Colorimetric Detection of *Staphylococcus aureus*

Contaminated Solutions Without Purification

Pamela Tiet^{1, 2}, Karen C. Clark³, James O. McNamara II³, and Jacob M. Berlin^{1, 2} ¹Department of Molecular Medicine, ²Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA 91010, United States. ³Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 285 Newton Road, Iowa City, IA 52242, United States.

*Corresponding Author Jacob M. Berlin, Ph.D Assistant Professor, Division of Molecular Medicine City of Hope, 1500 East Duarte Road, Duarte, CA 91010 Phone: (626) 256-4673 Email: jberlin@coh.org

Figure S1. a) The 11-mer Oligonucleotide was digested with 9.917 μ M MN and analyzed by LC-MS. MN w/Ca cleaved the 11-mer into even smaller oligonucleotides, whereas MN w/o Ca primarily cleaved the 11-mer between the unmodified deoxythymidines, which yielded 6-mers. The addition of EDTA suppressed cleavage from occuring. **b)** RNase A (0.126 μ M) was used to digest the 11-mer oligonucleotide as a negative control. In all conditions, no cleavage peaks appeared and the 11-mer was left intact. **c)** The digested oligonucleotides and their sequences are listed along with their molecular weights for LC-MS analysis.

Figure S2. MN was serially diluted and used to digest the 11-mer oligonucleotide (400 pmoles). At the highest concentration used, MN cleaved multiple sites within the 11-mer. However, from 0.992 μ M to 0.001 μ M MN, the primary cleavage site was between the unmodified deoxythymidines.

Figure S3. a) 11-mer Oligo-AuNPs (0.5 nM) were treated with varying concentrations of MN to determine the limit of detection. There was a shift in the UV-absorbance when Oligo-AuNPs were treated with 0.040 μ M to 9.917 μ M MN. **b)** 11-mer Oligo-AuNPs (0.5 nM) were treated with varying concentrations of Rnase A to determine the limit of detection. There was a shift in the UV-absorbance when Oligo-AuNPs were treated with 4.958 μ M to 9.917 μ M RNase A.

Figure S4 Oligo-AuNPs treated with 9.917 μ M MN underwent a colorimetric change from pink to light purple in solution within 5 minutes. Such a high concentration of MN caused the Oligo-AuNPs to immediately aggregate and within 1 hour, we start to see Oligo-AuNPs precipitating and coating the eppendorf tube. After 4 and 24 hours, we see that the tube is coated in Oligo-AuNPs. When treated with an intermediate concentration, such as 0.05 μ M MN, the Oligo-AuNP solution changed from pink to dark purple within 5 minutes, suggesting that precipitation due to aggregation is slower. A pellet is seen after 4 hours, however, even after 24 hour hours, Oligo-AuNPs still did not coat the eppendorf tube.

Figure S5. The limit of detection of the fluorescent probe was determined to be 0.496 μ M MN.

Scrambled		
1 2 3 4 5 6 7 8 9 10 11 12 13	Tube #	Concentration (µM)
	1	0.040
a a a disc a pero a cit	2	0.005
Participant #1	3	4.958
	4	0.030
2 10 8 5 13 1 4 3 6 7 9 12 11	5	0.001
	6	0.992
Participant #2	7	0.050
5 10 2 8 13 4 1 7 11 12 6 3 9	8	0
TTTTTTTTTTTTTTTTT	9	9.917
war a car b b c c	10	0.010
Participant #3	11	0.099
8 10 5 1 2 13 4 7 3 6 9 12 11	12	0.496
1111111111111111	13	0.020

Figure S6. 11-mer Oligo-AuNPs were treated with varying concentrations of MN and the tubes were scrambled. Participants were able to sort and differentiate between aggregated and non-aggregated samples.

