathrm{~g}(0.87 \mathrm{mmol})$ of $(S)-\mathbf{2 3}$ and $0.24 \mathrm{~g}(1.74 \mathrm{mmol})$ of benzoyl chloride in 0.2
mL of pyridine and 3 mL of dichloromethane, $0.174 \mathrm{~g}(92 \%$ yield $)$ of $(\mathrm{S}) \mathbf{- 2 3 a}(91 \% \mathrm{ee})$ was obtained. The \% ee of (S)-23a was determined by HPLC using chiral column, Chiralpak AD(H) column, n-hexane $/ \mathrm{i}-\mathrm{PrOH}=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=21 \mathrm{~min}(R$ enantiomer, $\operatorname{minor}), \mathrm{t}_{\mathrm{R}}=25 \min (S$ enantiomer, major $)$.

(S)-3-Hydroxycyclopentanone (22) obtained from the oxidation of meso-cis-1,3cyclopentanediol (25). From $30 \mathrm{mg}(0.29 \mathrm{mmol})$ of 25, 1.0 mL of $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1 7}(0.438 \mu \mathrm{~mol}$ of $\mathrm{Pd} / 0.146 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.017 \mu \mathrm{~mol}$ of $\mathbf{1 7}$) in $\mathrm{H}_{2} \mathrm{O}$ at $120^{\circ} \mathrm{C}$ and 30 psi of O_{2} for 3 days, 28.3 $\mathrm{mg}(97 \%$ yield) of (S)-22 in 90% ee (determined by HPLC/chiral column of the benzoate derivative $(S)-\mathbf{2 2 a}) .(S)-\mathbf{2 2}:[\alpha] \mathrm{D}^{22}=-29.9\left(\mathrm{c} 0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, Lit. ${ }^{14}-18.3\left(\mathrm{c} 0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$; for Sconfiguration, 83% ee $).{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those of (S) - $\mathbf{2 2}$ obtained from the oxidation of trans-1,3-cyclopentanediol.
(S)-3-Oxocyclopentyl benzoate (22a) obtained from the benzoylation of (S)-22 of the above reaction. From $20 \mathrm{mg}(0.20 \mathrm{mmol})$ of $(S) \mathbf{- 2 2}$ and $56 \mathrm{mg}(0.40 \mathrm{mmol})$ of benzoyl chloride in 0.1 mL of pyridine and 1 mL of dichloromethane, 29 mg (71% yield) of (S)-22a (90% ee) was obtained. The $\%$ ee (90%) of compound (S)-22a was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n -hexane $/ \mathrm{i}-\mathrm{PrOH}=90: 10$, flow rate: 0.5 $\mathrm{mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=21.8 \mathrm{~min}(R$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=24.5 \mathrm{~min}(S$ enantiomer, major $)$.

(S)-3-Hydroxycycloheptanone (24) obtained from the oxidation of meso-cis-1,3cycloheptanediol (27). From $30 \mathrm{mg}(0.23 \mathrm{mmol})$ of 27, 0.79 mL of $\mathrm{Pd} / \mathrm{Au}(3: 1) \mathbf{- 1 7}$ (0.347 $\mu \mathrm{mol}$ of $\mathrm{Pd} / 0.116 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.013 \mu \mathrm{~mol}$ of 17) in $\mathrm{H}_{2} \mathrm{O}$ at $120^{\circ} \mathrm{C}$ and 30 psi of O_{2} for 3 days, 28 mg (94.5% yield) of (S)-24 in 92% ee (determined by HPLC/chiral column of the benzoate derivative (S)-24a). $\quad[\alpha] \mathrm{D}^{22}=+15.2\left(\mathrm{c} 0.8, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those of (S)-24 obtained from the oxidation of trans-1,3-cycloheptanediol.
(S)-3-Oxocycloheptyl benzoate (24a) obtained from the benzoylation of (S)-24 of the above reaction. From $25 \mathrm{mg}(0.20 \mathrm{mmol})$ of $(S)-24$ and $55 \mathrm{~g}(0.39 \mathrm{mmol})$ of benzoyl chloride in 0.1 mL of pyridine and 1 mL of dichloromethane, 44 mg (97% yield) of (S)-24a (92% ee) was obtained. $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those of (S) - $\mathbf{2 4 a}$ as described above. The \% ee of this compound was determined by HPLC using chiral column, Chiralpak AD(-H) column, n -hexane $/ \mathrm{i}-\mathrm{PrOH}=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=19 \mathrm{~min}(R$ enantiomer, minor $)$, $t_{R}=23 \min (S$ enantiomer, major $)$.

Oxidation of meso-cis-1,2-cyclohexanediol (35). Formation of (S)-2hydroxycyclohexanone (32). From $0.161 \mathrm{~g}(1.39 \mathrm{mmol}$; 662 equivalents based on Pd mole atoms) of 35, 4.8 mL of $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1 7}(2.1 \mu \mathrm{~mol}$ of $\mathrm{Pd} / 0.7 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.08 \mu \mathrm{~mol}$ of 17) in $\mathrm{H}_{2} \mathrm{O}$ at $120^{\circ} \mathrm{C}$ and 30 psi of O_{2} for 4 days, $0.142 \mathrm{~g}(96.5 \%$ yield) of (S) $\mathbf{- 3 2}$ in 92% ee
[determined by HPLC/chiral column of the benzoate derivative (S)-32a]. (S)-32: $[\alpha] \mathrm{D}^{22}=-$ 18.8 (c $0.65, \mathrm{CHCl}_{3}$); Lit. ${ }^{20}+20.6$ (c 1.0, CHCl_{3}) for (R) - 32 ($>99.0 \%$ ee). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those of $(S) \mathbf{- 3 2}$ obtained from the oxidation of trans-1,2cyclohexanediol.

(S)-3-Oxocyclohexyl benzoate (32a) obtained from the benzoylation of (S)-32 of the above

reaction. From $0.10 \mathrm{~g}(0.87 \mathrm{mmol})$ of $(S) \mathbf{- 3 2}$ and $0.245 \mathrm{~g}(1.74 \mathrm{mmol})$ of benzoyl chloride in 0.2 mL of pyridine and 3 mL of dichloromethane, 0.169 g (89% yield) of (S)-32a (92% ee) was obtained. $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those of (S)-32a as described above. The \% ee of this compound was determined by HPLC using chiral column, Chiralpak AD(-H) column, n -hexane $/ \mathrm{i}-\mathrm{PrOH}=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=20 \mathrm{~min}(R$ enantiomer, minor $)$, $t_{R}=22.5 \mathrm{~min}(S$ enantiomer, major).

Oxidation of meso-cis-1,2-cyclohexanediol (35) using $0.15 \mathrm{~mol} \%$ of $\mathrm{Pd} / \mathrm{Au}(3: 1)$ and

 double amounts of 17. To a solution of $104 \mu \mathrm{~L}(1.04 \mu \mathrm{~mol})$ of a 10 mM aqueous solution of $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$ and $34 \mu \mathrm{~L}(0.34 \mu \mathrm{~mol})$ of a 10 mM aqueous solution of $\mathrm{HAuCl}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ in 2.4 mL of deionized $\mathrm{H}_{2} \mathrm{O}$ was added $8.0 \mathrm{mg}(0.07 \mu \mathrm{~mol} ; 0.054$ equiv based on total Pd and Au moles of atoms) of $\mathbf{1 7}$ and the solution was stirred at $0^{\circ} \mathrm{C}$ for 0.5 h . To it, was added $0.50 \mathrm{mg}(0.012$ mmol) of NaBH_{4} and the resulting light black solution was stirred at $25^{\circ} \mathrm{C}$ for 0.5 h to give the bimetallic nanoclusters $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1 7}$ in aqueous solution. To it, was added $80 \mathrm{mg}(0.70$ $\mathrm{mmol})$ of meso diol 35 and $34 \mathrm{mg}(0.2 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$. The solution was stirred under 30 psi of O_{2} and at $120^{\circ} \mathrm{C}$ for 3 days. After aqueous work-up, extraction with dichloromethane, and silica gel column chromatography, $74 \mathrm{mg}(94 \%$ yield) of (S)-32 in 91% ee was isolated. The $\%$ ee was determined by HPLC/chiral column (Chiralpak $\mathrm{AD}(-\mathrm{H})$ column) analysis of the benzoate derivative, using n-hexane- $i-\operatorname{PrOH}=90: 10$ as eluent and a flow rate of $0.5 \mathrm{~mL} / \mathrm{min}$; $\mathrm{t}_{\mathrm{R}}=21 \mathrm{~min}(R$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=25 \mathrm{~min}(S$ enantiomer, major $)$.

