
Supporting Information

Analysis of vacancy generation and oxygen uptake in Cu doped Pr-CeO₂ materials using neutron and *in-situ* X-ray diffraction

Anita M. D'Angelo[†], Nathan A. S. Webster[‡] and Alan L. Chaffee[†]*

[†] Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC), School of Chemistry, Monash University, Clayton, VIC, 3800 Australia
[‡] CSIRO Mineral Resources, Private Bag 10, Clayton South, VIC, 3169, Australia
*corresponding author: alan.chaffee@monash.edu

Figure S1. TGA curve of $Ce_{0.65}Pr_{0.20}Cu_{0.15}O_{2-\delta}$ heated to 600 °C in N₂ before switching to air then back to N₂. The large weight loss of ~98.4% until~200 °C, as shown by the asterisk, is attributed to absorbed water.

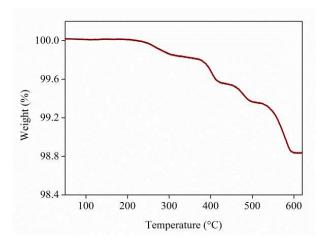
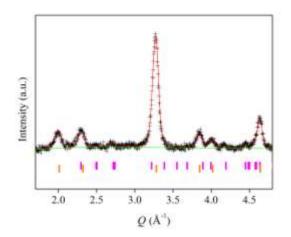
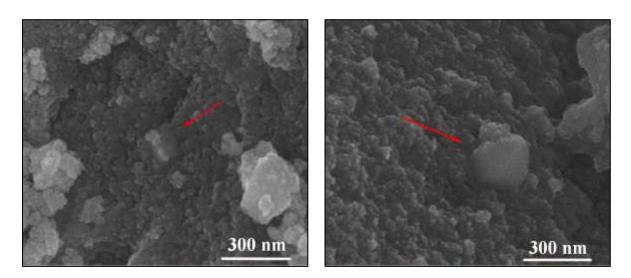




Figure S2. TGA profile of $PrO_{2-\delta}$ when heated under a flow of N_2 showing weight losses occur at temperatures greater than 250 °C.

Figure S3. Neutron diffraction pattern of 15% Cu-doped Pr-CeO₂ with CeO₂ (space group $Fm\overline{3}m$) reflections shown by the orange markers and CuO (space group C2/c) with pink markers.

Figure S4. SEM images of 10% Cu-doped Pr-CeO₂ showing the presence of larger faceted CuO crystals.