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Computational details

Most calculations reported in the main text have been performed using the plane-wave DFT

code vasp.1–4 We use the PBE5 and HSE6,7 functionals as described in the text, together

with the projector augmented-wave method.8,9 The energy cut-off used is 500 eV, and the

electronic Brillouin zone (BZ) is sampled using a 6 × 6 × 6 grid for the primitive cell, and

commensurate grids for the supercells. Spin-orbit coupling (SOC) is included as described

in the text.

The vibrational harmonic calculations have been done using the finite displacement

method in conjunction with nondiagonal supercells.10 The electron-phonon coupling cal-

culations using the FD approach have also been performed using the finite displacement

approach and nondiagonal supercells. The non-adiabatic Allen-Heine-Cardona calculations

based on DFPT have been performed with the abinit software11 using a 6×6×6 Γ-centered

k-point grid with a plane-wave energy cutoff of 680 eV. Norm-conserving pseudopotential

with the PBE functional have been used. The vibrational BZ was sampled using grids of

sizes up to 20× 20× 20.

The cubic cell that we have used in our calculations exhibits some imaginary phonon

frequencies, reflecting the dynamical instability of this structure, and driving it towards the

lower-temperature tetragonal and orthorhombic structures. In the calculations reported in

the main manuscript, we have set the amplitudes of the vibrational modes corresponding

to imaginary frequencies to zero, to be able to work with the cubic structure. We have

performed additional calculations for the 2 × 2 × 2 supercell in which we have allowed the

imaginary modes to contribute to electron-phonon coupling by describing them using Gaus-

sian vibrational wave functions of amplitude given by the absolute value of their (imaginary)

frequencies, in the spirit of the self-consistent harmonic approximation. Our calculations

show that the temperature dependence does not change within error bars whether the un-

stable modes are allowed to contribute or not.
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Expansion order in the electron-phonon interaction

The electronic state average over atomic vibrations

εkn(T ) =
1

Z
∑
s

〈χs|εkn|χs〉e−Es/kBT , (1)

is usually performed using a quadratic approximation to the dependence of εkn on the atomic

configuration. In terms of normal modes of vibration uqν characterized by a wave vector q

with branch ν, the value of the electronic state at a general atomic configuration u = {uqν}

can be expanded around its equilibrium position as

εkn(u) = εkn(0) +
∑
q,ν

a(1)qν uqν +
∑

q,ν,q′,ν′

a
(2)
qν;q′ν′u

∗
qνuq′ν′ + · · · , (2)

where {a(1)qν , a
(2)
qν;q′ν′ , . . .} are the electron-phonon coupling constants. Truncating this expan-

sion at second order and substituting into Eq. (1) leads to

∆εkn(T ) , εkn(T )− εkn(0) =
1

Nq

∑
q,ν

a
(2)
qν;qν

ωqν

[
1

2
+ nB(ωqν , T )

]
, (3)

where ∆εkn(T ) is the phonon renormalization of the electronic state at temperature T , Nq is

the number of points in the vibrational BZ, ωqν is the harmonic frequencies of mode (q, ν),

and nB is a Bose-Einstein factor. The expression in Eq. (3) is computationally convenient,

as the coupling constants of interest only depend on individual modes, and can be efficiently

calculated using density functional perturbation theory (DFPT)12 or finite displacements.13

To obtain a DFPT formulation of Eq. (3), the second-order coupling constants are ex-

pressed as14

a(2)qν;qν =
1

2

[
Fqνu

∗
qνuqν + Dqνu

∗
qνuqν

]
, (4)

where Fqν = 1
2
[〈ψ(1)

k,q,n|Ĥ
(1)
k+q,k|ψ

(0)
kn 〉 + (c.c.)] is the Fan term of the periodic part of the

electronic wavefunction |ψ(0)〉 with Hamiltonian Ĥ, Ĥ(1) is the first-order change of the
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Hamiltonian due to a lattice distortion arising from nuclear vibrations, and |ψ(1)〉 is the

corresponding first-order change in the wavefunction. Dqν = 〈ψ(0)
kn |Ĥ

(2)
k−q,k+q|ψ

(0)
kn 〉 is the

Debye-Waller (DW) term arising from the second-order change of the Hamiltonian due to

nuclear vibrations. Using the rigid-ion approximation to recast the DW term in terms of

first-order matrix elements that are directly accessible through routine DFPT calculations,

one obtains the so-called Allen-Heine-Cardona theory.15,16 Part of the DW term is neglected

in the process, hence the approximation. The part of the DW term neglected by the rigid-ion

approximation has been found to be small in crystals14 but crucial for molecules.17 Thanks

to this approximation, very fine BZ grids can be used to fully converge the results.18 In the

main manuscript, this approximation is referred to as Allen-Heine-Cardona theory (AHC).

