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Appendix A: Effective Refractive Index and Longitudinal Spherical Aberration of 

Plane-Concave Lens 

Consider a plane-concave lens filling with low-index medium (neff < 1) in air background. 

Figure S1a describes the propagation behaviors of light with ray tracing method. The 

curvature radius of the concave lens is R, and point O is the curvature center. Assume an 

off-axial beam (purple ray) with off-axial distance H illuminating to the optical lens, the 

exit beam will be convergent at the focal point S. According to geometric optics, the 

distance from the focal point S to the curvature center O can be described by the 

following expression, 
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where  and  are the angles of incident and exit ray, respectively. With a substitution of 

Snell’s law, i.e. sin / R sineff effn n H   , the expression of eq S1 can be rewritten as, 
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We can see that the position of focal spot is determined by the effective refractive index 

of the plane-concave lens and the off-axial distance. Particularly, with consideration of 

paraxial approximation, i.e. ~0H , the expression for paraxial light can be simplified to 
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Note that eq S3 represents the deformation of Lens’ maker formula, which is only 

valid for paraxial illumination (yellow ray in Figure S1a). Note also that the difference 

between S and L will give rise to longitudinal spherical aberration (LSA), yielding 
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which is normalized by the curvature radius R and in dB scale. Figure S1b shows the 

quantitative LSA of the plane-concave lens as a function of refractive index and off-axial 

distance. The value of LSA increases with the off-axial distance H, except for near-zero 

refractive index. In other words, LSA is possible to vanish when constructing the plane-

concave lens by near-zero-index medium. 

Alternatively, with a combination of Snell’s law and eq S1, we can simply deduce 

the effective refractive index (ERI) of the metalens as the following expression,  
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which is the same as eq 2 in the text. With a view to optical characterization, we finally 

select off-axial illuminations for the measurement of focal point so as to obtain the 

refractive index.  

 
Figure S1. Longitudinal spherical aberration in optical plane-concave lens. (a) Geometric 

optics diagram of light focusing effect. Point L represents the focal spot illuminated by 

paraxial light (yellow rays), while point S is the focal spot of off-axial light (purple rays). 

Note that such two points do not overlap, leading to longitudinal spherical aberration 

(LSA). (b) Quantitative LSA of the plane-concave lens as a function of refractive index 

and off-axial distance. The value of LSA increases with off-axial distance, except for 
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near-zero-index medium. 

 

Appendix B: Numerical simulation 

In this work, all of band calculations were implemented by MIT Photonic-Bands (MPB)1 

and all of FDTD calculations were implemented by MIT electromagnetic equation 

propagation (MEEP)2. For the 3D transmittance spectra in Figures 2f and S2, there are 10 

rods along x direction with the same bulk parameters to the zero-index lens. Bloch 

boundary conditions are imposed on the surfaces perpendicular to x-z plane, while other 

four surfaces are set by perfectly matched layer (PML) absorbing boundary. It means that 

we are dealing with a semi-infinite structure along y direction. The incident plane wave is 

set as the same height to silicon rods, and the other side is a monitor plane to detect the 

energy passing through the device. 

 

Appendix C: Effective Index of Cone-Shaped Nanopillars 

In our design, we consider the nanopillars with uniform profiles along the axial (z) 

direction, as shown in Figure 2 of main text. However, the profile of each nanopillar (the 

inset of Figure S2g) has the type of cone, rather than cylinder. The diameter of each pillar 

is typically 310 nm at the top while 400 nm at the base, deviated from the ideal radius of 

335 nm. The purpose of this section is to study the optical properties of zero-index 

photonic crystal, e.g. effective refractive index measurement, after considering the 

nanopillars with cone shape. 