Figure S7. a-c) 11-mer Oligo-AuNPs (0.25 nM) were treated with varying concentrations of MN to determine the limit of detection. There was a shift in the UV-absorbance and a color change in solution when Oligo-AuNPs were treated with 0.040 μ M to 9.917 μ M MN. **d-f)** 11-mer Oligo-AuNPs (1 nM) were treated with varying concentrations of MN to determine the limit of detection. There was a shift in the UV-absorbance and a color change in solution when Oligo-AuNPs were treated with varying concentrations of MN to determine the limit of detection. There was a shift in the UV-absorbance and a color change in solution when Oligo-AuNPs were treated with 0.050 μ M to 9.917 μ M MN

Figure S8. a-c) 11-mer Oligo-AuNPs (0.5 nM) were stable in solution from pH 4 -10 and the λ_{max} remained at 530 nm. **d-f)** 11-mer Oligo-AuNPs (0.5 nM) were treated with varying concentrations of MN at pH 4 to determine the limit of detection. There was a shift in the UV-absorbance and a color change in solution when Oligo-AuNPs were treated with 0.040 μ M to 9.917 μ M MN. **g-i)** 11-mer Oligo-AuNPs (0.5 nM) were treated with varying concentrations of MN at pH 10 to determine the limit of detection. There was a shift in the UV-absorbance and a color change in solution. There was a shift in the UV-absorbance and a color change in the limit of detection. There was a shift in the UV-absorbance and a color change the limit of detection. There was a shift in the UV-absorbance and a color change in solution when Oligo-AuNPs were treated with varying concentrations of MN at pH 10 to determine the limit of detection. There was a shift in the UV-absorbance and a color change in solution when Oligo-AuNPs were treated with 0.040 μ M to 9.917 μ M MN.

Figure S9. a) The 11-mer and 5-mer Oligo-AuNPs had an equivalent λ_{max} at 530nm. b) TEM images were taken of the 11-mer Oligo-AuNPs and 5-mer Oligo-AuNPs (30,000x magnification).

Figure S10. a) 5-mer Oligo-AuNPs (0.5 nM) were treated with varying concentrations of MN to determine the limit of detection. There was a shift in the UV-absorbance when Oligo-AuNPs were treated with 0.020 μ M to 9.917 μ M MN. b) 5-mer Oligo-AuNPs (0.5 nM) were treated with varying concentrations of RNase A to determine the limit of detection. There was a shift in the UV-absorbance when Oligo-AuNPs were treated with 0.010 μ M to 9.917 μ M RNase A.

Figure S11. a) Lyophilized 11-mer Oligo-AuNPs (0.5 nM) were treated with varying concentrations of MN to determine the limit of detection. There was a shift in the UV-absorbance when Oligo-AuNPs were treated with 0.040 μ M to 9.917 μ M MN. b) Lyophilized 11-mer Oligo-AuNPs (0.5 nM) were treated with varying concentrations of MN spiked into creek water to determine the limit of detection. There was a shift in the UV-absorbance when Oligo-AuNPs were treated with 0.040 μ M to 9.917 μ M MN. c) Lyophilized 11-mer Oligo-AuNPs (0.5 nM) were treated with 0.917 μ M MN. c) Lyophilized 11-mer Oligo-AuNPs (0.5 nM) were treated with 0.917 μ M MN. c) Lyophilized 11-mer Oligo-AuNPs (0.5 nM) were treated with varying concentrations of MN spiked into ocean water to determine the limit of detection. There was a shift in the UV-absorbance when Oligo-AuNPs (0.5 nM) were treated with varying concentrations of MN spiked into ocean water to determine the limit of detection. There was a shift in the UV-absorbance when Oligo-AuNPs (0.5 nM) were treated with varying concentrations of MN spiked into ocean water to determine the limit of detection. There was a shift in the UV-absorbance when Oligo-AuNPs (0.5 nM) were treated with 0.917 μ M MN.