Oxidation of meso-cis-1,2-cyclopentanediol (34). Formation of (S)-2hydroxycyclopentanone (31). From $60 \mathrm{mg}(0.588 \mathrm{mmol})$ of $\mathbf{3 4}, 2 \mathrm{~mL}$ of $\mathrm{Pd} / \mathrm{Au}(3: 1) \mathbf{- 1 7}(0.89$ $\mu \mathrm{mol}$ of $\mathrm{Pd} / 0.296 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.034 \mu \mathrm{~mol}$ of 17) in $\mathrm{H}_{2} \mathrm{O}$ at $120^{\circ} \mathrm{C}$ and 30 psi of O_{2} for 3 days, $55.4 \mathrm{mg}(94.2 \%$ yield $)$ of (S) $\mathbf{- 3 1}$ in 91% ee (determined by HPLC/chiral column of the benzoate derivative (S)-31a). $\quad[\alpha]_{\mathrm{D}}{ }^{22}=+38.4\left(\right.$ c $\left.1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{Lit}^{17}$-37.4 (c 1.0, $\left.\mathrm{CHCl}_{3}\right)$ for $(R)-$ configuration ($>99 \%$ ee). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those of (S) - $\mathbf{3 1}$ obtained from the oxidation of trans-1,2-cyclopentanediol.
(S)-2-Oxocyclopentyl benzoate (31a) obtained from the benzoylation of (S)-31 of the above reaction. From $40 \mathrm{mg}(0.40 \mathrm{mmol})$ of $(S) \mathbf{3 1}$ and $0.112 \mathrm{~g}(0.80 \mathrm{mmol})$ of benzoyl chloride in 0.3 mL of pyridine and 1.5 mL of dichloromethane, 80 mg (98% yield) of (S) -31a (91% ee) was obtained. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those of (S)-31a as described above. The $\%$ ee of this compound was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n -hexane $/ \mathrm{i}-\mathrm{PrOH}=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=20.5 \mathrm{~min}(R$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=23.3 \mathrm{~min}(S$ enantiomer, major $)$.

Oxidation of meso-cis-1,2-cycloheptanediol (36). Formation of (S)-2hydroxycycloheptanone (33). From $30 \mathrm{mg}(0.23 \mathrm{mmol})$ of 36, 0.79 mL of $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1 7}$ ($0.347 \mu \mathrm{~mol}$ of $\mathrm{Pd} / 0.116 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.013 \mu \mathrm{~mol}$ of $\mathbf{1 7}$) in $\mathrm{H}_{2} \mathrm{O}$ at $120^{\circ} \mathrm{C}$ and 30 psi of O_{2} for 3 days, 27.6 mg (94% yield) of (S)-33 in 91% ee (determined by HPLC/chiral column of the benzoate derivative (S)-33a). (S)-33: $[\alpha] \mathrm{D}^{22}=-130.6$ (c 1.0, CHCl_{3}). Lit. ${ }^{17}-86.4$ (c 1.0, CHCl_{3}) for $(R) \mathbf{- 3 3}(>99.0 \%$ ee $) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those of (S) - $\mathbf{3 3}$ obtained from the oxidation of trans-1,2-cycloheptanediol.
(S)-2-Oxocycloheptyl benzoate (33a) obtained from the benzoylation of (S)-33 of the above reaction. From $20 \mathrm{mg}(0.156 \mathrm{mmol})$ of $(S) \mathbf{- 3 3}$ and $44 \mathrm{mg}(0.31 \mathrm{mmol})$ of benzoyl chloride in 0.2 mL of pyridine and 1 mL of dichloromethane, 35 mg (97% yield) of (S)-33a (91\% ee) was obtained. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those of (S)-33a as described above. The \% ee of this compound was determined by HPLC using chiral column,

Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n -hexane $/ \mathrm{i}-\mathrm{PrOH}=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=19 \mathrm{~min}(R$ enantiomer, minor), $\mathrm{t}_{\mathrm{R}}=21.5 \mathrm{~min}(S$ enantiomer, major $)$.

General procedure for the catalytic asymmetric oxidation of alkenes. The procedure for the preparation of $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1 7}$ was the same as that described above for the oxidation of diols. For the catalytic asymmetric oxidation of alkenes, $0.5 \mathrm{~mol} \%$ of the $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1 7}$ (based on the alkenes) was used.
$\mathbf{(1 S , 2 R})$-1,2,3,4-Tetrahydronaphthalene-1,2-diol (38). To an aqueous solution of 6.6 mL of $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1 7}(2.9 \mu \mathrm{~mol}$ of $\mathrm{Pd} / 0.96 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.10 \mu \mathrm{~mol}$ of $\mathbf{1 7})$ in a Parr pressure reactor, were added 14 mL of deionized $\mathrm{H}_{2} \mathrm{O}$ and $0.10 \mathrm{~g}(0.77 \mathrm{mmol})$ of 1,2-dihydronaphthalene (37). The apparatus was charged at 30 psi of O_{2} and stirred at $25^{\circ} \mathrm{C}$ for 3 days. The solution was then maintained under normal atmosphere, extracted with ethyl acetate three times (20 mL
each), and the combined extracts were washed with water, and brine, dried (MgSO_{4}), concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give $89 \mathrm{mg}(86 \%$ yield $)$ of $(1 S, 2 R)-\mathbf{3 8}{ }^{20}$ in 99% ee. The optical purity was determined using HPLC-chiral column. $[\alpha] \mathrm{D}^{22}=+35.0\left(\mathrm{c} 0.74, \mathrm{CHCl}_{3}\right)$. Lit. $^{20}+35$ (c $0.74, \mathrm{CHCl}_{3} ;>98 \%$ ee). ${ }^{1} \mathrm{H}^{\mathrm{NMR}}{ }^{20} \delta 7.44-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.13-$ $7.11(\mathrm{~m}, 1 \mathrm{H}), 4.68(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.78$ (m, 1 H), $2.53-2.45(\mathrm{bs}, 2 \mathrm{H}, \mathrm{OH}), 2.07-2.00(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.87(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 136.6, 136.4, 130.1, 128.8, 128.4, 126.7, 70.2, 69.8, 27.1, 26.5. MS (ESI, MeOH): $m / z=165.1$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right), 116.2$. The $\%$ ee of this compound was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane $/ \mathrm{i}-\mathrm{PrOH}=85: 15$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{tR}=21.6 \mathrm{~min}$ $(1 S, 2 R$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=24.2 \mathrm{~min}(1 R, 2 S$ enantiomer, major $)$.

(1S,2S)-1-Phenylpropane-1,2-diol (40) and (1R,2S)-1-phenylpropane-1,2-diol (41). From
$\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1 7}(7.9 \mu \mathrm{~mol}$ of $\mathrm{Pd} / 2.65 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.29 \mu \mathrm{~mol}$ of $\mathbf{1 7})$ and $0.25 \mathrm{~g}(2.1 \mathrm{mmol})$ of trans- β-methylstyrene (39) in 30 mL of deionized water, after stirring at $25^{\circ} \mathrm{C}$ under 30 psi of O_{2} in a Parr pressure reactor for 3 days, $0.281 \mathrm{~g}(87 \%$ yield $)$ of $(1 S, 2 S)-40(99 \%$ ee) and 19 mg (6% yield) of $(1 R, 2 S)-\mathbf{4 1}(97 \%$ ee $)$ along with 13 mg of $\mathbf{3 9}$ (5% recovery) were obtained after column chromatography. The optical purity was determined using HPLC/chiral column as described above. $\quad(1 S, 2 S)-40:[\alpha] D^{22}=+51.7\left(\mathrm{c} 1.9, \mathrm{CHCl}_{3}\right)$. Lit. $^{21}+54.3\left(\mathrm{c} 1.9, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\delta 7.45-7.24(\mathrm{~m}, 5 \mathrm{H}), 4.37(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 3.86($ pent, $\mathrm{J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.15$ (bs, $1 \mathrm{H}, \mathrm{OH}), 1.75-1.60(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 1.07(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR δ 142.3, 129.9 (2 C), 128.6, 126.7 (2 C), 79.9, 72.4, 18.1. MS (ESI, MeOH): $m / z=175.1\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 139.1. $(1 R, 2 S)-41:[\alpha]_{\mathrm{D}}{ }^{22}=-37.3$ (c 2.52, CHCl_{3}). Lit. ${ }^{21}-29.9\left(\mathrm{c} 2.52, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\delta 7.36-7.27(\mathrm{~m}, 5 \mathrm{H}), 4.68(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-4.00(\mathrm{~m}, 1 \mathrm{H}), 2.15-1.80(\mathrm{bs}, 1 \mathrm{H}$, $\mathrm{OH}), 1.75-1.50(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 1.05(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR $\delta 140.4$, 128.2 (2 C), 127.9, 126.7 (2 C), 77.5, 71.4, 17.5. MS (ESI, MeOH): $m / z=174.9\left([\mathrm{M}+\mathrm{Na}]^{+}\right) . \quad$ The $\%$ ee (99%) of ($1 \mathrm{~S}, 2 S$) $\mathbf{- 4 0}$ was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane $/ i-\mathrm{PrOH}=85: 15$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=22.6 \mathrm{~min}(1 S, 2 S$ enantiomer, major $), \mathrm{t}_{\mathrm{R}}$ $=25.8 \mathrm{~min}(1 R, 2 R$ enantiomer, minor $)$.