To obtain the finite displacement formulation of Eq. (3), the second-order coupling con-

stants are expressed as

a(2)qν;qν =
εkn(uqν) + εkn(−uqν)

2u2qν
, (5)

and explicit atomic displacements ±uqν are used to evalute the changes in the electronic

eigenenergies. The finite displacement formulation does not rely on the rigid-ion approx-

imation, but the vibrational BZ can only be sampled by explicitly constructing supercells

of the primitive cell. Until recently, the fine BZ grids needed to converge the evaluation of

electron-phonon coupling in this context made the calculations using the finite displacement

method prohibitive, due to the large supercell sizes required. This situation has improved

significantly thanks to the introduction of nondiagonal supercells, that provide access to

very fine BZ grids using moderate supercells sizes, and approaching the levels of convergence

available using DFPT.10 In the main manuscript, this approximation is referred to as finite

displacements (FD).

Despite the successes of the quadratic theory (AHC or FD) to describe the tempera-

ture dependence of the band structures of a range of materials, recent calculations question

the validity of the AHC theory in helium at terapascal pressures,19 molecular crystals at

ambient conditions,20 in the perovskite CsSnI3,
21 and even (albeit moderately) in crystals
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like diamond22 because higher-order terms in the expansion of Eq. (2) make significant con-

tributions. These terms can be included by evaluating Eq. (1) directly using Monte Carlo

integration

εkn(T ) ' 1

M

M∑
i=1

εkn(ui), (6)

where M is the number of sampling points, distributed according to the vibrational density.

The use of Monte Carlo integration leads to statistical error bars in the Monte Carlo estimates

of the integrals, which are given by

δεkn(T ) '

 1

M(M − 1)

M∑
i=1

(
εkn(ui)−

1

M

M∑
j=1

εkn(uj)

)2
1/2

. (7)

Error bars are included in all results obtained using Monte Carlo integration, and if they

cannot be seen in a given plot, that means that their size is smaller than the size of the point

shown.

We emphasize here that the vibrational wave function is treated within the harmonic

approximation, even when the higher order terms are included in the description of the

coupling of vibrations to electronic eigenstates. Within the harmonic approximation, the

vibrational density at temperature T is given by a product of Gaussian functions over the

normal modes
∏

q,ν(2πσ
2
qν)

−1/2 exp(− u2qν
2σ2

qν
) of amplitude

σ2
qν(T ) =

1

ωqν

coth

(
ωqν

kBT

)
, (8)

where kB is Boltzmann’s constant. While this approach fully accounts for all higher-order

terms in electron-phonon coupling, the presence of cross-terms between different modes

means that it cannot be used with DFPT or nondiagonal supercells, and therefore the

computational advantages that these methods provide cannot be exploited. In the main

manuscript, this approach is refereed to as the Monte Carlo approach (MC).

In Fig. 1 we compare the temperature dependence of the band gap of MAPbI3 using the
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Figure 1: Temperature dependence of the band gap of MAPbI3 evaluated using the AHC
theory within DFPT (black lines), the quadratic approximation within a FD approach (blue
and orange lines), and the MC sampling approach (red circles). For the FD approach,
two sets of calculations have been performed, with finite displacement amplitudes given
by 0.3uRMS and 0.5uRMS where uRMS =

√
〈u2〉. The calculations have been performed by

sampling a 2 × 2 × 2 vibrational Brillouin zone grid, and without spin-orbit coupling. The
statistical error bars in the MC results are included, but for the low temperature data points
their size is smaller than the symbol size.
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three different methods described above. The two approaches based on the quadratic expan-

sion of Eq. (2), AHC and FD, show a significant increase in the value of the band gap with

temperature, reaching 0.3-0.4 eV at 400 K. The disagreement between the two quadratic

methods approaches 70 meV at 400 K. The origin of this discrepancy could be attributed

to various factors. First, the AHC calculations have been performed with the abinit pack-

age,11 while the FD calculations have been performed with the vasp package.1–4 Different

pseudopotentials and slightly different atomic coordinates have been used (although the vol-

umes were the same). Given the above-mentioned differences, the agreement between the

two methods is quite satisfactory. This leads us to believe that the rigid-ion approximation

involved in the AHC approach seems to hold for molecular crystals. A more throughout

investigation would be required to confirm this.

