Supporting Information

Low-Voltage and High Performance Multilayer MoS₂ Field-effect Transistors with

Graphene Electrodes

Arun Kumar Singh^{1,2*}, Chanyong Hwang³ and Jonghwa Eom¹

¹Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747, Korea.

²Department of Physics, Motilal Nehru National Institute of Technology, Allahabad-211004, India.

³Center for Nanometrology, Korea Research Institute of Standards and Science, Daejeon 305-

340, Korea.

*Corresponding Author E.mail: arunsingh.itbhu@gmail.com

Figure S1. Atomic force microscopic image of a) ML MoS₂ and b) corresponding height profile for ML MoS₂ films. The thickness is about 7.2 nm, indicating 10 MoS₂ layers.

Figure S2. Atomic force microscopic image of a) CVD-grown SLG and b) corresponding height profile. The thickness is about 0.38 nm, indicating SLG. c) Resistivity as a function of back gate voltage (V_{bg}) for CVD grown SLG

Figure S3. a) Optical image of the fabricated device (device S#2), CVD-grown SLG as the source–drain electrode, and ML MoS₂ as the channel material. b) Optical image of the fabricated top-gated ML MoS₂ transistor. The ML MoS₂ is covered with 15-nm-thick film of ALD-deposited Al₂O₃ acting as a gate dielectric and Cr/Au with 5/80 nm for the top-gated electrodes. c) Plot of $I_{DS}-V_{bg}$ of the ML MoS₂ transistor after Al₂O₃ deposition at $V_{DS} = 0.02$ V. Mobility of device S#2 is estimated found to be 466 cm²/Vs.