The \% ee (97%) of $(1 R, 2 S)-41$ was determined by HPLC using chiral column, Chiralpak AD(H) column, n-hexane $/ i-\operatorname{PrOH}=85: 15$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=29.6 \mathrm{~min}(1 R, 2 S$ enantiomer, major $), \mathrm{t}_{\mathrm{R}}=32.2 \mathrm{~min}(1 S, 2 R$ enantiomer, minor $)$.

(1S,2R)-1-Phenylpropane-1,2-diol (41A) and (1R,2R)-1-phenylpropane-1,2-diol (40A).

From Pd/Au (3:1)-17 (7.94 $\mu \mathrm{mol}$ of $\mathrm{Pd} / 2.65 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.29 \mu \mathrm{~mol}$ of 17) and $0.25 \mathrm{~g}(2.1$ mmol) of cis- β-methylstyrene ($\mathbf{3 9 A}$) in 30 mL of deionized water, after stirring at $25^{\circ} \mathrm{C}$ under 30 psi of O_{2} in a Parr pressure reactor for 3 days, $0.291 \mathrm{~g}(90 \%$ yield $)$ of $(1 S, 2 R) \mathbf{- 4 1 A}(98 \%$ ee $)$
and $26 \mathrm{mg}(8 \%$ yield $)$ of $(1 R, 2 R)-\mathbf{4 0 A}(98 \%$ ee $)$ were obtained after column chromatography. $(1 S, 2 R)-41 \mathrm{~A}:[\alpha]]^{22}=+37.1\left(\mathrm{c} 2.52, \mathrm{CHCl}_{3}\right)$. Lit. $^{21}+36.1\left(\mathrm{c} 2.52, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those of compound $(1 R, 2 S)-41$. The $\%$ ee (98%) of $(1 S, 2 R)-\mathbf{4 1 A}$ was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane $/ i-\mathrm{PrOH}=$ 85:15, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=29.6 \mathrm{~min}(1 R, 2 R$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=32.2 \mathrm{~min}(1 S, 2 R$ enantiomer, major).

$(1 R, 2 R)-40 \mathrm{~A}:[\alpha] \mathrm{D}^{22}=-51.8\left(\mathrm{c} 1.9, \mathrm{CHCl}_{3}\right)$. Lit. $^{21}-51.3\left(\mathrm{c} 3.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those of $(1 S, 2 S)-\mathbf{4 0}$. The $\%$ ee (98%) of $(1 R, 2 R)-40 \mathrm{~A}$ was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane $/ i-\mathrm{PrOH}=$ 85:15, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=22.6 \mathrm{~min}(1 S, 2 S$ enantiomer, $\operatorname{minor}), \mathrm{t}_{\mathrm{R}}=25.8 \mathrm{~min}(1 R, 2 R$ enantiomer, major).

(2R,3S)-Isopropyl 2,3-dihydroxy-3-phenylpropanoate (43) and (2R,3R)-isopropyl 2,3-dihydroxy-3-phenylpropanoate (44). From $\mathrm{Pd} / \mathrm{Au}(3: 1)-17$ (1.97 $\mu \mathrm{mol}$ of $\mathrm{Pd} / 0.66 \mu \mathrm{~mol}$ of Au- $0.073 \mu \mathrm{~mol}$ of $\mathbf{1 7}$) and $0.10 \mathrm{~g}(0.52 \mathrm{mmol})$ of trans-isoproyl 3-phenylpropenoate ($\mathbf{4 2}$) in 20 mL of deionized water, after stirring at $50^{\circ} \mathrm{C}$ under 30 psi of O_{2} in a Parr pressure reactor for 3 days, $96 \mathrm{mg}(82 \%$ yield $)$ of $(2 R, 3 S)-43(99 \%$ ee $)$ and $3.7 \mathrm{mg}(3 \%$ yield) of $(2 R, 3 R)-44(97 \%$ ee) were obtained after column chromatography. The optical purity was determined using HPLC/chiral column as described above. $(2 R, 3 S)-43:[\alpha] D^{22}=+9.7\left(\mathrm{c} 0.15, \mathrm{CHCl}_{3}\right)$. Lit. 22 +10.6 (c 1.02, $\left.\mathrm{CHCl}_{3} ;>99 \%\right) .{ }^{1} \mathrm{H} \mathrm{NMR}^{18} \delta 7.40-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 2 \mathrm{H}), 5.16$ (hept, J = $6 \mathrm{~Hz}, 1 \mathrm{H}$), $5.01(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.48(\mathrm{bs}, 2 \mathrm{H}, \mathrm{OH})$, $1.31(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 166.8,144.6,130.3,129.1$ (2 C), 128.2 (2 C), 86.1, 74.2, 67.9, 22.2. MS (ESI, MeOH): $m / z=225.0\left([\mathrm{M}+\mathrm{H}]^{+}\right), 120.0$. The $\%$ ee (99%) of $(2 R, 3 S)-43$ was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane $/ i-\mathrm{PrOH}=$

85:15, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=21.1 \mathrm{~min}(2 R, 3 S$ enantiomer, major $), \mathrm{t}_{\mathrm{R}}=25.8 \mathrm{~min}(2 S, 3 R$ enantiomer, minor).

$(2 R, 3 R)-44:[\alpha] \mathrm{D}^{22}=+7.3\left(\mathrm{c} 0.15, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\delta 7.40-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 2$ H), 5.14 (hept, J = $6 \mathrm{~Hz}, 1 \mathrm{H}$), $5.06(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.00$ (bs, $2 \mathrm{H}, \mathrm{OH}$), $1.31(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 169.4,145.4,131.3$, 130.0 (2 C), 129.2 (2 C), 87.4, 75.1, 69.1, 23.1. \quad MS (ESI, MeOH$): ~ m / z=225.0\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right), 141.4 . \quad$ The $\%$ ee (97%) of $(2 R, 3 R)-44$ was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane $/ i-\operatorname{PrOH}=85: 15$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=28.1 \mathrm{~min}(2 R, 3 R$ enantiomer, major), $\mathrm{t}_{\mathrm{R}}=32.0 \mathrm{~min}(2 S, 3 S$ enantiomer, minor $)$.