Photonic Dirac cone at the center of Brillouin zone emerges as a consequence of 

accidental degeneracy at a particular diameter of the nanopillar3. Here, the band structure 

of zero-index photonic crystal in Figure S2b shows a triply-degenerate point at Γ point at 
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the wavelength of 1490 nm. The lattice constant, the diameter and relative permittivity of 

silicon are set at a = 818 nm, d = 335 nm and ε = 11.7, respectively. Two linear 

dispersions (red solid lines) intersect at the triply-degenerate point with a third flat band 

(green dash line). However, such triply-degenerate point will break up when the diameter 

of the nanopillar deviates from 335 nm. When the diameter increases to d = 400 nm 

(Figure S2c), the triply-degenerate point is decoupled into a doubly-degenerate point (two 

dipolar modes) and a single mode (monopolar mode), exhibiting a complete gap. Similar 

results can also be observed in Figure S2a for the case of d = 310 nm, but there is lack of 

complete gap (only directional gap) due to the flat band. 

 
Figure S2. Optical properties of all-silicon photonic crystals both in 2D infinitely-thick 

models and 3D wavelength-order-thick systems. (a-c) 2D bulk bands of square lattice 

photonic crystal with different diameters d. Photonic Dirac cone can be observed in (b) 

due to accidental degeneracy, but broken up in (a) and (c) when the diameter of the 

nanopillar deviates from 335 nm. (d-f) Quasi-3D transmittance of the wavelength-order-

thick (1.7 m) nanopillar array as a function of incident angle and wavelength, where the 

diameters of cylindrical pillars are correspondence with (a-c) respectively. (g) The 

effective refractive index retrieved by effective medium theory based on Mie resonance. 

Black dash corresponds to 2D model with cylindrical pillars, while the red solid is the 
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average refractive index of cone-shaped pillar array with a combination of multilayer 

approximation. (h) Re-simulation of 3D transmittance in cone-shaped nanopillar array. 

The conical-like transmission spectra can be observed near the Dirac wavelength of 1490 

nm, although the total energy has one order of magnitude less than the ideal case (e) 

 

Figures S2d-f present quasi-3D transmittance of ten-period silicon pillars as a 

function of incident angle and wavelength, where the diameters of cylindrical pillars are 

correspondence with Figures S2a-c, respectively. The thickness of nanopillars in these 3D 

calculations are set on the order of wavelength (1.7 m). See Appendix B for numerical 

setup. The transmission spectra illustrate the optical responses in this finitely-thick 

system are similar to bulk bands of the 2D photonic crystals. In this way, the deviations 

of quasi-3D systems have been recovered when the nanopillars are high on the order of 

wavelength. Due to the imperfect fabrication, we also take cone-shaped structure into the 

re-simulation of 3D transmittance, as shown in Figure S2h. The nanopillars have the 

same thickness to cylindrical shape, but perform non-uniform profile along the axial (z) 

direction (310 nm at the top while 400 nm at the base). The conical-like transmission 

spectra can be observed near the Dirac wavelength of 1490 nm, although the total energy 

has one order of magnitude less than the ideal case (Figure S2e). 

Finally, we will discuss how such cone-shaped pillars have an influence on the 

effective refractive index. Cylindrical pillar PCs can be described by effective medium 

theory (EMT) based on Mie resonance4. Consider square lattice photonic crystals of 

silicon cylindrical pillars in air background, the effective indices are related to diameter d 

and wavelength , i.e.    , , ,eff effd d    . The effective refractive index is then 

retrieved as follow, 

     , , ,eff eff effn d d d     .    (S6) 
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Black dash curve in Figure S2g presents the ideal case of d = 335 nm, indicating 

zero index emerges near the Dirac wavelength of 1490 nm. In practice, EMT is not 

straightforward for the pillars with cone shape. But each coned pillar can be discrete into 

a set of short-enough cylinder pillars with gradient diameters from dmin (310nm) to dmax 

(400nm). Then, the average refractive index of the coned pillar array can approximate to 
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where Nd is the number of short-enough cylinder pillars. The calculated result is shown in 

the red curve of Figure S2g, and Nd = 91 is large enough to guarantee the convergence of 

summation in eq S7. The near-zero refractive index can also be seen near the Dirac 

wavelength, although most of the values are deviated from the ideal case (black dash). 