In any case, Fig. 1 clearly shows that the quadratic methods are not appropriate for

the description of electron-phonon coupling in MAPbI3, as they significantly overestimate

the strength of the electron-phonon coupling. The higher-order terms included in the MC

approach lead to a different temperature dependence of the band gap, and as shown in the

main manuscript, agreement with experiment is only obtained if these higher-order terms

are included.

Electronic structure method

In the main manuscript, we have established that the inclusion of SOC is necessary for an

accurate description of the strength of the electron-phonon coupling in MAPbI3, but that

nonlocal electronic correlations are not important. Here, we provide further details of those

calculations.

In evaluating Eq. (1), both electronic states and phonons are usually treated within

semilocal DFT. However, semilocal DFT is known to severely underestimate band gaps

in semiconductors and insulators.23,24 In MAPbI3, the situation is somewhat complex. The
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experimental band gap is 1.6 eV,25 and semilocal DFT predicts a band gap of about 1.6 eV,26

which appears to be in good agreement with experiment. Nevertheless, the presence of Pb

atoms means that SOC is strong in MAPbI3, and its inclusion in the calculations reduces the

band gap by around 1.0 eV,27 so that indeed semilocal DFT underestimates the band gap.

Performing calculations using hybrid functionals including SOC brings the gap closer to the

experimental value, and GW+SOC calculations lead to band gaps in very good agreement

with experiment.28–30 It had been assumed for some time that, while electronic states were

poorly reproduced by semilocal DFT, electron-phonon coupling was well-described by this

level of theory, as only changes in band gaps need to be calculated. However, it has recently

been shown that in some materials semilocal DFT severely underestimates the strength of

electron-phonon coupling.31,32
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Figure 2: Temperature dependence of the band gap of MAPbI3 evaluated using PBE (black
circles), PBE+SOC (red circles), and HSE+SOC (blue circles), and the MC method. Only
the electron-phonon coupling constants for Γ-point phonons are included. The statistical
error bars are included in all data points, although they are not visible in some as their size
is smaller than the symbol size.

Using MC sampling, we evaluate the temperature dependence of the band gap of MAPbI3

using PBE, PBE+SOC, and HSE+SOC, by focusing again on the Γ-point phonons. The

results are shown in Fig. 2. The inclusion of SOC significantly increases the strength of the
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electron-phonon coupling, such that at 500 K, the band gap change is underestimated by

0.28 eV if the SOC is neglected. The effects of SOC arise exclusively from the CBM, which

is mostly of Pb character. For example, at 300 K, the change in the VBM is −0.24 eV both

without and with SOC, but the change in the CBM is +0.08 eV without SOC, and increases

to +0.28 eV with SOC.

The use of the hybrid functional HSE6,7 instead of PBE does not seem to make a sig-

nificant difference. As a consequence, the final results in the main manuscript are obtained

using PBE+SOC.

Brillouin zone sampling

Using the quadratic theory of Eq. (3), it has been shown that the strength of electron-phonon

coupling converges slowly as a function of vibrational BZ grid size.10,18 Unfortunately, the

quadratic theory is not applicable to MAPbI3 due to the importance of high-order terms,

and that the methods developed to accurately sample the BZ cannot be used here. For the

MC sampling method, supercells of the primitive cell need to be constructed, and their sizes

are limited by the maximum number of atoms that can be realistically included in a DFT

calculation. In our case, we find that we can reach system sizes of 3× 3× 3 primitive cells,

containing 324 atoms.

In Fig. 3 we show the temperature dependence of the band gap of MAPbI3 for supercells

of varying sizes, and it is clear that the band gap change is not converged for the largest

supercells studied. Nonetheless, the changes arising from using supercells of varying size

are smaller than either the changes induced by including higher-order terms or the SOC

interaction. Furthermore, the change in the band gap at the relevant temperatures for

solar cell applications, of above 300 K, is similar between the 2 × 2 × 2 and the 3 × 3 × 3

supercells, and the difference is smaller than the experimental uncertainty in the available

data. Therefore, our final results in the main manuscript are reported for the 3 × 3 × 3
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Figure 3: Temperature dependence of the band gap of MAPbI3 evaluated using supercells
of sizes 1 × 1 × 1 (black circles), 2 × 2 × 2 (blue circles), and 3 × 3 × 3 (red circles). The
statistical error bars are included in all data points, although they are not visible in some as
their size is smaller than the symbol size.

supercell.

Results using the AHC theory and MC sampling

In this section we describe several results obtained using the AHC theory and MC sampling.