(1S,2R)-2,3-Dihydro-1H-indene-1,2-diol (46) and (1R,2R)-2,3-dihydro-1H-indene-1,2-diol
(47). (Without additive) From $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1 7}(19.3 \mu \mathrm{~mol}$ of $\mathrm{Pd} / 6.7 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.74 \mu \mathrm{~mol}$ of $\mathbf{1 7}$) and $0.30 \mathrm{~g}(2.59 \mathrm{mmol})$ of indene ($\mathbf{4 5}$) in 20 mL of deionized water, after stirring at $50^{\circ} \mathrm{C}$ under 30 psi of O_{2} in a Parr pressure reactor for 2 days, $0.261 \mathrm{~g}(67 \%$ yield) of $(1 S, 2 R)-46(93 \%$ ee) and $44 \mathrm{mg}(11 \%$ yield $)$ of $(1 R, 2 R)-47(94 \%$ ee $)$ were obtained after column chromatography. The optical purity was determined using HPLC/chiral column. Compound $(1 S, 2 R)-46: \quad[\alpha] D^{22}$ $=-46.9\left(\mathrm{c} 1.14, \mathrm{CHCl}_{3}\right) . \mathrm{Lit} .^{20}-48.0\left(\mathrm{c} 1.14, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}^{16} \delta 7.45-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.31$ $-7.20(\mathrm{~m}, 3 \mathrm{H}), 5.03-5.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{O}), 4.54-4.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{O}), 3.14$ (dd, J = 16, 6 $\mathrm{Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, \mathrm{J}=16,4 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.25(\mathrm{bs}, 2 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR δ 142.2, 140.2, 129.0, 127.4, 125.6, 125.3, 76.2, 73.7, 38.9. MS (ESI, MeOH): $m / z=173.1\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 122.2$. Compound $(1 R, 2 R)-47:[\alpha] \mathrm{D}^{22}=-28.8(\mathrm{c} 0.675, \mathrm{EtOH})$. Lit. ${ }^{23}+30.5(\mathrm{c} 0.675, \mathrm{EtOH}) .{ }^{1} \mathrm{H}$ $\mathrm{NMR}^{23} \delta 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.18(\mathrm{~m}, 3 \mathrm{H}), 5.02-5.01(\mathrm{~m}, 1 \mathrm{H}), 4.40-4.38(\mathrm{~m}, 1$
H), $3.28(\mathrm{dd}, \mathrm{J}=16,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, \mathrm{J}=16,8 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.09(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 2.05$ - 2.02 (m, $1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR $\delta 141.8,141.3,130.1,128.9,128.3,126.6,73.0,72.4,37.5$ MS (ESI, MeOH): $m / z=151.1\left([\mathrm{M}+\mathrm{H}]^{+}\right), 122.2 . \quad$ The $\%$ ee (93%) of $(1 S, 2 R)-46$ compound was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane $/ i-\operatorname{PrOH}=$ 85:15, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=25.0 \mathrm{~min}(1 R, 2 S$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=27.8 \mathrm{~min}(1 S, 2 R$ enantiomer, major).

The $\%$ ee (94%) of compound $(1 R, 2 R)-47$ was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane $/ \mathrm{i}-\mathrm{PrOH}=85: 15$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=31.5 \mathrm{~min}$ $\left(1 R, 2 R\right.$ enantiomer, major), $\mathrm{t}_{\mathrm{R}}=35 \mathrm{~min}(1 S, 2 S$ enantiomer, minor).

(1S,2R)-2,3-Dihydro-1H-indene-1,2-diol (46) and (1R,2R)-2,3-dihydro-1H-indene-1,2-diol
(47). (With $\mathrm{K}_{2} \mathrm{CO}_{3}$ additive) To an aqueous solution of 15 mL of $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1 7}(6.5 \mu \mathrm{~mol}$ of $\mathrm{Pd} / 2.2 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.24 \mu \mathrm{~mol}$ of 17) in a Parr pressure reactor, were added 5 mL of deionized $\mathrm{H}_{2} \mathrm{O}, 77 \mathrm{mg}(0.56 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$, and $0.20 \mathrm{~g}(1.75 \mathrm{mmol})$ of indene $(\mathbf{4 5})$. The apparatus was charged at 30 psi of O_{2} and stirred at $70^{\circ} \mathrm{C}$ for 5 hours. The solution was then maintained under normal atmosphere, extracted with ethyl acetate three times (20 mL each), and the combined extracts were washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give $0.117 \mathrm{~g}(59 \%$ yield based on recovered 45$)$ of $(1 R, 2 R)-47^{23}$ in 91% ee and 10 $\mathrm{mg}(5 \%$ yield based on recovered $\mathbf{4 5})$ of $(1 S, 2 R)-46$ in 89% ee, along with $47 \mathrm{mg}(23.5 \%$ recovery) of 45. $(1 R, 2 R)-47:[\alpha]_{\mathrm{D}}{ }^{22}=-27.7\left(\mathrm{c} 1.14, \mathrm{CHCl}_{3}\right) . \mathrm{Lit}^{23}+30.5(\mathrm{c} 0.675, \mathrm{EtOH})$. $(1 S, 2 R)-46:[\alpha]_{\mathrm{D}}{ }^{22}=-44.9\left(\mathrm{c} 1.14, \mathrm{CHCl}_{3}\right) . \mathrm{Lit}^{22}-48.0\left(\mathrm{c} 1.14, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR
spectra of $\mathbf{4 6}$ and $\mathbf{4 7}$ were identical to those described above. No hydroxyindanones were detected. The $\%$ ee (89%) of $(1 S, 2 R)-\mathbf{4 6}$ was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane $/ \mathrm{i}-\mathrm{PrOH}=85: 15$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=25.0 \mathrm{~min}$ $(1 R, 2 S$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=27.8 \min (1 S, 2 R$ enantiomer, major $)$.

The \% ee (91\%) of ($1 R, 2 R$)-47 was determined by HPLC using chiral column, Chiralpak AD(H) column, n-hexane $/ i-\operatorname{PrOH}=85: 15$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=31.5 \mathrm{~min}(1 R, 2 R$ enantiomer, major), $\mathrm{t}_{\mathrm{R}}=34.6 \mathrm{~min}(1 S, 2 S$ enantiomer, minor $)$.

(1S,2R,4R)-1-Methyl-4-(prop-1-en-2-yl)cyclohexane-1,2-diol (49). From $\mathrm{Pd} / \mathrm{Au}(3: 1)$-17 (2.86 $\mu \mathrm{mol}$ of $\mathrm{Pd} / 0.99 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.11 \mu \mathrm{~mol}$ of 17$)$ and $52 \mathrm{mg}(0.39 \mathrm{mmol})$ of $(R)-(+)-$ limonene (48) in 20 mL of deionized water, after stirring at $25^{\circ} \mathrm{C}$ under 30 psi of O_{2} in a Parr pressure reactor for 3 days, $61 \mathrm{mg}(92 \%$ yield) of $(1 S, 2 R, 4 R)-49$ was obtained as a single stereoisomer after column chromatography. No other stereoisomers were detected. $\quad[\alpha] D^{22}$ $=+22.6\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR} \delta 4.74(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 1 \mathrm{H}), 2.32-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.18-$ 2.09 (m, 1 H), 2.03 - 1.94 (m, 1 H), 1.88 - 1.64 (m, 4 H), 1.73 (s, 3 H), 1.63 (s, 3 H), 1.64 1.58 (bs, $2 \mathrm{H}, \mathrm{OH}$); ${ }^{13} \mathrm{C}$ NMR $\delta 149.3,109.3,74.4,71.7,37.5,35.6,33.9,29.4,27.0,21.1$. MS (ESI, MeOH): $m / z=171.0\left([\mathrm{M}+\mathrm{H}]^{+}\right) . \quad$ HRMS-ESI: $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{Na}^{+}$: 193.1199 ; found: 193.1197.

(R)-48

(1S,2R,4R)-49
$+$

(1R,2S,4R)-49A

Scheme S4. Alternative synthesis of $(1 S, 2 R, 4 R)-49$ and $(1 R, 2 S, 4 R)-49 A$.

Alternative synthesis of (1S,2R,4R)-49 from OsO_{4} oxidation ${ }^{24}$ of (R)-(+)-limonene (48).