Compared with the 3D transmittance of Figure S2h, we can conclude that the near-zero-

index feature still exists in such cone-shaped structure both below and near the Dirac 

wavelength. In the long wavelength region (upon 1600 nm), the system cannot be 

mapped to EMT with two reasons. One is the excitation of quasi-flat band, and the other 

is the interference between the passing band (e.g. Figure S2f) and the stop band (e.g. 

Figure S2d). 

 

Appendix D: Homogenization of photonic crystal with wavelength-order-periodicity  

Generally speaking, effective medium theory is valid for periodic structure under the 

condition of long-wavelength limit 0 1k a , where k0 is the wave number in background 

medium and a is the lattice constant5. Later, effective medium theory was extended to the 

structure with wavelength-order-periodicity under monopolar and dipolar responses4, 
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when the limit was modified to 1effk a . Here, keff is the effective wavenumber inside 

the periodic structure. In other words, a periodic structure operating at near zero keff can 

be homogenized as an effective medium, beyond the long-wavelength limit.  

In this work, we focus on the Dirac cone at the Brillouin zone center that 0effk  

and the triply mode is due to accidentally degenerate from the monopolar and dipolar 

modes. So such photonic crystal near  point can be effectively viewed as a type of 

metamaterials, even it has a half-wavelength-order lattice constant. To verify the 

homogenization, Figure S3a shows Ez profiles inside the zero-index photonic crystal, 

which is constructed by array of silicon rods with the same geometrical parameters as 

those in fabrication. It is obvious to see from down panel in Figure S3a, that each unit 

cell maintains in-phase resonance with one another, resulting in near-zero phase change. 

As a consequence, the propagating wave has the same phase as the incident port, when it 

exits from the right boundary of the photonic crystal and air. This is similar to the case of 

the ideal zero-index medium (Figure S3b), indicating that such photonic crystal with 

wavelength-order-periodicity can be considered as an effective near-zero bulk medium. 

Note that the energy within zero-index photonic crystal decays along propagating 

direction due to out-of-plane radiative loss. More details about the analysis of radiative 

loss can be seen in Appendix E. 
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Figure S3. Ez field profiles in the zero-index photonic crystal with wavelength-order-

periodicity and the conceptual zero-index metamaterial. (a) Front view of 3D structure 

and top view of the corresponding field profile. The 3D structure is a nanopillars array 

with 1.7μm height, 5 rows in x axis, and infinite periodicity along y axis. The incident 

plane waves propagate along +x direction with the Dirac wavelength of 1490 nm. 3D 

finite element simulation shows that each unit cell maintains in-phase resonance with one 

another and thus leads to near-zero phase change, although the energy decays along 

propagating direction due to out-of-plane radiative loss. (b) Same as (a) except that the 

photonic crystal is replaced by the ideal zero-index medium. 

 

Appendix E: Analysis of propagation loss 

As the photonic Dirac cone locates inside the light cone, the bulk states of the photonic 

crystal slab with finite thickness should have strong radiation towards out-of-plane space, 

leading to propagation loss. In this section, we will analyze the decay characteristics of 

the radiative zero-index modes using 3D FDTD simulation. Figure S4a shows the 

numerical setup in x-y plane. The periodic boundary conditions are imposed on the 

surfaces perpendicular to x-z plane, while other four surfaces are set by perfectly matched 

layer (PML) absorbing boundary. It means that we are dealing with a semi-infinite 

structure along y direction. The silicon rods are set as the same parameters as the 

fabricated nanopillars and labeled as ir = 1, 2, 3…60. An incident plane wave with the 
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same height to silicon rods is from the left and passes through the zero-index photonic 

crystal.  

