Supporting Information

Microporous Hexanuclear Ln(III) Cluster-based Metal-Organic Frameworks: Color Tunability for Barcode Application and Selective Removal of Methylene Blue

Ming-Liang Gao,^{&†} Wen-Jing Wang,^{&‡} Lin Liu,[†] Zheng-Bo Han,^{*†} Na Wei,[†] Xiao-Man Cao,[†] and Da-Qiang Yuan^{*‡}

[†] College of Chemistry, Liaoning University, Shenyang 110036 P. R. China E-mail: ceshzb@lnu.edu.cn (Z.-B. Han).

[‡] State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 P. R. China E-mail: ydq@fjirsm.ac.cn.

Figure S1 The thermal stability of 1 and 2 was examined by thermogravimetric analysis (TGA) in the temperature range of 25-900 $^{\circ}$ C with a heating rate of 5 $^{\circ}$ C min⁻¹ under a N₂ atmosphere.

Figure S2 The measured PXRD patterns of complexes 1, 2 in comparison to the simulated pattern of single-crystal data.

Figure S3 The measured PXRD patterns of solvent-stable to the compound **1** in comparison to the simulated pattern of single-crystal data.

Figure S4 Excitation and emission spectra of the H₂BPDC.

Figure S5 The measured PXRD patterns of bimetallic Eu_xTb_{1-x} series of complexes 1, 2, 3-6 in comparison to the simulated pattern of single-crystal 1.

Figure S6 Solid-state emission spectra of 1 and Eu_xTb_{1-x}-MOF excited with 300 nm UV light.

Figure S7 Solid-state excitation spectra at room temperature.Represented by $Eu_{0.0075}Tb_{0.9925}$ -6 when monitored at respective Eu^{3+} and Tb^{3+} characteristic emission peaks.

Figure S8 Coordinates of mixed Ln(III)-based MOFs, 3, 4, 5 and 6 in comparison to compound 1 and 2 when excited at 300 nm, showing variation depending on Tb^{3+}/Eu^{3+} atomic ratio. By changing the content of Tb^{3+} and Eu^{3+} , the emission color of these materials can be fine-tuned in the RG spectra region.

Fig. S9 UV-vis spectra of DMF solution of MO⁻, SD^0 and CV^+ in the presence of Ln(III)based MOF 1.

Fig. S10 UV-vis spectra of MB^+ release from MB^+ (*i*) in the DMF solution.

Fig. S11 Powder XRD patterns for simulated 1 and $MB^+@1$ after MB^+ release.

Compounds	1	2
Empirical formula	C42 H28 O16 Tb3	C42 H28 O16 Eu3
Formula weight	1265.40	1244.52
Temperature	100(2) K	100(2) K
Wavelength	0.71073 A	1.54184 A
Crystal system	Cubic	Cubic
Space group	Fm-3m	Fm-3m
Unit cell dimensions	a = 27.5460(11) Å α = 90°.	$a = 27.5460(11) \text{ Å} \alpha = 90^{\circ}.$
	$b = 27.5460(11) \text{ Å} \beta = 90^{\circ}.$	$b = 27.5460(11) \text{ Å} \beta = 90^{\circ}.$
	$c = 27.5460(11) \text{ Å} \gamma = 90^{\circ}.$	$c = 27.5460(11) \text{ Å} \gamma = 90^{\circ}.$
Volume	20901(3) Å ³	20901(3) Å ³
Z	8	8
Density (calculated)	0.804 Mg/m ³	0.791 Mg/m ³
Absorption coefficient	2.037 mm ⁻¹	12.962 mm ⁻¹

Table S1 Crystal data and structure refinement for 1 and 2 $\,$

F(000)	4824	4776		
Crystal size	0.150 x 0.140 x 0.130 mm ³	0.150 x 0.130 x 0.100 mm ³		
Theta range for data collection	2.958 to 28.272°.	4.540 to 73.938°.		
Index ranges	-36<=h<=36, -36<=k<=36, - 36<=l<=36	-33<=h<=32, -14<=k<=23, - 30<=l<=22		
Reflections collected	87687	5684		
Independent reflections	1343 [R(int) = 0.0669]	1087 [R(int) = 0.0298]		
Completeness to theta = 25.03°	99.5 %	99.1 %		
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents		
Max. and min. transmission	0.7457 and 0.6544	1.00000 and 0.72208		
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2		
Data / restraints / parameters	1343 / 27 / 37	1087 / 45 / 43		
Goodness-of-fit on F ²	1.132	1.088		
Final R indices [I>2sigma(I)] ^a	R1 = 0.0655, wR2 = 0.1652	R1 = 0.0432, wR2 = 0.1180		
R indices (all data)	R1 = 0.0881, wR2 = 0.1970	R1 = 0.0471, wR2 = 0.1218		
Largest diff. peak and hole	3.348 and -2.414 e.A ⁻³	1.951 and -0.950 e.A ⁻³		
${}^{a}R_{1} = \sum F_{o} - F_{c} / \sum F_{o} ; wR_{2} = \sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{o}^{2})^{2}]^{1/2}$				

Table S2 The⁵D₄ of Tb³⁺ and⁵D₀ of Eu³⁺ lifetimes for Ln(III)-based MOFs **1**, **2**, **3-6**. The decay curves are monitored at 547 nm and 617 nm and excited at 300 nm.

	The mole ratio of Eu (based on RE)		
Mixed-Tb _x Eu _{1-x} -MOFs	$^{5}D_{4}$ of Tb $^{3+}/\mu s$	5D_0 of Eu $^{3+}/\mu s$	
1	144.179		
2	—	781.5773	
3	38.4892	917.135	
4	31.0129	945.127	
5	25.5415	972.682	
6	19.9444	975.511	

 Table S3 The ICP-OES analysis results of mixed EuxTb1-x-MOFs 3-6.

The mole ratio of Eu				
$Mixed-Tb_xEu_{1-x}-MOFs$	(based on Ln(III))		Molecular formula	
	Theoretical	Measured		
3	0.0005	0.0005	$Eu_{0.0005}Tb_{0.9995}C_{88}H_{80}N_2O_{18}$	
4	0.001	0.0009	$Eu_{0.0009}Tb_{0.9991}C_{88}H_{80}N_2O_{18}$	
5	0.005	0.0053	$Eu_{0.0053}Tb_{0.9967}C_{88}H_{80}N_2O_{18}$	
6	0.0075	0.0076	$Eu_{0.0076}Tb_{1.9924}C_{88}H_{80}N_2O_{18}$	

Table S4 The chromaticity coordinates of the six binary Eu_xTb_{1-x} complexes whenexcited with 300 nm.

Mixed-Tb _x Eu _{1-x} -MOFs(Samples)	CIE(X, Y)
1	0.3187, 0.5598
3	0.4058, 0.481
4	0.4612, 0.4531
5	0.5164,0.406
6	0.569, 0.3838
2	0.6282, 0.3485