Supporting Information

Structure and Dynamic Behavior of Na-Diglyme Complex in the Graphite Anode of Sodium Ion Battery by ²H NMR

Kazuma Gotoh,*^{†‡} Hisashi Maruyama,[†] Tatsuya Miyatou,[§] Motohiro Mizuno,[§] Koki Urita,[#]and Hiroyuki Ishida[†]

[†]Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan

[‡]Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Nishikyo-ku, Kyoto 615-8245, Japan

[§]Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Ishikawa 920-1192, Japan

[#]Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

1) TEM images of pristine graphite and Na-diglyme-GIC

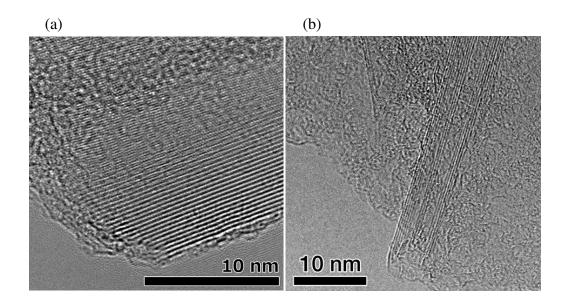
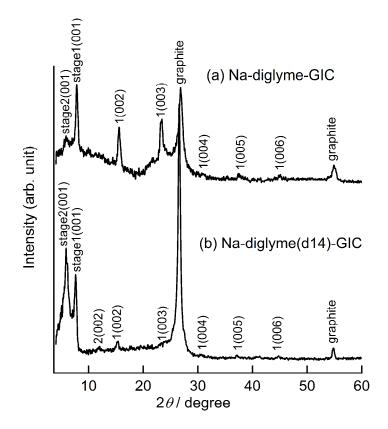
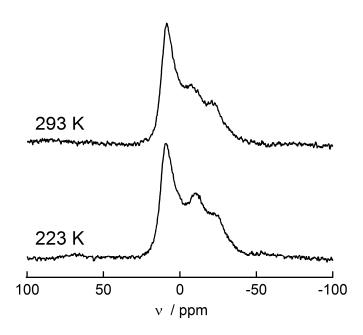



Figure S1. TEM images of pristine graphite (a) and Na-diglyme-GIC (b).

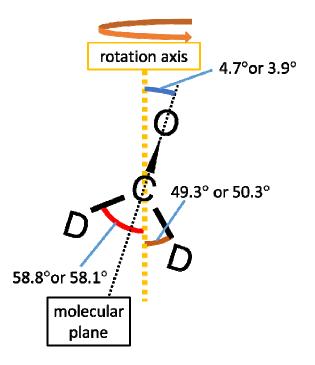
2) XRD patterns of Na-diglyme-GIC and Na-diglyme(d14)-GIC

Figure S2. Powder XRD patterns of Na-diglyme-GIC (a) and Na-diglyme(d14)-GIC (b) synthesized using a solution-phase reaction. Both samples show peaks ascribed to stage 1 and stage 2 phases. The broad peaks around 5 and 27° in (a) are background reflections due to the sample holder window.


3) Composition of Na-diglyme-GIC

CHN elemental and ICP analyses were used to determine the composition of Na-diglyme-GIC. To obtain Na content by ICP, the GIC was rinsed by diglyme to remove Na on the surface of GIC sample and then combusted in air at 800 °C. The resulting ash (Na₂CO₃) was dissolved in ultrapure water. The mass not assigned to C, H, or Na was ascribed to oxygen.

Table S1. Results of elemental analysis and estimated composition of Na-diglyme-GIC


	С	Н	Na	0	composition
71.	.09±3.15	4.12±0.29	3.94±0.2	20.86	C ₂₂₋₂₆ (diglyme) _{1.8-2.2} Na _{1.0}

4) ²³Na MAS NMR spectra of Na-diglyme-GIC

Figure S3. ²³Na MAS NMR spectrum of Na-diglyme-GIC taken at 293 and 223 K. Main peaks at 9 ppm and the edge structures at -25 ppm are ascribed to a predominant second-order quadrupolar component (quadrupolar coupling constant; qcc = 2 MHz) of sodium ion, whereas subordinate peaks at -9 ppm are assigned to sodium ion in diglyme liquid on the product surface or Na-diglyme located in defects in the GIC.

5) Schematic for the tilt of C–D bonds in CD_2 groups

Figure S4. Schematic for the tilt of C-D bonds in CD_2 groups.