Figures S4b and S4c present electromagnetic energy patterns w in two different 

regions, showing the obvious difference between the short-range (Figure S4b) and the 

long-range region (Figure S4c). To quantitatively analyze the out-of-plane radiation, we 

plot the average energy 
1

rod
w wdV

V
   as a function of propagation length L, depicted 

in Figure S4d, where V is the 3D volume of the rod. Interestingly, there are two regimes 

of decay behaviors. At the short-range region of 11L a , w  manifests the form of log-

linear decay with about 3.49dB/a propagation loss. However, it turns to a quasi-power-

law decay with a function of  
4

1/ /L a , when 11L a . The average propagation loss is 

about 0.6dB/a. Such two-segment decay behavior seems to be typical for the radiative 

mode in open 2D system, as similar issue has be found in 2D metal nanoparticle 

quasicrystalline arrays6. We believe that this loss may be further minimum by increasing 

the thickness of nanopillars or by fabricating the device on SOI platform.  
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Figure S4. Analysis of out-of-plane radiation loss. (a) Schematic of numerical setup in x-

y plane. There are 60 rows of nanopillars along the propagating direction, labeled as ir = 1, 

2, 3…60. (b-c) Electromagnetic energy patterns w in two different regions. (d) Average 

energy w  in dB scale as a function of the propagation length. The average energy has 

two-segment decay behaviors with a critical transition point of ~11L a , which is similar 

to the case of plasmonics nanoparticle array in Ref. S6. 

 

Appendix F: Experimental Setup for Optical Characterization  

We setup a microscope system to characterize light propagation through device, as 

depicted in Figure S5. In order to retrieve steady states, a tunable laser (Santec TSL-510) 

was used to generate continuous waves. The incident light was firstly launched into a 

polarizer to select TM-polarization mode, and then couple to the device with the aid of 

aspheric lens. Some of in-plane waves turn to be out-of-plane radiation after passing 

through device and hitting the irregular substrate. Consequently, the scattered light could 

be collected by a 50X microscope objective and imaged by using a charge-coupled 

device (CCD) camera (Electrophysics MicronViewer 7290A). 
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Figure S5. Schematic diagram of experimental setup for optical microscope images. A 

near IR continuous wave was firstly launched into a polarizer to select TM-polarization 

mode, and then couple to the device with the aid of aspheric lens. After passing through 

device and hitting the irregular substrate, the scattered light turn to be out-of-plane 

radiation and could be collected by a 50X microscope objective and imaged by using a 

charge-coupled device (CCD) camera. 

 

Appendix G: Incoherent Focusing Images 

The optical microscope images of light propagation through the fabricated lens were 

observed by the setup in Figure S5. The results are illustrated in Figures S6a-S6c with the 

incident light wavelength of 1360nm (below Dirac wavelength). White solid lines 

indicate the location of the fabricated lens and the golden arrows are depicted the incident 

light. The light trajectory comes from the scattered signal passing through the device and 

reflecting by the irregular silicon substrate. With fine tuning the incident spot of light, the 

scattered light changes the direction and is convergent to the middle. After mixing the 

off-axial illumination patterns (e.g. Figures S6a and S6c) into a doubly composite image, 

the focal point is obviously observed. Note that the focal point is close to the curvature 

center of the output interface (the cross-point of the two dash lines in Figure S6d), 
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indicating that the effective index of the fabricated lens is neff < 1. In comparison, the 

triply composite image, i.e., the mixture of Figures S6a, S6b, and S6c, is also depicted in 

Figure S6e, suffering from LSA so that the focusing point will be more difficult to be 

measured. Two-dimensional FDTD simulation result in Figure S6f is used to compare 

with the experimental result. Three incoherent beams of Gaussian waves propagate from 

left side and then transform to a focal spot after passing through the device. 