A solution of $0.20 \mathrm{~g}(1.47 \mathrm{mmol})$ of $(R)-(+)$-limonene (48), $7.5 \mathrm{mg}(29 \mu \mathrm{~mol})$ of OsO 4 , and $0.21 \mathrm{~g}(1.76 \mathrm{mmol})$ of N-methylmorpholine N-oxide (NMO) in 2 mL of t-BuOH, 7 mL of acetone and 2.5 mL of water was stirred $0^{\circ} \mathrm{C}$ for 30 min and $25^{\circ} \mathrm{C}$ for 14 h . The reaction mixture was filtered through Celite and concentrated on a rotary evaporator to remove acetone and $\mathrm{t}-\mathrm{BuOH}$, diluted with water $(20 \mathrm{~mL})$, and extracted three times with dichloromethane (20 mL each). The combined extract was washed with brine, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ether as eluent to give 27 mg (11% yield) of $(1 S, 2 R, 4 R)-49$ and $0.118 \mathrm{~g}(47 \%$ yield) of $(1 R, 2 S, 4 R)-49 \mathbf{A}^{25}$ along with $46 \mathrm{mg}(23 \%$ recovery $)$ of (R)-limonene.
$(1 S, 2 R, 4 R)-49:[\alpha] \mathrm{D}^{22}=+22.6\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those of compound 49 obtained from the catalytic asymmetric dihydroxylation reaction described above.
$(1 R, 2 S, 4 R)-49 \mathrm{~A}:{ }^{25}[\alpha] \mathrm{D}^{22}=+41.8(\mathrm{c} 1.0, \mathrm{MeOH}) ; \mathrm{Lit}^{21}+42(\mathrm{c} 1.0, \mathrm{MeOH}) .{ }^{1} \mathrm{H}^{21} \mathrm{NMR}^{25} \delta 4.72$ - 4.69 (m, 2 H), $3.67-3.64$ (m, 1 H), 2.38 - 2.30 (bs, $1 \mathrm{H}, \mathrm{OH}), 1.93-1.78$ (m, 3 H), 1.74 $1.67(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.55-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.34-1.25(\mathrm{~m}, 2 \mathrm{H})$, 1.25 (s, $3 \mathrm{H}, \mathrm{Me}$); ${ }^{13} \mathrm{C}^{\mathrm{NMR}}{ }^{25} \delta 148.9,108.7,73.5,71.2,37.2,33.6,33.3,26.1,25.7,20.6$.

General procedure for the catalytic asymmetric C-H oxidation. For the asymmetric C-H oxidation, $1 \mathrm{~mol} \%$ of the $\mathrm{Cu} / \mathrm{Au}(3: 1)-17$ was used in all reactions.

Preparation of the catalyst. To a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of 3.75 mL of $2 \mathrm{mmol} / \mathrm{L}$ of CuCl $(0.0075 \mathrm{mmol})$ in deionized water, 0.25 mL of $10 \mathrm{mmol} / \mathrm{L}$ of $\mathrm{HAuCl}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.0025 \mathrm{mmol})$ in deionized water, and $29.1 \mathrm{mg}(0.000275 \mathrm{mmol})$ of CSPVP 17, was added $1.89 \mathrm{mg}(0.05 \mathrm{mmol})$ of NaBH_{4}. The color of the solution changed to brown and stirred for 30 minutes at $25^{\circ} \mathrm{C}$ to give the $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{1 7}$ nanoclusters in aqueous solution. This solution was used in catalytic asymmetric C-H oxidation reactions without further purification.
trans-1,4-Diisopropylcyclohexane (50). To a cold $\left(-78^{\circ} \mathrm{C}\right)$ solution of 40 mL of liquid NH_{3} under argon was added $0.86 \mathrm{~g}(0.12 \mathrm{~mol})$ of lithium wire, and the resulting blue solution was stirred at $-35^{\circ} \mathrm{C}$ for 1 h . To it, a solution of $4.0 \mathrm{~g}(24.7 \mathrm{mmol})$ of 1,4-diisopropylbenzene (from Sigma Aldrich Co.) in 5.4 g of $t-\mathrm{BuOH}$ was added, and the solution was stirred for 6 h at $-35^{\circ} \mathrm{C}$ under argon. The reaction solution was diluted with aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, extracted twice with diethyl ether, and the combined extract was washed with water, brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvents were removed by distillation under normal pressure, and residue was column chromatographed on silica gel using hexane as eluent to give 2.81 g (70% yield) of 1,4-diisopropyl-1,4-cyclohexadiene along with 0.96 g (24% recovery) of 1,4-diisopropylbenzene. ${ }^{1} \mathrm{H}$ NMR $\delta 5.46(\mathrm{~s}, 2 \mathrm{H},=\mathrm{CH}), 2.64\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.19($ hept, $\mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}), 1.01(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}$, $12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 140.9,116.4,34.7,27.8,21.5 . \mathrm{MS}(\mathrm{ESI}, \mathrm{MeOH}): m / z=165.0\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, 122.9. A mixture of 2.0 g (12.2 mmol) of 1,4-diisopropyl-1,4-cyclohexadiene and 0.14 g of 10% Pd / C in 30 mL of ethyl acetate in a bottle was shaken under 30 psi of H_{2} on a Parr hydrogenator for 16 h and then maintained under normal pressure. The mixture was filtered through Celite,
and the filtrate was concentrated by distillation under normal pressure and column chromatographed on silica gel using pentane as solvent to give 1.3 g (65% yield) of pure $\mathbf{5 0}$ along with 0.50 g of $\mathbf{5 0}$ and 1,4 -diisopropyl-1,4-cyclohexadiene (2:1). Compound $\mathbf{5 0}:{ }^{1} \mathrm{H}$ NMR $\delta 1.73-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.05(\mathrm{~m}, 7 \mathrm{H}), 0.95-0.90(\mathrm{~m}, 3 \mathrm{H}), 0.84(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 12 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR $\delta 42.6,30.2,26.7$, 20.1. MS (ESI, MeOH): $\mathrm{m} / \mathrm{z}=207.0\left([\mathrm{M}+\mathrm{K}]^{+}\right)$.
(2R,5S)-2,5-diisopropylcyclohexanone (51). To a solution of 2 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1)$-17 (4.46 $\mu \mathrm{mol}$ of $\mathrm{Cu} / 1.49 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.16 \mu \mathrm{~mol}$ of 17) were added 3 mL of acetonitrile, $0.10 \mathrm{~g}(0.60$ mmol) of $\mathbf{5 0}$ and 3 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$, and the resulting solution was stirred at $50^{\circ} \mathrm{C}$ for 7 days. The solution was cooled to $25^{\circ} \mathrm{C}$ and extracted three times with diethyl ether (15 mL each). The combined extracts were washed with water and then brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and diethyl ether as eluents to give 94 mg (87% yield) of ($2 R, 5 S$)-51 in 81% ee along with 7 mg (7% recovery) of 50. The optical purity was determined using HPLC/chiral column. Compound (2R,5S)-51: $[\alpha]_{\mathrm{D}}{ }^{22}=+12.1\left(\mathrm{c} 1.5, \mathrm{CHCl}_{3}\right) . \mathrm{Lit.}^{26}+14\left(\mathrm{c} 1.51, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}^{26} \delta 2.38(\mathrm{ddd}, \mathrm{J}=12,3.4$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.43-0.85(\mathrm{~m}, 5 \mathrm{H}), 1.01(\mathrm{~d}, \mathrm{~J}=7$ $\mathrm{Hz}, 6 \mathrm{H}), 0.84(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 213.0, 56.2, 46.5, 32.6, 28.8, 27.9, 25.9, 21.2, 19.6 (2 C), 18.6 (2 C). \quad MS (ESI, MeOH): $m / z=205.1\left([M+N a]^{+} ; 100 \%\right), 139.0$.

The \% ee (81%) of $(1 R, 5 S)$ - $\mathbf{5 1}$ was determined by HPLC using chiral column, Chiralpak AD(H) column, n-hexane $/ i-\operatorname{PrOH}=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$, detected at 220 nm wavelength; $\mathrm{t}_{\mathrm{R}}=14.5 \min (2 R, 5 S$ enantiomer, major $), \mathrm{t}_{\mathrm{R}}=17.2 \min (2 S, 5 R$ enantiomer, minor $)$.

(R)-3-Hydroxy-3-isopropylcyclohexanone (56). From 0.10 g (0.70 mmol) of 1isopropylcyclohexanol (53), 2.4 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{1 7}(5.27 \mu \mathrm{~mol}$ of $\mathrm{Cu} / 1.75 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.19$ $\mu \mathrm{mol}$ of 17), 2 mL of $\mathrm{H}_{2} \mathrm{O}_{2}$, and 1 mL of $\mathrm{CH}_{3} \mathrm{CN}$ stirring at $50^{\circ} \mathrm{C}$ for 7 days, $0.107 \mathrm{~g}(98 \%$ yield) of $(R)-56$ in 91.4% ee. $[\alpha] \mathrm{D}^{22}=+6.1\left(\mathrm{c} 0.20, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\delta 2.45-2.40(\mathrm{~m}, 2 \mathrm{H})$, $2.15-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.60(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 6 \mathrm{H})$. The proton NMR assignments were derived from 2D COSY spectrum. ${ }^{13} \mathrm{C}$ NMR δ 205.1, 73.2, 54.2, 42.4, 34.3, 29.3, 23.7, 17.5. MS (ESI, MeOH): $m / z=157.3\left([\mathrm{M}+\mathrm{H}]^{+}\right), 119.0,116.2$, 104.9. HRMS-Hexane Atmospheric Pressure Chemical Ionization (HAPCI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{O}_{2}$: 157.1229 ; found: 157.1221 . The $\%$ ee (91.4%) of $(R)-56$ was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane $/ i-\mathrm{PrOH}=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$, detected at 220 nm wavelength; $\mathrm{t}_{\mathrm{R}}=20.8 \mathrm{~min}(S$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=24.7$
$\min (R$ enantiomer, major).

