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The purpose of this document is to provide more details regarding the formulation and 

technical implementation of the method as well as providing the retrieved polarizability data for 

all the elements. The document is organized as follows. In the first section, we provide the 

expressions for free space dyadic Green’s functions. In the second section 3D periodic dyadic 

Green’s functions over 2D infinite arrays are derived and the performance of Ewald’s acceleration 

technique is evaluated. The third section discusses the applicability of discrete complex image 

method (DCIM) for evaluating dyadic Green’s functions of electric and magnetic dipoles above 

substrates. The H -matrix representation of the system of equations is briefed in section 4. Finally, 

section 5 provides the data of the retrieved polarizabilities corresponding to the elements studied 

in the paper. Throughout this work, we assume a time convention of exp( )i t . 

1- Dyadic Green’s Functions 

In this section, we provide the expressions for the free-space dyadic Green’s functions. All the 

dyadic Green’s functions can be expressed in terms of principal diagonal and anti-diagonal Green’s 

tensors as: 
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where the principal diagonal ˆ ( , )pd
j lG r r  and anti-diagonal ˆ ( , )ad

j lG r r  Green’s tensors are 

related to the scalar free-space Green’s function 0( , ) / 4
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In the above equations 0 /k c   is the wavenumber with    and c  being the angular frequency 

and speed of light, respectively, Î  is the unit dyad and   denotes dyadic product. 

2- Periodic Green’s Functions: Ewald Acceleration Method 

This section is focused on the evaluation of periodic dyadic Green’s functions in DDA. In [1], 

the efficient evaluation of these function is explained for 3D periodic arrays through the use of 

Ewald’s acceleration technique [2-4]. Here, we have implemented 3D Periodic Green’s Function 

over 2D periodic arrays as needed for design purposes in metasurfaces.  

Consider a periodic lattice placed in the x-y plane with periods xd  and 
yd  along x- and y- axes 

as shown in Figure S1. The 3D Periodic Scalar Green’s Function in a homogeneous media for such 

a 2D periodicity in free space for a wavevector  0 0 0 0, ,x y zk k k k  is expressed by: 
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where : 

 , , 0nm x ynd md                 (S8) 

nm nmR r                    (S9) 

 0 0 0, , 0x yk k                (S10) 
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Figure S1. The schematic representation of a 2D periodic lattice.  

The principal diagonal and anti-diagonal Green’s tensors can be subsequently obtained as: 
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In the above equations Î  is the unit dyad and   stands for dyadic product. Equations 

(S13) and (S14) lead to series with a poor convergence (1/ )O N , making the calculations 

prohibitive as they require a large number of terms to converge.  

In the Ewald representation [2] the scalar Green’s function in (S7) is decomposed into the 

hybrid sum of spectral and spatial scalar terms, as: 

( ) ( ) ( )spectral spatialg r g r g r               (S15) 

where: 
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with  ( , ) 2 / , 2 / , 0t x x y yk n m k n d k m d     and 2 2

0( , ) ( , )z tk n m k k n m  . 

The adopted Ewald parameter E is: 

opt
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which is chosen to minimize the total number of terms required for a given accuracy, since with 

this choice both spectral and spatial terms exhibit the same Gaussian convergence rate [4].  

It should be noted that a singular point is present in the spatial term when 0nmR  . This 

singularity can be removed by regularizing the Green’s function and taking the limit 0nmR  . 

However, this singular point will not be treated in our formulation because it is irrelevant for DDA 

where the self-interactions are described through polarizabilities. 

In order to obtain the expression for the principal diagonal and anti-diagonal Green’s 

functions using (S10) and (S11), we have: 
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in which: 
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The expressions obtained with Ewald method have a Gaussian convergence rate, so only a 

handful of summation terms are needed to achieve convergence. Figure S2 compares the 

convergence of principal diagonal Green’s function through regular summation with a truncation 

number of 100N   and by applying Ewald acceleration technique with a truncation number of 

2N   corresponding to the case of 
0 0 1x yk d k d  , 

0 0 0x yk k   and 2 2x yz d d  . As it can be 

seen, while the regular summation has a poor convergence and requires a very large number of 

terms, the Ewald’s method quickly converges with a high numerical accuracy. As it has been 

shown in [1], all the dyadic Green’s functions have the same convergence rate and a maximal 

truncation number of 2N   is required.  

 

Figure S2. Comparison of the convergence of principal diagonal Green’s function through regular 

summation with a truncation number of N=100 and applying Ewald acceleration technique with a truncation 

number of N=2, corresponding to the case of 0 0 1x yk d k d  , 0 0 0x yk k   and 2 2x yz d d  . 

