Supporting Information

Binding Affinity of Inorganic Mercury and Cadmium to Biomimetic Erythrocyte Membranes Mohamed Hassanin^{§, a, b}, Evan Kerek^{§, a}, Michael Chiu[§], Max Anikovskiy[†] and Elmar J Prenner^{§*}

^a both authors contributed equally

^b current address: Alberta Biophotonics, Calgary, Alberta, T2L 2K8

[§] Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada

[†] Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada

* Corresponding Author

Email: <u>eprenner@ucalgary.ca</u>

Calculation of the [LUV]

- Under our experimental conditions, only the outer leaflet of LUVs is available for metal binding. Due to the curvature of a membrane, more lipids (~55%) are found on the outer layer to reduce headgroup crowding on the inner layer ¹. Multiplying the total concentration of phospholipids in solution by 0.55 yielded the available number of phospholipids ([L]_{available}) for metal binding.
- 2) The surface area of each LUV was calculated by assuming a spherical shape and using the radius of the LUV as determined by DLS.
- 3) Assuming that each phospholipid occupies a surface area of ~ 68 Å² ² the number of phospholipids in the outer leaflet ($N_{lipids OL}$) of each LUV was estimated by dividing the surface area determined in step 2 by the surface area of each phospholipid headgroup.
- 4) The concentration of LUVs was calculated as:

$$[LUV] = \frac{[L]_{available}}{N_{lipids \, OL}} \tag{1}$$

Table S1. Lipid systems used in isothermal titration calorimetry experiments and their respective average sizes as measured using dynamic light scattering. [LUVs] was determined as explained in section 2.6.

LUV Radius	[LUVs] at 1.65 mM lipid (nM)
(1111)	
51.6 ± 3.0	37.4 <u>+</u> 4.0
52.5 ± 0.9	33.9 <u>+</u> 0.6
48.9 ± 1.6	38.0 <u>+</u> 2.4
	LUV Radius (nm) 51.6 ± 3.0 52.5 ± 0.9 48.9 ± 1.6

Figure S1. Structure of lipids used in this study. Z represents the overall charge of each lipid. POP- = Palmitoyl (16:0) oleoyl (18:1) phospho-.

Figure S2. Calculation of K_b of Hg binding to 85/15 POPC/POPS.

Figure S3. Summary of binding constants of a) Hg and b) Cd interactions with various model membranes. * = p < 0.05

Figure S4. Isothermal titration calorimetry experiments of 10 mM Cd injections into 1 mM Hg and vice versa. All trials conducted in 100 mM NaCl adjusted to pH 7.4 at 37 °C.

References

- Marquardt, D.; Geier, B.; Pabst, G. Asymmetric Lipid Membranes: Towards More Realistic Model Systems. *Membranes* 2015, 5 (2), 180–196.
- Kučerka, N.; Tristram-Nagle, S.; Nagle, J. F. Structure of Fully Hydrated Fluid Phase Lipid Bilayers with Monounsaturated Chains. *Journal of Membrane Biology* 2006, *208* (3), 193–202.