(R)-3-Hydroxy-3-isopropylcyclopentanone (55). From $90 \mathrm{mg}(0.70 \mathrm{mmol})$ of 1 isopropylcyclopentanol (52), 2.4 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1) \mathbf{- 1 7}(5.27 \mu \mathrm{~mol}$ of $\mathrm{Cu} / 1.75 \mu \mathrm{~mol}$ of $\mathrm{Au}-$ $0.19 \mu \mathrm{~mol}$ of $\mathbf{1 7}$), 2 mL of $\mathrm{H}_{2} \mathrm{O}_{2}$, and 1 mL of $\mathrm{CH}_{3} \mathrm{CN}$ stirring at $50^{\circ} \mathrm{C}$ for 7 days, $91 \mathrm{mg}(91 \%$ yield) of $(R)-55$ in 92% ee. $[\alpha] \mathrm{D}^{22}=+13.7\left(\mathrm{c} 0.20, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\delta 2.41-2.30(\mathrm{~m}, 2 \mathrm{H}$, C2 Hs), 2.30-2.17 (m, 1 H, C5 H), 2.07-1.80 (m, 4 H, C5 H, C4 Hs, \& CHMe 2), $1.72-1.60$ $(\mathrm{m}, 2 \mathrm{H}, \mathrm{C} 4 \mathrm{H} \& \mathrm{OH}), 1.02(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 6 \mathrm{H})$. The proton NMR assignments were derived from 2D COSY spectrum. ${ }^{13} \mathrm{C}$ NMR δ 205.9, 73.3, 53.6, 42.4, 32.5, 22.0, 16.7. MS (ESI, $\mathrm{MeOH}): m / z=143.0\left([\mathrm{M}+\mathrm{H}]^{+}\right), 129.0,123.0,115.2$. HRMS-Hexane Atmospheric Pressure Chemical Ionization (HAPCI): $m / z[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{2}: 142.0994$; found: 142.0049. The $\%$ ee (92%) of (R)-55 was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column,
n-hexane $/ \mathrm{i}-\mathrm{PrOH}=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$, detected at 220 nm wavelength; $\mathrm{tR}=23.5$ $\min \left(S\right.$ enantiomer, minor), $\mathrm{t}_{\mathrm{R}}=27.5 \mathrm{~min}(R$ enantiomer, major).

(R)-3-Hydroxy-3-isopropylcycloheptanone (57). From $42 \mathrm{mg}(0.27 \mathrm{mmol})$ of 1 isopropylcycloheptanol (54), 0.92 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{1 7}(2.0 \mu \mathrm{~mol}$ of $\mathrm{Cu} / 0.65 \mu \mathrm{~mol}$ of $\mathrm{Au}-$ $0.074 \mu \mathrm{~mol}$ of 17), 1 mL of $\mathrm{H}_{2} \mathrm{O}_{2}$, and 1 mL of $\mathrm{CH}_{3} \mathrm{CN}$ stirring at $50^{\circ} \mathrm{C}$ for 7 days, $41 \mathrm{mg}(89 \%$ yield) of $(R)-57$ in 93% ee. $[\alpha] \mathrm{D}^{22}=+23.8\left(\mathrm{c} 0.20, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\delta 2.35(\mathrm{~d}, \mathrm{~J}=2 \mathrm{~Hz}, 2$ H, C2 Hs), 2.16-2.18(m, 2 H, C7 Hs), 1.97-1.93(m, 2H, C6 Hs), $1.90-1.83(\mathrm{~m}, 1 \mathrm{H}$, CHMe2), 1.75 - 1.70 (m, 1 H, C4 H), 1.67 - 1.58 (m, 3 H, C5 Hs \& C4 H), $1.30-1.20$ (bs, 1 $\mathrm{H}, \mathrm{OH}), 0.86(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 6 \mathrm{H})$. The proton NMR assignments were derived from 2D COSY spectrum. ${ }^{13} \mathrm{C}$ NMR δ 206.1, 74.4, 52.8, 41.6, 37.4, 33.9, 27.0, 21.0, 17.1 (2 C). MS (ESI, $\mathrm{MeOH}): m / z=171.1\left([\mathrm{M}+\mathrm{H}]^{+}\right), 142.1$, 123.1, 107.0. HRMS-Hexane Atmospheric Pressure

Chemical Ionization (HAPCI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}_{2}$: 171.1385; found: 171.1381. The \% ee (93\%) of (R)-57 was determined by HPLC using chiral column, Chiralpak AD(-H) column, n-hexane $/ i-\mathrm{PrOH}=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$, detected at 220 nm wavelength; t_{R} $=21.7 \mathrm{~min}(S$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=25.8 \mathrm{~min}(R$ enantiomer, major $)$.

(R)-Hydroxy-3-(isopropenyl)cyclohexanone (59). From 70 mg (0.50 mmol) of 1 isopropenylcyclohexanol (58), 1.7 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1) \mathbf{- 1 7}$ (3.75 $\mu \mathrm{mol}$ of $\mathrm{Cu} / 1.25 \mu \mathrm{~mol}$ of $\mathrm{Au}-$ $0.13 \mu \mathrm{~mol}$ of 17), 1.5 mL of $\mathrm{H}_{2} \mathrm{O}_{2}$, and 1.5 mL of $\mathrm{CH}_{3} \mathrm{CN}$ stirring at $50^{\circ} \mathrm{C}$ for 8 days, 76 mg (98\% yield) of (R)-59 in 93% ee. $[\alpha] \mathrm{D}^{22}=+17.3\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\delta 5.07(\mathrm{~d}, \mathrm{~J}=0.8$ $\mathrm{Hz}, 1 \mathrm{H},=\mathrm{CH}), 4.95(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 2.35-2.32(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 2 \mathrm{Hs}), 2.16-2.15(\mathrm{~m}, 2$ H, C6 Hs), $2.00-1.95$ (m, $2 \mathrm{H}, \mathrm{C} 4 \mathrm{Hs}$), 1.85 (s, 3 H), $1.85-1.7$ (m, 2 H, C5 Hs), $1.7-1.55$ (bs, $1 \mathrm{H}, \mathrm{OH}$). The proton NMR assignments were derived from 2D COSY spectrum. ${ }^{13} \mathrm{C}$

NMR $\delta 209.5,152.2,109.2,76.1,52.9,40.8,38.8,23.0,17.8 . \operatorname{MS}(E S I, M e O H): m / z=177.1$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 142.2, 130.1. HRMS-Hexane Atmospheric Pressure Chemical Ionization (HAPCI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{2}$: 155.1072; found: 155.1088. The $\%$ ee (93\%) of $(R)-59$ was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane/i$\operatorname{PrOH}=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$, detected at 220 nm wavelength; $\mathrm{t}_{\mathrm{R}}=20.8 \mathrm{~min}(S$ enantiomer, minor), $\mathrm{t}_{\mathrm{R}}=24.9 \mathrm{~min}(R$ enantiomer, major $)$.