3- Discrete Complex Image Method (DCIM): 

Compared to the IE-based approaches relying on free-space Green’s function and DE-based 

methods, the modeling complexity in dealing with certain type of geometries such as a semi-

infinite substrate, or a multilayer substrate can be greatly reduced in DDA by incorporating the 

Dyadic Green’s functions of layered media. The DDA formulation used in this work incorporates 

the Green’s function of layered media which enables us to take into account the scattering effect 
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of the substrate without the necessity of discretization. This makes it possible to model larger 

problems involving wave propagation in layered media. We express the substrate contribution to 

the scattering as follows: 
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where ( , )
EP

S j lG r r , ( , )
EM

S j lG r r , ( , )
HP

S j lG r r  and ( , )
HM

S j lG r r  are the Green’s tensor expressed in 

terms of Sommerfeld integrals as [5]: 
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where d is the distance between the source and the substrate interface as shown in Figure S3. And 

simply by applying duality, we obtain: 
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Figure S3. Schematic of a scatterer placed above a substrate. 

The Sommerfeld integrals in Eqs. (S27) – (S30) have no analytic solution and the numerical 

integration strategy is very inefficient and time consuming as they are infinite, oscillatory and 

slowly convergent integrals. Here, we will apply the DCIM to accelerate the evaluation of 

Sommerfeld integrals [6, 7].  

If the reflection coefficients can be approximated by a series of complex exponentials, 
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by utilizing the Sommerfeld identity [5], 
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the infinite integrals can be evaluated in a closed form as, 
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The complex exponential series can be obtained from the modified Prony extrapolation 

technique. The details of the modified Prony method can be found elsewhere and is not repeated 

here [8, 9]. In order to have a good accuracy in the presence of surface wave poles (guided modes) 

or branch point singularity (lateral waves), we deform the sampling path as: 
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Approximating the reflection coefficients in terms of the modified contour parameter (t): 
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we can write: 

exp ;
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Finally, the Green’s tensors expressing the contribution of substrate can be written 

explicitly as a series of free-space dyadic Green’s functions with complex distances and amplitudes 

and can be applied in both periodic and aperiodic cases. Therefore, the computation can be made 

to be the same order as the free space problems. 

The accuracy of the solution directly depends on the approximation of the reflection 

coefficients. This relies on the choice of the truncation point (T), the number of images 
,TE TMM  

and the number of sample points 
,TE TMP  in the modified Prony technique. The error values in 

spectral domain may cause high error in space domain for far zone fields. Therefore, it is necessary 

to consider choosing the parameters with high attention. Repetition and recursive iterations will 

ensure the choice of suitable values for a desired accuracy [10]. 

Generally, the required number of images and the truncation point increase with the local 

density of states in the substrate. In order to capture the guided modes contribution, one needs to 

employ multi-level schemes in DCIM [11]. In order to illustrate this, consider the silica half-space 

with 2.25   at 10 m  . Since the substrate does not support any guided modes, the behavior 

of the reflection coefficient on the modified contour is smooth and can be extrapolated with a high 

accuracy by adopting 
. .8,   22,   12TE TM TE TMT N P   . Figure S4 compares the exact and 

extrapolated reflection coefficient magnitude and phase for both TE and TM polarizations: 
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Figure S4. Comparison the exact and extrapolated reflection coefficient magnitude and phase for both TE 

and TM polarizations, corresponding to a silica substrate and by adopting 

. .8,   22,   12TE TM TE TMT N P   . 

Now if we put a graphene layer with a doping level of 0.16c ev   and relaxation time 

0.5s ps  of onto the substrate, the local density of states increases drastically and specifically 

one needs a very larger truncation point ( 120T  ) to capture the contribution of TM surface waves. 

Applying the modified Prony technique into this very large range lead to inaccuracy. As such, a 

two-level DCIM is employed. Two ranges of 1 [0,90]t  and 2 [90,120]t   are considered for TM 

reflection with parameters:
1 2 1 222,   20,   12,   5TM TM TM TMN N P P    , while for TE reflection 

one-level DCIM with parameters: 8,   22,   12TE TET N P    is adopted. Figure S5 compares the 

results of extrapolated and exact reflection coefficient for both polarizations. As it can be seen, the 

reflection coefficients are approximated with a high accuracy with this scheme. 

