Supporting Information

Low-Voltage and High Performance Multilayer MoS $\mathbf{M i}_{2}$ Field-effect Transistors with Graphene Electrodes

Arun Kumar Singh ${ }^{1,2^{*}}$, Chanyong Hwang ${ }^{3}$ and Jonghwa Eom ${ }^{1}$
${ }^{1}$ Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747, Korea.
${ }^{2}$ Department of Physics, Motilal Nehru National Institute of Technology, Allahabad-211004, India.
${ }^{3}$ Center for Nanometrology, Korea Research Institute of Standards and Science, Daejeon 305340, Korea.
*Corresponding Author E.mail: arunsingh.itbhu@gmail.com

Figure S1. Atomic force microscopic image of a) $\mathrm{ML}_{\mathrm{MoS}}^{2}$ and b) corresponding height profile for ML MoS_{2} films. The thickness is about 7.2 nm , indicating $10 \mathrm{MoS}_{2}$ layers.

Figure S2. Atomic force microscopic image of a) CVD-grown SLG and b) corresponding height profile. The thickness is about 0.38 nm , indicating SLG. c) Resistivity as a function of back gate voltage (V_{bg}) for CVD grown SLG

Figure S3. a) Optical image of the fabricated device (device S\#2), CVD-grown SLG as the source-drain electrode, and $\mathrm{ML} \mathrm{MoS}_{2}$ as the channel material. b) Optical image of the fabricated top-gated ML MoS_{2} transistor. The $\mathrm{ML} \mathrm{MoS}_{2}$ is covered with 15 -nm-thick film of ALDdeposited $\mathrm{Al}_{2} \mathrm{O}_{3}$ acting as a gate dielectric and $\mathrm{Cr} / \mathrm{Au}$ with $5 / 80 \mathrm{~nm}$ for the top-gated electrodes. c) Plot of $I_{D S}-V_{b g}$ of the ML MoS_{2} transistor after $\mathrm{Al}_{2} \mathrm{O}_{3}$ deposition at $V_{D S}=0.02 \mathrm{~V}$. Mobility of device $\mathrm{S} \# 2$ is estimated found to be $466 \mathrm{~cm}^{2} / \mathrm{Vs}$.