(+)-2S-2-Hydroxysclareolide (61). To a solution of 12 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{1 7}(24 \mu \mathrm{~mol}$ of $\mathrm{Cu} / 8.0 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.88 \mu \mathrm{~mol}$ of 17) in $\mathrm{H}_{2} \mathrm{O}$ (as described above) were added 12 mL of acetonitrile, $100 \mathrm{mg}(0.40 \mathrm{mmol})$ of $(+)$-sclareolide $(\mathbf{6 0})$ and 1.5 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$, and the resulting solution was stirred at $60^{\circ} \mathrm{C}$ for 6 days. The solution was cooled to $25^{\circ} \mathrm{C}$, diluted with
water, and extracted three times with diethyl ether (20 mL each $)$. The combined extracts were washed with water and then brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate, followed by dichloromethane and methanol as eluents to give $40 \mathrm{mg}\left(37.5 \%\right.$ yield) of (2 S)-61 ${ }^{27}$ and 3.3 mg (3% yield) of 1oxosclareolide ${ }^{27}$ along with 46 mg (46% recovery) of $\mathbf{6 0}$ and 10 mg of unidenficable polymers. Compound (2S)-61: $\quad[\alpha] \mathrm{D}^{22}=+78(\mathrm{c} 0.1, \mathrm{MeOH})$. Lit. $^{27}-100(\mathrm{c} 0.006, \mathrm{MeOH}) .{ }^{1} \mathrm{H} \mathrm{NMR}^{27}$ $\delta 4.03-3.94(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{t}, \mathrm{J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{dd}, \mathrm{J}=16.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{dt}, \mathrm{J}=$ $12,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{dd}, \mathrm{J}=14.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.80(\mathrm{~m}, 3 \mathrm{H}), 1.74-1.66(\mathrm{~m}, 1 \mathrm{H})$, $1.40-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.28-1.25(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{t}, \mathrm{J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.08(\mathrm{dd}, \mathrm{J}$ $=13,3 \mathrm{~Hz}, 1 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}^{27} \delta 176.0,86.0,64.4$, $58.9,56.3,51.6,48.4,38.5,37.5,34.7,33.2,28.7,21.9,21.7,20.1,16.2$; MS (ESI, MeOH): $m / z=289.4\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 267.3\left(\mathrm{M}+\mathrm{H}^{+}\right), 134.1$.

1-Oxosclareolide: ${ }^{1} \mathrm{H}$ NMR $\delta 2.96(\mathrm{dd}, \mathrm{J}=17,7 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{ddd}, \mathrm{J}=16,8.8,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.53(\mathrm{dd}, \mathrm{J}=16.8,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{ddd}, \mathrm{J}=15.6,8.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{dd}, \mathrm{J}=14.4,6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.10-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.19$ $(\mathrm{s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 1.04-0.96(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 0.91-0.86(\mathrm{~m}, 1 \mathrm{H})$. MS (ESI, $\mathrm{MeOH}): m / z=287.3\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 250.2,122.9$.

Alternative syntheses of $(\boldsymbol{R})-56$ and $(\boldsymbol{R})-57$.

Scheme S5. Alternative syntheses of (R)-56 and (R)-57.

Synthesis of (R)-56 from (S)-23. To a solution of $40 \mathrm{mg}(0.35 \mathrm{mmol})$ of (S)-3hydroxycyclohexanone (23), $4 \mathrm{mg}(0.036 \mathrm{mmol})$ of 4-dimethylaminopyridine, and 0.10 g (1.0 mmol) of trimethylamine in 3 mL of dichloromethane at $0^{\circ} \mathrm{C}$ under argon, was added $77 \mathrm{mg}(0.51 \mathrm{mmol})$ of t-butyldimethylsilyl chloride. The solution was stirred for 4 h , diluted with 10 mL of water, and extracted three times with ethyl acetate (10 mL each). The combined extract was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel to give $28 \mathrm{mg}(35 \%$ yield $)$ of (S)-3-(tbutyldimethylsilyloxy)cyclohexanone and 17 mg (49% yield) of 2-cyclohexenone along with 4 mg (10% recovery) of starting 3-hydroxyketone 23. The silyloxycyclohexanone was used in the following step without purification. (S)-3-(t-Butyldimethylsilyloxy)cyclohexanone: ${ }^{1} \mathrm{H}$ NMR $\delta 4.17$ - $4.12(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{dd}, \mathrm{J}=14,4 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dd}, \mathrm{J}=14,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.28$ (t, J = 6.5 Hz, 2 H), 2.15-2.00(m, 2 H), $1.82-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.38(\mathrm{~s}, 6 \mathrm{H})$. To a mixture of $1.7 \mathrm{mg}(13 \mu \mathrm{~mol})$ of anhydrous ZnCl_{2} in 2 mL of dry THF under argon at $25^{\circ} \mathrm{C}$, was added a solution of 0.18 mmol of isopropylmagnesium bromide in 1 mL of THF, and the solution was stirred for 1 h and then cooled to $0^{\circ} \mathrm{C}$. To it, was added a solution of $28 \mathrm{mg}(0.12$ mmol) of (S)-3-(t-butyldimethylsilyloxy)cyclohexanone in 0.5 mL of THF via cannula under argon and the resulting solution was stirred at $0^{\circ} \mathrm{C}$ for 4 h . The solution was diluted with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and water (10 mL), extracted three times with ethyl acetate (20 mL each), and
the combined extract was washed with brine, dried (MgSO_{4}), concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluent to give 23 mg (70% yield) of ($1 R, 3 S$)-3-(t-butyldimethylsilyloxy)-1-isopropylcyclohexanone (62). No other stereoisomer was found. Compound 62: ${ }^{1} \mathrm{H}$ NMR $\delta 4.37$ (m, 1 H$), 1.96-1.50$ $(\mathrm{m}, 8 \mathrm{H}), 1.32-1.24(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 6 \mathrm{H}), 0.36(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 73.3, 66.2, 37.5, 35.6, 33.1, 26.2, 23.9 (3 C), 20.9, 18.6, 16.9 (2 C), -1.15 (2 C).

A solution of $14 \mathrm{mg}(52 \mu \mathrm{~mol})$ of the above $(1 R, 3 S)-62$ and $0.10 \mathrm{~mL}(0.10 \mathrm{mmol})$ of n-Bu4NF (1 M in THF) in 0.5 mL of THF was stirred under argon at $0^{\circ} \mathrm{C}$ for 1 h and then at $25^{\circ} \mathrm{C}$ for 1.5 h. The solution was diluted with water (10 mL), and extracted three times with diethyl ether (10 mL each). The combined extract was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under vacuum to give 8.7 mg of $(1 R, 3 S)$-1-isopropyl-1,3-cyclohexanediol, which was used immediately in the following reaction without further purification. To a solution of the above diol in 0.5 mL of DMSO was added $16 \mathrm{mg}(57 \mu \mathrm{~mol})$ of IBX under argon at $25^{\circ} \mathrm{C}$. The resulting mixture was stirred for 14 h , filtered to remove white solid, and rinsed with 20 mL of diethyl ether. The ether filtrate was washed three times with water $(10 \mathrm{~mL}$ each $)$, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a mixture of hexane and ethyl acetate (1:2) as eluent to give $7.6 \mathrm{mg}(95 \%$ yield) of (R)-3-hydroxy-3-isopropylcyclohexanone (56). $[\alpha]_{\mathrm{D}}{ }^{22}=+6.4\left(\mathrm{c} 0.20, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical those of $\mathbf{5 6}$ synthesized from the $\mathrm{Pd} / \mathrm{Au}-\mathbf{1 7}$ catalytic oxidation reaction.

Synthesis of (R)-57 from (S)-24. To a solution of $15 \mathrm{mg}(0.12 \mathrm{mmol})$ of (S)-3hydroxycycloheptanone (24), $1.5 \mathrm{mg}(0.012 \mathrm{mmol})$ of 4-dimethylaminopyridine, and 35 mg $(0.35 \mathrm{mmol})$ of trimethylamine in 1 mL of dichloromethane at $0^{\circ} \mathrm{C}$ under argon, was added 25
$\mathrm{mg}(0.17 \mathrm{mmol})$ of t-butyldimethylsilyl chloride. The solution was stirred for 8 h , diluted with 10 mL of water, and extracted three times with ethyl acetate (10 mL each). The combined extract was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel to give $19 \mathrm{mg}(76 \%$ yield $)$ of (S)-3-(tbutyldimethylsilyloxy)cycloheptanone and 3.2 mg (25% yield) of 2-cycloheptenone. The silyloxycycloheptanone was used in the following step without purification. (S)-3-(tButyldimethylsilyloxy)cycloheptanone: ${ }^{1} \mathrm{H}$ NMR $\delta 4.12-4.10(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.75(\mathrm{~m}, 2 \mathrm{H})$, $2.55-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.55(\mathrm{~m}, 6 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.37(\mathrm{~s}, 6 \mathrm{H})$. To a mixture of 1.1 $\mathrm{mg}(8 \mu \mathrm{~mol})$ of anhydrous ZnCl_{2} in 0.5 mL of dry THF under argon at $25^{\circ} \mathrm{C}$, was added a solution of 0.12 mmol of isopropylmagnesium bromide in 0.2 mL of THF, and the solution was stirred for 1 h and then cooled to $0^{\circ} \mathrm{C}$. To it, was added a solution of $19 \mathrm{mg}(0.078 \mathrm{mmol})$ of (S)-3-(t-butyldimethylsilyloxy)cycloheptanone in 0.2 mL of THF via cannula under argon and the resulting solution was stirred at $0^{\circ} \mathrm{C}$ for 3 h . The solution was diluted with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and water $(10 \mathrm{~mL})$, extracted three times with ethyl acetate (10 mL each $)$, and the combined extract was washed with brine, dried (anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$), concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluent to give 14 mg (62% yield) of ($1 R, 3 S$)-3-(t-butyldimethylsilyloxy)-1-isopropylcycloheptanone (63). No other stereoisomer was found. Compound 63: ${ }^{1} \mathrm{H}$ NMR $\delta 4.42-4.35(\mathrm{~m}, 1 \mathrm{H}), 2.02$ $-1.50(\mathrm{~m}, 9 \mathrm{H}), 1.35-1.20(\mathrm{~m}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 6 \mathrm{H}), 0.36(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 75.6,70.9,35.0,33.1,30.6,29.6,25.8$ (3 C), 25.5, 24.3, 20.0, 17.2 (2 C), -1.6 (2 C).