Once the problem is solved and the dipole moments are obtained, one can repeat the same 

procedure for the transmission coefficients to obtain the transmitted field into other regions by 

evaluating the corresponding Sommerfeld integrals [5, 6]. 
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Figure S5. Comparison the exact and extrapolated reflection coefficient magnitude and phase for both TE 

and TM polarizations, corresponding to a Graphene placed onto a silica substrate. Two ranges of 1 [0,90]t 

and 2 [90,120]t   are considered for TM reflection with parameters:

1 2 1 222,   20,   12,   5TM TM TM TMN N P P    , while for TE reflection one-level DCIM with parameters: 

8,   22,   12TE TET N P    is adopted. 

4- Hierarchical Matrix (H-matrix): 

Recently, several acceleration methods such as fast multipole-based methods, fast-Fourier 

transform (FFT)-based methods and fast low-rank compression methods have been proposed 

which can drastically reduce the computation complexity and memory requirements to the order 

of ( log( ))itO N N N . In this context, 3D-FFT [12, 13] and H -matrix [14] have been previously 

implemented into the formulation of DDA. These techniques are often applied to the problems 

with free-space Green’s function which requires discretization of the substrate. Special care and 

modifications has to be practiced for incorporation of layered media Green’s function. For 

example, in [13] Yurkin and Huntermann modified and implemented 3D-FFT technique in DDA 

for particles near a plane interface by decomposing the layered media Green’s functions into the 

terms with discrete convolution and correlation forms.  

The H -matrix provides a general mathematical framework [14-17] for low rank representation 

of interaction matrix, consisting of a collection of block matrices of various sizes. This results into 

compressed storage and reduces the computational complexity of matrix-vector multiplications 

which are the bottleneck of iterative solvers.  
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In the H -matrix approach, first the structure is partitioned into subdomains by adopting a 

clustering scheme. An admissibility condition is employed to identify admissible subdomain pairs 

[15]: 

   min diam( ),diam( ) dist ,X Y X Y           (S37) 

where diam( )X  denotes the maximal extent of subdomain X ,  dist ,X Y  is the minimal distance 

between subdomains X  and Y  and η is a positive parameter that can be used to control the 

admissibility condition. This condition ensures that the subdomains are geometrically well-

separated as shown in Fig. S6. 

The partitioning procedure is recursively applied to each subdomain until a prescribed number 

of iterations p is reached which is a parameter to control the clustering depth. This leads to 

hierarchy of blocks in the interaction matrix representing interactions between pairs of 

subdomains. The hierarchical block structure and the number of admissible blocks is dependent 

upon the geometry, clustering approach, clustering depth (p) and admissibility condition parameter 

 . A good clustering approach should make blocks become admissible as soon as possible.  

Several clustering approaches are available in order to obtain an optimum cluster tree such as 

nested dissection [18], cardinality balanced clustering [19], etc. In this work, a bounding box 

clustering is employed for the sake of simplicity [20].  A separation plane orthogonal to the x-axis 

is drawn through the center of the structure, dividing it into two –more or less equal- subdomains. 

 

Figure S6. The schematic representation of geometric admissibility condition. 

Having identified the admissible and inadmissible subdomain pairs, we can then approximate 

the interaction matrix Ĝ  by its hierarchical representation ˆ
HG . In this representation, the 

corresponding block matrices to inadmissible subdomain pairs  ,X Y  not satisfying the criterion 

(S37), are computed exactly. While for admissible subdomain pairs  ,X Y , the corresponding 

block matrices 
 ,
ˆ m n

X Y
G   are rank deficient and can be approximated by low rank 
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approximations ( m  and n  denote the number of degrees of freedom in subdomains X and Y, 

respectively). The block matrix 
 ,
ˆ m n

X Y
G   is approximated by 

 ,
ˆ m n

X Y
G   such as [17]: 
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with 
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m k
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GW   and * standing for the complex conjugate. k is the rank of the 

representation. For ( )k m n mn  , 
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X Y
G is called a low rank approximation of 
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ˆ

X Y
G , as the 

memory storage is reduced from ( )O mn  to ( ( ))O k m n  by storing 
( , )

ˆ
X YGV  and 

( , )

ˆ
X YGW  instead of 

 ,
ˆ

X Y
G which is linear in m and n. The rank k dictates the compression rate and is the determined 

through a rank-revealing method such that the approximation of 
 ,
ˆ

X Y
G  in (S38) is accurate up to 

a prescribed relative accuracy  .  