In Fig. 4 we show the static lattice band structure of MAPbI3 calculated using the PBE

functional without the inclusion of SOC. The values of several band gaps from the valence

band maximum (VBM) at the R = (0.5, 0.5, 0.5) point to the conduction band of several

high-symmetry points are indicated by the arrows. The conduction band minimum (CBM)

is also located at the R point. In Fig. 5 we show the temperature dependence of these band

gaps, calculated using the AHC theory with a 20 × 20 × 20 BZ sampling. The different

changes with temperature exhibited by the different gaps indicate that temperature does

not only change the absolute value of the band gaps, but also changes the shape of the band

structure. Fig. 5 also shows the temperature dependence of the individual eigenvalues at the

valence and conduction bands at several high-symmetry points in the vibrational BZ. For
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Figure 4: Static lattice band structure of MAPbI3 calculated using the PBE functional
without including SOC. The dashed line indicates the position of the Fermi level.
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Figure 5: (a) Temperature dependence of band gaps of MAPbI3 from the VBM at the R
point to the conduction band of several high-symmetry points in the BZ. (b) Temperature
dependence of the individual eigenvalues at the valence (solid lines) and conduction (dashed
lines) band at several high-symmetry points of the BZ. All calculations have been performed
using the PBE functional and the AHC theory. The SOC and thermal expansion are not
included.
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the minimum band gap at R discussed in the main text, the VBM decreases with increasing

temperature, and the CBM increases with increasing temperature.
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Figure 6: Temperature dependence of the individual eigenvalues at the valence (lower lines)
and conduction (upper lines) band at the R-point of the BZ. The calculations have been
performed using the same numerical parameters as those in Fig. 3 of the main manuscript,
but without the inclusion of thermal expansion.

In Fig. 6 we show the temperature dependence of the VBM and CBM at the R point

using MC sampling with the PBE+SOC method, and a supercell of size 3×3×3, numerical

parameters corresponding to the final results presented in the main manuscript. For compar-

ison, we also repeat the results arising from using the AHC theory. These calculations do not

include the effects of thermal expansion, as a proper treatment of the average electrostatic

potential in simulation cells of varying volumes would be required, but this is beyond the

scope of the present work. The results in Fig. 6 show that the use of MC sampling corrects to

a large extent the defficiencies of the AHC approach, by almost removing the temperature

dependence of the CBM at temperatures above 290 K, of experimental interest. The re-

sults in Ref.33 suggest that the inclusion of thermal expansion would make the temperature

dependence of the CBM negative, in agreement with the experimental observations.
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Thermal expansion

We study thermal expansion within the quasiharmonic approximation. The Helmholtz free

energy of a solid at temperature T can be written as

F(V, T ) = U(V, T ) + Evib(V, T ), (9)

where V is the volume, U is the electronic energy, and Evib represent the vibrational energy.

For systems with a band gap, U(V, T ) ≈ U(V ). The equilibrium volume at temperature T is

determined by minimizing F(V, T ), which we do by calculating the vibrational energy within

the harmonic approximation at a range of volumes and then directly minimizing F(V, T ).

The calculations have been performed using density functional theory (DFT) together

with the Tkatchenko-Scheffler van der Waals scheme.34 Using this approach, we find that

the lattice constant at zero temperature of 6.37 Å increases to 6.40 Å at 300 K, which is in

good agreement with experiment.35
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Figure 7: Temperature dependence of the band gap of MAPbI3 evaluated using thermal
expansion only (black triangles), electron-phonon coupling only with MC and SOC on a
3 × 3 × 3 supercell (blue circles), and both (red dashed-dotted line). The statistical error
bars are included in all MC data points, although they are not visible in some as their size
is smaller than the symbol size.
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The change in the band gap due to thermal expansion is shown in Fig. 7, where it

is compared with the electron-phonon coupling induced change. Electron-phonon coupling

makes the largest contribution, with a band gap opening of about 0.40 eV at 500 K, compared

to 0.07 eV for thermal expansion.

CsPbI3
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Figure 8: Temperature dependence of the band gap of CsPbI3 evaluated using the FD and
MC methods. The calculations have been performed using the PBE functional, with a
2 × 2 × 2 BZ grid, and without including SOC. Statistical error bars are included in the
MC data points, but they are not visible for some data points as they are smaller than the
symbols.

In Fig. 8 we show the temperature dependence of the band gap of CsPbI3 evaluated using

the quadratic approximation within the FD approach, and also using MC sampling. The

calculations correspond to a sampling of the BZ with a grid of size 2×2×2 and do not include

SOC. As observed for MAPbI3 in the main manuscript, high-order terms in the electron-

phonon coupling are also necessary to accurately describe the temperature dependence of

CsPbI3.
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