A solution of $7 \mathrm{mg}(24 \mu \mathrm{~mol})$ of the above $(1 R, 3 S)-63$ and $48 \mu \mathrm{~L}(48 \mu \mathrm{~mol})$ of $n-\mathrm{Bu} 4 \mathrm{NF}(1 \mathrm{M}$ in THF) in 0.5 mL of THF was stirred under argon at $25^{\circ} \mathrm{C}$ for 2 h . The solution was diluted
with water (10 mL), and extracted three times with diethyl ether (10 mL each). The combined extract was washed with brine, dried (MgSO_{4}), and concentrated under vacuum to give 4.2 mg of ($1 R, 3 S$)-1-isopropyl-1,3-cycloheptanediol, which was used immediately in the following reaction without further purification. To a solution of the above diol in 0.5 mL of DMSO was added $8 \mathrm{mg}(26 \mu \mathrm{~mol})$ of IBX under argon at $25^{\circ} \mathrm{C}$. The resulting mixture was stirred for 14 h , filtered to remove white solid, and rinsed with 10 mL of diethyl ether. The ether filtrate was washed three times with water (10 mL each), dried (anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$), concentrated, and column chromatographed on silica gel using a mixture of hexane and ethyl acetate (1:2) as eluent to give 4.0 mg (96% yield) of (R)-3-hydroxy-3-isopropylcycloheptanone (57). $[\alpha]_{\mathrm{D}}{ }^{22}=+25.9$ (c $\left.0.20, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical those of 57 synthesized from the $\mathrm{Pd} / \mathrm{Au}-\mathbf{1 7}$ catalytic oxidation reaction.
10. Table S1. Selectivity factors for all HPLC/chiral column analyses.

Compounds	Selectivity factors
22a	1.15
22b	1.24
23a	1.25
23b	1.27
24a	1.28
24b	1.24
31a	1.18
31b	1.22
32a	1.17
32b	1.24
33a	1.18
33b	1.23
cis-38	1.15
syn-40	1.17
anti-41	1.10
syn-43	1.27
anti-44	1.16
cis-46	

trans-47	1.13
trans-51	1.28
$\mathbf{5 6}$	1.25
$\mathbf{5 5}$	1.22
$\mathbf{5 7}$	1.24
$\mathbf{5 8}$	1.26

11. References

1. Moon, S.; Waxman, B. H. Chem. Commun. 1967, 1283-1284.
2. Wang, Z.; Cui, Y. -T.; Xu, Z. -B.; Qu, J. J. Org. Chem. 2008, 73, 2270-2274.
3. Rosatella, A. A.; Afonso, C. A. M. Adv. Synth. Catal. 2011, 353, 2920-2926.
4. Hatano, M.; Suzuki, S.; Ishihara, K. J. Am. Chem. Soc. 2006, 128, 9998-9999.
5. Smrcina, M.; Majer, P.; Majerova, E.; Guerassina, T. A.; Eissenstat, M. A. Tetrahedron 1997, 53, 12867-12874.
6. Kerr, M. S.; de Alaniz, J. R.; Rovis, T. J. Org. Chem. 2005, 70, 5725-5728.
7. Ward, B. D.; Risler, H.; Weitershaus, K.; Bellemin-Laponnaz, S.; Wadepohl, H.; Gade, L. H. Inorg. Chem. 2006, 45, 7777-7787.
8. Digenis, G. A.; McClannahan, J. S.; Chen, P. -L. J. Labelled Comp. Radiopharm. 1993, 33, 11-17.
9. Ackermann, J.; Matthes, M.; Tamm, C. Helv. Chim. Acta 1990, 73, 122-132.
10. Miyashita, Y.; Suzuki, T.; Nishio, Y. Cellulose 2002, 9, 215-223.
11. Zhai, L.; Shi, T.; Wang, H. Front. Chem China 2009, 4, 83-88.
12. Kobayashi, S.; Xu, P.; Endo, T.; Ueno, M.; Kitanosono, T. Angew. Chem. Int. Ed. 2012, 51, 12763-12766.
13. Singh, G.; Aube, J. Org. Biomol. Chem. 2016, 14, 4299-4303.
14. Chen, B. -S.; Hanefeld, U. J. Mol. Catal. B: enzyme. 2013, 85-86, 239-242.
15. Ren, K.; Zhao, M.; Hu, B.; Lu, B.; Xie, X.; Ratovelomanana-Vidal, V.; Zhang, Z. J. Org. Chem. 2015, 80, 12572-12579.
16. Lifchits, O.; Mahlau, M.; Reisinger, C. M.; Lee, A.; Fares, C.; Plyak, I.; Gopakumar, G.; Thiel, W.; List, B. J. Am. Chem. Soc. 2013, 135, 6677-6693.
17. Zhang, J.; Xu, T.; Li, Z. Adv. Synth. Catal. 2013, 355, 3147-3153.
18. Liu, Y.; Li, R. -R.; Lu, X. -B. Macromol. 2015, 48, 6941-6947.
19. Beshara, C. S.; Hall, A.; Jenkins, R. L.; Jones, K. L.; Jones, T. C.; Killeen, N. M.; Taylor, P. H.; Thomas, S. P.; Tomkinson, N. C. O. Org. Lett. 2005, 7, 5729-2753.
20. Boyd, D. R.; Sharma, N. D.; Berberian, M. V.; Cleij, M.; Hardacre, C.; Ljubez, V.; McConville, G.; Stevenson, P. J.; Kulakov, L. A.; Christopher, C. R. A. Adv. Synth. Catal. 2015, 357, 1881-1894.
21. Kihumbu, D.; Stillger, T.; Hummel, W.; Liese, A. Tetrahedron: Asym. 2002, 13, 10691072.
22. Jin, Y.; Yao, Z.; Zhang, S.; Jiang, R.; Sun, X. Chinese J. Org. Chem. 2007, 27, 602-606.
23. Sengupta, S.; Mondal, S. Tetrahedron Lett, 1999, 40, 3469-3470.
24. VanRheenen, V.; Kelly, R. C.; Cha, D. Y. Tetrahedron Lett. 1976, 23, 1973-1976.
25. Kumar, S. C. S.; Manjunatha, J. R.; Srinivas, P.; Bettadaiah, B. K. J. Chem. Sci. 2014, 126, 875-880.
26. Pisoni, D. d. S.; da Costa, J. S.; Gamba, D.; Petzhold, C. L.; Borges, A. C. de A.; Ceschi, M. A.; Lunardi, P.; Goncalves, C. A. S. Eur. J. Med. Chem. 2010, 45, 526-535.
27. Choudhary, M. I.; Musharraf, S. G.; Sami, A.; Raman, A. -u. Helv. Chim. Acta 2004, 87,
28. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds $1-18,22-24,31-33,38,40,41,43,44,46$, 47, 49 - 51, and $\mathbf{5 5 - 5 9}, \mathbf{6 1 - 6 3}$ including 2D COSY spectra of compounds $56-58$

1b

2b

[^0]

10

S115

22

澹

22a

 Til $11 / 111$

23a

©

\#			

24

|

24b

31

31a

31a

32a

33a

200
150
100
50
0

38

呂

9A

55

 Till

S186

59

[^0]:

 5