In the low frequency regime where the domain of interest is electrically small, a constant 

rank can be used for low-rank representations without affecting the accuracy [15]. In this work, 

we have attempted to use H-matrix in dipolar equations for both individual element and array scale 

incorporating layered media Green’s function. While the single element is subjected to the low 

frequency condition, the array scale analysis with layered media Green’s function cannot be 

carried out with a constant rank as the contributions of guided modes and lateral waves from the 

substrate and the domain electrical size significantly affect the rank deficiency of the blocks and 

requires an adaptive rank revealing algorithm for a prescribed accuracy. Here, we use the partially 

pivoted adaptive cross approximation (ACA) algorithm [21-23] to compute the matrices 
( , )

ˆ
X YGV and 

( , )

ˆ
X YGW for the low rank approximation defined in (S38). ACA is a general adaptive algebraic 

approximation technique. A stopping criterion based on the relative error of the Frobenius norm 

in consecutive approximations 
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 is used to avoid complete generation of

 ,
ˆ

X Y
G

[17]. The details of ACA can be found in [21-23] and are not repeated here. After assembly of 

each low rank representation through ACA, a recompression technique based on the singular value 

decomposition (SVD) is applied to reduce the rank even further [15, 17]. In this technique 
 ,
ˆ

X Y
G  

is decomposed into a SVD-like decomposition 
   

^ *

,
ˆ ˆ ˆˆ ˆ

V R W RX Y
G Q U Q V   by introducing QR-
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X YG W WW Q R  and SVD of 

^
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V W R RR R U V  . Then the singular 

values below the accuracy threshold and the corresponding singular vectors are discarded. The 

resultant rank will be minimal.  
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Once obtained the hierarchical representation of the interaction matrix, one has to solve the 

system of equations in which the interaction matrix is replaced by its hierarchical representation. 

For this purpose, iterative Krylov subspace methods such as generalized minimum residual 

(GMRES) and quasi minimal residual (QMR) can be employed. In this work the resulting set of 

H -matrix equations are solved using generalized minimum residual (GMRES) [24] iterative 

algorithm without employing any preconditioning scheme. A threshold of  310  has been assigned 

in the ACA algorithm to obtain low rank approximations of the blocks corresponding to admissible 

cluster pairs, and a tolerance of 310  has been specified in the iterative GRMES solver. 

The H-matrix with the adaptive rank revealing algorithm can be used in the dipolar 

equations for analysis of both single elements and embedded elements in the arrays with layered 

media Green’s function. The computation complexity is highly dependent on the H-matrix 

partition. The bounding box clustering with a clustering depth of 5p   and admissibility condition 

parameter of 2   results in a hierarchical block structure as shown in figure S7 for a V-shaped 

nanoantenna consisting of 8063 cells and a 2D array with 128×128 inclusions. The red blocks are 

corresponding to inadmissible pairs and are computed exactly while the green ones are pertaining 

to the admissible pairs and are stored in the low rank representation. As it can be seen, near 

diagonal blocks describing the self and near interactions are inadmissible and have the smallest 

size. For the V-shaped nanoantenna, the block structure exhibits a denser diagonal part 

corresponding to the part of the domain where the arms of the antenna are joint and a sparse part 

corresponding to the edges of the nanoantenna where the elements are far apart. While for the 2D 

array in a uniform grid, there is no diagonal inhomogeneity in the block structure. Each of the 

submatrices in the DDA interaction matrix, are partitioned as shown. 

 

 Figure S7. The hierarchical block structure resulted from a bounding box clustering with a clustering depth 

of p=5 and admissibility condition parameter of η=2 for (a) a V-shaped nanoantenna consisting of 8063 

cells and (b) a 2D array with 128×128 inclusions. 
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5- Retrieved Polarizability Data of the Elements: 

In this section, we provide the data for the retrieved polarizability tensors corresponding to the 

elements studied in the paper. The results can be used for homogenization of periodic metafilms 

[25] and model-order reduction in the analysis of aperiodic functional metasurfaces using dipolar 

equations as presented in this work. The polarizability tensor relates the local field at the phase 

center of dipoles to dipole moments as: 

ˆ ˆ
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In this work, we have used standing waves constructed by interference of plane waves, incident 

from opposing Cartesian directions as incident conditions. Six independent conditions are 

constructed by using the three Cartesian axes as incident directions, each with two orthogonal 

polarizations along the other two Cartesian axes [26]. As the linear superposition principle is 

rigorously satisfied in DDA, the choice of incidence conditions is immaterial for the final result. 

We define: 
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where 0 , c  and 0  are vacuum permittivity, speed of light in free space and free space 

impedance, respectively.  

