Supporting information (SI) for: How the Zundel (H₅O₂⁺) potential elucidates the stretch and bend frequencies of the hydrated proton

Qi Yu and Joel M. Bowman*

Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, U.S.A.

E-mail: jmbowma@emory.edu

Figure S1: Optimized global minimum geometry of $H_5O_2^+$, $H_7O_3^+$ and $H_9O_4^+$. ⁽¹⁾PES calculation ⁽²⁾⁽³⁾CCSD(T)-F12,aVTZ calculation

$H_7O_3^+$	MP2/aVTZ	CCSD(T)-F12/aVTZ	$\mathrm{H}_{9}\mathrm{O}_{4}^{+}$	MP2/aVTZ	CCSD(T)-F12/aVTZ
$R(O_4-H_1)$ (Å)	0.967	0.964	$R(O_4-H_1)$ (Å)	1.010	1.005
$R(O_4-H_2)$ (Å)	1.038	1.029	$R(O_{10}-H_1)$ (Å)	1.544	1.552
$R(O_7-H_2)$ (Å)	1.452	1.464	$R(O_4-O_{10})$ (Å)	2.553	2.555
$R(O_4-O_7)$ (Å)	2.487	2.491	$R(O_{10}-H_8)$ (Å)	0.964	0.961
$R(O_7-H_5)$ (Å)	0.964	0.961	$\angle H_1 O_4 H_2 \deg$	112.5	113.1
$\angle H_1 O_4 H_2 \deg$	112.2	112.4	$\angle O_{10}O_4O_7 \deg$	114.0	114.6
$\angle O_7 O_4 O_{10} \deg$	113.0	114.2	$\angle O_{10}H_1O_4 \deg$	175.2	175.4
$\angle O_7 H_2 O_4 \deg$	174.4	175.1	$\angle H_8 O_{10} H_9 \deg$	106.1	106.4
$\angle H_5 O_7 H_6 \deg$	106.9	107.3	$\angle O_4 \mathrm{H}_1 \mathrm{H}_3 \mathrm{H}_2 \mathrm{~deg}$	30.2	29.1
$\angle H_1 O_4 O_7 H_5 \deg$	45.3	50.3			
$\angle H_1 O_4 O_7 H_6 \deg$	104.7	107.0			

Table S1: Optimized geometry of $H_7O_3^+$ and $H_9O_4^+$ minimum

$H_9O_4^+$			H ₇ O ₃ ⁺			
Mode	MP2/avtz	CCSD(T)-F12/aVTZ	Mode	MP2/avtz	CCSD(T)-F12/aVTZ	
1	64	56	1	76	76	
2	65	61	2	82	100	
3	72	63	3	126	124	
4	104	76	4	238	192	
5	106	121	5	252	209	
6	119	130	6	351	342	
7	241	147	7	369	366	
8	261	162	8	402	392	
9	265	175	9	403	394	
10	286	271	10	481	479	
11	341	306	11	614	589	
12	342	308	12	1079	1054	
13	376	343	13	1261	1242	
14	378	345	14	1603	1625	
15	417	372	15	1632	1654	
16	737	712	16	1697	1699	
17	963	944	17	1700	1709	
18	966	948	18	2462	${\bf 2551}$	
19	1216	1186	19	2618	$\boldsymbol{2702}$	
20	1635	1644	20	3789	3818	
21	1635	1645	21	3789	3818	
22	1646	1654	22	$\boldsymbol{3812}$	3828	
23	1728	1731	23	3897	3914	
24	1729	1733	24	3897	3914	
25	2928	2995				
26	2932	2998				
27	3024	3089				
28	3797	3856				
29	3797	3858				
30	3798	3858				
31	3905	3955				
32	3906	3955				
33	3907	3956				

Table S2: *ab initio* Harmonic frequencies (in cm^{-1}) of $H_7O_3^+$ and $H_9O_4^+$ minimum

the bold text are stretching modes in hydronium part

Coordinates for ${\rm H_7O_3^+}$ (in Å)

Η	1.7491200611	-0.0796214950	-0.0000000000
Η	0.3439059486	-0.2140113235	0.8689463747
Η	0.3439059486	-0.2140113235	-0.8689463747
Ο	0.8513606628	-0.4310220136	-0.0000000000
Η	-0.5625577669	0.8116970646	2.5631675028
Η	-0.6119572769	-0.7283452143	2.7127202516
Ο	-0.4345874853	-0.0158831079	2.0923462443
Η	-0.5625577669	0.8116970646	-2.5631675028
Η	-0.6119572769	-0.7283452143	-2.7127202516
Ο	-0.4345874853	-0.0158831079	-2.0923462443

Coordinates for $\mathrm{H_9O_4^+}$ (in Å)

Η	-2.5042885607	-0.0886683874	-0.2749280329
Η	-2.8661133680	-0.6906072983	1.2483490766
Η	-1.2781610854	-0.6760414420	0.7079144092
Ο	-2.2496866456	-0.7313336709	0.4551079807
Η	0.7562259336	-1.4858668951	1.0559952498
Η	0.8092260973	0.0481979979	1.1646689663
Ο	0.2093151358	-0.7016040869	1.1505838047
Η	-3.0420356836	0.4862456451	-2.3472777433
Η	-3.2269671452	1.7085997555	-1.4310903499
Ο	-2.8277613673	0.8364399610	-1.4786220685
Η	-3.8207598503	-0.2043184550	3.2330415854
Η	-4.4930920687	-1.4172813483	2.5663649372
Ο	-3.9060510714	-0.6750215308	2.4002719735