Figure S12. a) The minimum volume of *S. aureus* WT supernatant needed was 10 μ L. Using 10 μ L, the λ_{max} shifted to 560 nm. The study was drawn out to 1 hour in order to allow the lower volumes (1 μ L-5 μ L) of *S. aureus* WT supernatant used more time to digest since the λ_{max} for these conditions did not shift after 5 minutes. b) A colorimetric change in solution from red to purple occurred within 5 minutes when 10 μ L to 100 μ L of *S. aureus* supernatant was used. After extending the incubation time to 1 hour, the lower volumes (1 μ L-5 μ L) of *S. aureus* WT supernatant used to treat Oligo-AuNPs did not undergo a color change.

Figure S13. A western blot was performed in order to determine how much MN protein is in the *S. aureus* WT supernatant. **a)** BSA control was serially diluted to create a standard curve then assayed along with the *S. aureus* WT supernatant using Pierce BCA Protein Assay kit. **b)** A western blot was performed using serially diluted purified MN along with *S. aureus* WT supernatant (40 μ g protein). **c)** A standard curve was generated from the western blot. It was determined that from the 40 μ g protein (*S. aureus* WT supernatant) loaded, only 0.994 μ g is attributed to MN.

Figure S14. 5-mer Oligo-AuNPs (0.5 nM) were treated with various bacterial supernatants. **a**) The various *S. aureus* supernatants caused aggregation to occur and the λ_{max} to shift from 530 nm

to 570 nm. **b)** Treatment with various *S. aureus* supernatants resulted in a color change from red to purple in solution.

Figure S15. Two different sets of supernatants from *S. aureus* WT, *S. aureus nuc1-*, *S. aureus nuc1-*, *S. epidermidis*, *S. pneumoniae*, and *A. baumannii* were analyzed for MN expression by Western blot. Supernatant from *S. aureus WT* is the only condition that expressed MN, meaning that complete knock-out of MN was successful in *S. aureus nuc1-* and *S. aureus nuc1-* nuc2-.

Figure S16. The fluorescent probe was treated with various bacterial supernatants. The fluorescent probe was specific to only the *S. aureus* WT supernatant.

Figure S17. a) 11-mer Oligo-AuNPs (0.5 nM) were treated with TSB or supernatant from S. aureus WT, S. aureus nucl-, and S. aureus nucl-nuc2- in the presence of 2 mM CaCl₂ for 5 minutes. There was a shift in λ_{max} from 530 nm to 570 nm for the *S. aureus* conditions. **b**) 11mer Oligo-AuNPs (0.5 nM) were treated with TSB or supernatant from S. aureus WT, S. aureus nuc1-, and S. aureus nuc1-nuc2- in the presence of 2 mM CaCl₂ for 1 hour. There was a shift in λ_{max} from 530 nm to 570 nm for the S. aureus conditions and a decrease in absorbance due to aggregation of the Oligo-AuNPs. c) 11-mer Oligo-AuNPs (0.5 nM) were treated with TSB or supernatant from S. aureus WT, S. aureus nucl-, and S. aureus nucl-nuc2- without CaCl₂ for 5 minutes. Supernatant from S. aureus caused a shift in λ_{max} from 530 nm to 560 nm. S. aureus nucl- and S. aureus nucl-nuc2- did not cause a shift in UV absorbance. d) 11-mer Oligo-AuNPs (0.5 nM) were treated with TSB or supernatant from S. aureus WT, S. aureus nucl-, and S. aureus nucl-nuc2- without CaCl₂ for 1 hour. Supernatant from S. aureus caused a shift in λ_{max} from 530 nm to 570 nm. S. aureus nucl- caused a shift in in λ_{max} from 530 nm to 545 nm and S. aureus nucl-nuc2- caused a shift in in λ_{max} from 530 nm to 540 nm. e, f) 11-mer Oligo-AuNPs (0.5 nM) were treated with TSB or supernatant from S. aureus WT, S. aureus nucl-, and S. aureus nucl-nuc2- with CaCl₂ and EDTA for both 5 minutes and 1 hour. After 5 minutes or 1 hour, no shift in the UV absorbance was seen.