There are several constraints on ̂ . In addition to the constraints imposed by the geometry 

of the scatterer, there are constraints due to reciprocity and to energy conservation. These 

constraints are described with Onsager relation which have been obtained for dynamic 

polarizability as [27]: 

†

ˆ ˆee ee        , 
†

ˆ ˆmm mm        , 
†

ˆ ˆem me                            (S41) 

where †  stands for transpose.  

 Figure S8 demonstrates the magnitude and phase of all the polarizability tensor 

components for the plasmonics V-shaped nanoantenna units at 1.55 m  . All the other 

components not plotted here are less than 310  below the presented values and are negligible. The 

geometric parameters of the nanoantennas can be found in Table 1 in the manuscript. The 

transverse electric polarizability is the largest polarizability and thereby the V-shaped 

nanoantennas are strongly plasmonic. The normal electric polarizability ee

zz  is very weak because 

the plasmonic elements are optically ultrathin. The off-diagonal elements of ee  describe the 

rotational asymmetry of the nanoantennas. The magnetic polarizability components are all zero as 

the elements do not exhibit artificial magnetic response and there is only very small normal 
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component mm

zz .  As the results indicate, the nanoantennas have bianisotropic nature as the off-

diagonal elements em

xz , em

yz , em

zx  and em

zy  significantly exceed the magnetic polarizability. The 

obtained results are in a reasonable accordance with the results obtained in [26] for a similar 

element. 

Once can notice that ee ee

xx yy  , which is because of the symmetric configuration of 

nanoantennas with respect to x- and y- axis. Moreover, it can be clearly observed that  
†

ˆ ˆee ee        , 
†

ˆ ˆmm mm         and 
†

ˆ ˆem me          as the elements are reciprocal and must 

be in accordance with the Onsager-Casimir principle. This also verifies the accuracy of our 

retrieval scheme as all the constraints imposed by geometry and Onsager-Casimir principle are 

satisfied with a great accuracy.  

 

Figure S8. The retrieved polarizability tensor components corresponding to different V-shaped nanoantenna 

units with the geometric parameters given in Table 1 of the manuscript at 1.55 m  . 

The following plots demonstrate the magnitude and phase of all the polarizability tensors 

components for the silicon nanobars corresponding to the blue, green and red subcells of the multi-

color hologram at the operating wavelengths of 459b nm  , 512g nm   and 650r nm  . The 

components not plotted here are negligible. The geometric parameters of the nanoantennas are 

given in the manuscript. Unlike the plasmonic particles, high index dielectric nanoparticles can 

exhibit a strong magnetic response in the visible range. This can be seen from the results as the 

magnetic polarizability is comparable with the electric polarizability. Since the elements are 

completely achiral, the magneto-electric polarizability components are negligible. The off-

diagonal transverse components ,ee mm

xy  and ,ee mm

yx  are zero only when rotation angle is 

0 ,90 ,180   where the nanobars are symmetric. The maximum cross-coupling occurs when 

the nanobars are tilted by 45 ,135  . Unlike the optically ultrathin plasmonic elements, here 

the normal component of electric polarizability ee

zz  is comparable to the transverse components 
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and is not negligible at all. One interesting feature that can be observed in all the elements is that 

the electric properties of the nanobars are mostly aligned with the longer axis and magnetic 

properties are mostly aligned with the shortest dimension. That explains the opposite trend in the 

variation of diagonal components of ee  and mm  versus rotation angle.  As it is required by 

Onsager-Casimir principle, we must have: 
†

ˆ ˆee ee        , 
†

ˆ ˆmm mm        . This condition is 

shown to be satisfied in the retrieved components with a great accuracy. Other constraints imposed 

by the geometry are: , ,( ) (180 )xx yy xx yy     , ( ) (180 )xy xy      , 

, ,( 0 ) ( 45 )xx yy yy xx      . All these conditions are satisfied in all the elements with a very 

high accuracy which verifies the validity of our retrieval scheme.  

 

Figure S9. The retrieved polarizability tensor components corresponding to the silicon nanorod of blue 

subcell with the geometric parameters defined as L=125nm, W=35nm, h=120nm versus rotation angle at 

459b nm  . 

 

Figure S10. The retrieved polarizability tensor components corresponding to the silicon nanorod of blue 

subcell with the geometric parameters defined as L=250nm, W=60nm, h=80nm versus rotation angle at 

512g nm  . 

 

Figure S11. The retrieved polarizability tensor components corresponding to the silicon nanorod of the red 

subcell of hologram with the geometric parameters defined as L=335nm, W=80nm, h=120nm versus 

rotation angle at 650r nm  . 
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