 
Figure S6. Optical microscope image of scattered light output from the fabricated zero-

index lens at the wavelength of  = 1360 nm. (a-c) Original microscope images for 

diverse incidence points. Golden arrows are superimposed on the structure to illustrate 

the incident light. White solid lines indicate the locations of sample. The light trajectory 

in these images results from the scattered light passing through the device and hitting the 

irregular substrate. (d) Composite image of off-axial illumination for (a) and (c). Two 

incoherent beams focus on a point near the center of concave surface. The focusing effect 

in our experiment indicates that the effective refractive index of this lens should be less 

than air. (e) Triply composite image for (a-c). Due to the interference of paraxial light and 

off-axial light, such focusing image suffers from LSA so that the position is more difficult 

to be measured. (f) Two-dimensional FDTD simulation result of the zero-index lens as 

the same parameters to (e). 

 

Appendix H: Control Experiment 

To experimentally compare with the anomalous focusing effect of zero-index concave 
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lens, we perform a control experiment on the same characterization setup with 

homogeneous silicon concave lens. Figure S7 shows the results at the operation 

wavelength of 1500 nm both in simulation (top row) and experimental measurement 

(down row). It is observed that three incoherent collimated beams turn to be divergent 

after passing through this high-index concave lens (Figures S7b and S7d). These results 

have a direct contrast with the convergent case of the zero-index concave lens (Figures 

S7a and S7c), confirming that the anomalous focusing effect in this work is related the 

near-zero index. 

 
Figure S7. Total energy patterns of the control experiment between zero-index concave 

lens (left panel) and silicon concave lens (right panel) at the wavelength of λ = 1500 nm. 

(a-b) 2D FDTD simulation results excited by three incoherent beams of Gaussian sources. 

(c-d) Optical microscope images as the same experimental setup to Figure S6. As above 

demonstration, anomalous focusing effect can be observed in the zero-index lens (left 

panel). But the refracted beams turn to be divergent when replacing the device by silicon 

concave lens (right panel). 

 

Appendix I: Evaluation Process of Measured Data 
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Here, we will perform how to quantitatively evaluate the focal points from the measured 

images, and to derive effective refractive index and longitudinal spherical aberration. At 

first, an integrating function  ,S yI x N  is defined by averaging the spatial intensity 

 ,SI x y  for doubly composite image (Figure S6d) within the region of [-(Ny-1)/2, (Ny-

1)/2], and thus the x location of the maximum value of  ,S yI x N  is the focal point 

 s yN . Then we have 
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Here, the optical axis is set as y = 0. Figures S8a-c plot the integrating function for 

Ny = 11, 21, 31, respectively. The focal point, i.e., the position of the peak, shifts a little 

for three different values of Ny, resulting in the errorbar of effective refractive index 

measurement in Figure 4a of the text. 

In a similar way, we can retrieve the integrating function  ,L yI x N  for triply 

composite image (Figure S6e), as illustrated in Figures S8d-f. Due to the interference of 

paraxial illumination, the positions of focal points  L yN  will be deviated from the off-

axial cases (Figures S8a-c) and suffer from longitudinal spherical aberration (LSA), 

yielding 
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We should note that the LSA also shifts a little for three different values of Ny. This is the 

derivation of the errorbar of LSA measurement in Figure 4b of the text. 
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Figure S8. Intensity distribution of the focusing pattern along the optical axis at the 

wavelength of 1360 nm. (a-c) The intensity retrieved from off-axial illumination (Figure 

S6d) with a fixed y-integrating pixel. The intensity peaks indicate the position of focal 

points and the difference for each y-integrating pixel Ny shows the error bars of the 

refractive index measurement. (d-f) The intensity retrieved from triple composite image 

(Figure S6e) with different y-integrating pixel. Due to the interference of paraxial 

illumination, the positions of focal points will be deviated from the off-axial cases and 

suffer from longitudinal spherical aberration. Here, Ny is the number of y-integrating 

pixel, and ΔS (ΔL) is the distance from off-axial (mixed) focal point to the center of 

concave surface. 
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